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Tropical cyclones (TCs) are expected to produce more intense precipitation under global warming.
However, substantial uncertainties exist in the projection of coarse-resolution global climate models.
Here,weusedeep learning to aid targeted cloud-resolving simulations of extremeTCs.Contrary to the
Clausius-Clapeyron (CC) scaling, which indicates a 7% moisture increase per K warming, our
simulations reveal more complex responses of TC rainfall. TCs will not intensify via strengthened
updrafts but through the expansion of deep convective cores with suppression of shallow cumulus
and congestus. Consequently, while localized hourly rainfall may adhere to the CC scaling,
precipitation accumulation over city-sized areas could surge by 18%K-1. This super-CC intensification
due to changing TC structure has profound implications for floods and landslides. Estimations using
Hong Kong’s slope data confirm this concern and suggest an up to 215% increase in landslide risks
with 4-K warming, highlighting amplified threats from compound disasters under climate change.

Climate changewill likely causemore frequent and intense extremeweather
that can inflict substantial socioeconomic and human losses. We face the
pressing task of adapting our infrastructure and riskmanagement strategies
to build communities resilient to climate hazards. However, the extent of
precipitation changes, particularly in tropical regions, is uncertain due to the
variability of extreme rainfall responses towarming in global climatemodels
(GCMs). Tropical cyclone (TC) research1 suggests a probable increase ofTC
precipitation by 7.0% per K of global mean temperature rise. Still, this value
is shadowed by disparities between GCMs, which display an uncertainty
range from 1.5%K−1 to 11%K−1. Despite their outliers status, some high-
resolution (~25 km) global models2 suggest an even higher sensitivity of
13–17%K−1. In stark contrast, observation-based studies3,4 hint at a
diminishing trend in the inner-core TC precipitation despite increases in
outer rainband precipitation observed.

The challenge in predicting TC precipitation’s sensitivity to warming
arises from the fundamental scale characteristics of convective weather
systems.Despite the organized convection produced inmatureTC eyewalls,
they are characterized by a combination of slantwise convective clouds with
sporadically superimposed buoyant convective cells, while distant rain-
bands embody primarily organized ordinary deep convection, mostly
unconstrained by the TCs’ inner-core5. A grid resolution of roughly one

kilometer is needed to capture these convective cloud dynamics in detail.
Such high-resolution global simulations exist6,7, but their computational
demands limit their widespread adoption in long-term climate simulations,
leaving the mechanisms behind TC precipitation changes veiled.

Yet, to establish climate-resilient cities and communities, high-
resolution forecasting of TC extreme precipitation under global warming
is vital. The possible intensification of precipitation influences flood and
landslide risks8–11. The delicate interplay of fine-scale processes within the
climate system12–15 determines these risks. Unfortunately, comprehensive
assessments16,17 are scarce due to high-resolution climate simulation defi-
ciencies and uncertainties in process models, including hydro-mechanical
slope stability models18.

In this study,weharness the potential of deep learning (DL) to enhance
selective dynamical downscaling19. Using a DL model, we analyze coarse-
resolution global climate simulation data, pinpointing time slices thatmight
foster local extreme precipitation events. These identified large-scale cir-
culation patterns are then applied to drive the Weather Research and
Forecast (WRF) model20 to simulate local events at a 1-km resolution,
effectively capturing the intricacies of convective weather dynamics. Our
DL-aided selection method yielded more accurate results than the direct
selection using GCM rainfall outputs, which, nonetheless, were used
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supplementally to ensure the robustness of our data (see Methods). Our
study centers on the South China region (Supplementary Fig. 1), where all
extreme cases identified are TCs. A similar targeted modeling strategy has
been successful in a previous study assessing the changes in atmospheric
river-caused precipitation in California21. Our high-resolution simulations
unveil significant alterations in TC structures and corresponding rainfall, a
finding unachievable with coarse-resolution GCMs. Furthermore, we apply
the high-resolution precipitation information to estimate impacts on Hong
Kong’s slope safety, where about 300 failures occur annually on average.

Results
Super-Clausius–Clapeyron sensitivity of precipitation extremes
Assuming constant relative humidity, the atmospheric moisture amplifies
by 7%K−1 with global warming. This rate is established by the Clausius-
Clapeyron (CC) equation and is thus referred to as CC scaling. Even with
constant vertical motions, precipitation sensitivity to warming diverges
from the CC rate as the formation of hydrometeors within clouds follows a
different temperature dependency than moisture22. Despite this, the CC
scaling is frequently used as a reference gauge of precipitation sensitivity to
warming.

In our study, theGCMsimulation of the period 2015 to 2100 under the
SSP5-8.5 scenario using the Community Earth SystemModel 2 (CESM2)23

at ~100 km resolution demonstrates a sensitivity of 13%K−1 in the South
China region’s daily precipitation extremes. This sensitivity is obtained by
linearly regressingCESM2’smaximumdaily precipitation fromeachdecade
to the decadal mean global mean temperature (Supplementary Fig. 2). This
translates into a 52% increase in maximum daily precipitation with a 4 K
warming when comparing the first and last 20 years of the
CESM2 simulation (termed ‘present’ and ‘future’ periods for 2015−2034
and 2081−2100, respectively). Applying the DL model directly generates a
dailymaximum rainfall series for South China (Fig. 1a). The purpose of this
estimation by the DL model is to provide a first guess of finer-resolution
distribution of rainfall so that our high-resolution WRF downscaling later
can target extreme events only. This series reflects the region’s seasonal
rainfall cycles and an escalating daily maximum over time. The increasing

trend is not linear. The third most intense events in some years of the last
decade exhibit rainfall higher than that of the strongest events inmost years
earlier than 2070 (Fig. 1b). Nevertheless, the DLmodel’s predicted rain rate
is modest compared to observations, such as the Hong Kong Observatory
(HKO) recording a peak daily rainfall of 330mmafter 200024. The lowerDL
prediction stems from the DL model’s training rainfall data25, which
interpolated from station data to 0.25° × 0.25° grid cells. Regardless, the DL
model predictsmaximumdaily rain of 202 and 342mm for the present and
future periods, indicating a climate sensitivity of 17%K−1. Linear regression
of DL-predicted decadal rainfall extreme in the South China region (red
circles in Fig. 1a) as a function of decadal global mean temperature suggests
it has a statistically significant (95% confidence level) temperature depen-
dence of 14%K−1; Regression between annual globalmean temperature and
annual rainfall extremes does not suggest a statistically significant linear
relationship, probably due to strong natural interannual variability (Sup-
plementary Fig. 3).However, it should benoted that the results directly from
the DL model are a preliminary estimation only and the use of kilometer-
scale resolution simulations below yield a more reliable estimation.

We selected the top 16 events from each 20-year period for further
evaluation. They correspond to the top 2.5% of rain events in the South
China region. High-resolution WRF simulations of selected events reveal
nuanced details of these extremeoccurrences. Inhindsight, we found that all
events crossed the wind threshold for TCs (Supplementary Fig. 4 shows
example synoptic conditions for six cases). During the present period, 6 of
16 events reach typhoon intensity or above, including two super typhoons.
Conversely, 9 of 16 future extreme events are categorized as typhoons, with
three classified as super typhoons. Because our selection criterion is pre-
cipitation, assuming all TCs will intensify in a warming world might be
inaccurate. Yet, the result suggests that the amplification of extreme pre-
cipitation in a warming South China region correlates with TC strength-
ening and an apparent frequency increase in the most intense ones.

Precipitation extremes in theWRF simulations and their sensitivity to
warming, illustrated in Fig. 2, are displayed as functions of spatial and
temporal accumulation scales. Running windows of different sizes in space
and time were applied to obtain the rain rate at given spatial and temporal

Fig. 1 | The deep-learning model predicted pre-
cipitation extremes. a Time series of maximum
daily rainfall in the South China region predicted by
the trained deep-learning model between 2015 and
2100. The maximum value of each day is the max-
imum grid-point daily rainfall selected from all
0.25° × 0.25° grid cells in the South China region.
Red circles indicate the maximum for each ten-year
period starting from 2015. b The top three daily
rainfall maxima of each year predicted by the deep
learning model for 2015−2100. Red circles are the
most intense event each year, orange the second, and
blue the third.
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scales, and themaximum value in space and time from each event was used
in the analysis of Fig. 2. Figure 2a, b shows that maximum precipitation
accumulates quickly as we extend the time scale, and its spatial average
diminishes as we increase the spatial scales of interest. Countering prior
studies26,27 suggesting short-duration extreme rainfall could exhibit super-
CC scaling, our results in Fig. 2c indicate precipitation extremes at hourly
and kilometer scales show a sensitivity nearing the CC rate, between 4 and
8%K−1.However,whenevaluating rainfall accumulationoverextended time
scales and larger spatial scales, the sensitivity generally trends super-CC.The
peak sensitivity is around 18%K−1 for the time scales of 12−18 h and spatial
scales of 25−50 km. Figure 2d shows that with a 4-Kwarming, total rainfall
escalates by approximately 70% for a 12-h and 40-km scale accumulation,
while the increase for 1-hour and 1-km accumulation is only about 15%.
Notably, the maximum hourly rainfall in the most intense present-period
event was 225mm, akin to China’s highest recorded 202mm during the
2021 Zhengzhou flooding28,29. 24-h accumulated rainfall in the simulations
is also close to the observation record (seeMethods). This reaffirms that our
high-resolution simulations yield reasonable intensities for these extreme
events.

Our findings imply that adapting to global warming demands
meticulous contemplation of its potential sector-specific impacts.While
short-duration rainfall extremes exhibit low sensitivity, the accumu-
lated rain over half-day timescales or more and the spatial scale of
typical city sizes are distinctly super-CC. This accelerated intensifica-
tion poses challenges to urban drainage systems, flood management,
and landslide risks.

Scale-dependent sensitivity: storm organization changes
To reconcile our estimation with previous results, we examined the char-
acteristics of convective updraft cores as functions of height for the present
period and future extreme events (Fig. 3). Somewhat unexpectedly, the
average upward velocity in these cores shows a decrease in the lower and
mid-troposphere in future cases (Fig. 3a). Boundary layer top and upper
troposphere exhibit some increases in themedian values, but themaxima at
those levels exhibit decreases as well, with approximately 3m s−1 decrease at
upper levels. This dampening of updrafts, which partially cancels out the
positive effect of increasing moisture, potentially elucidates why short-
duration, small-scale rainfall extremes adhere to a sensitivity close to or
lower than the CC rate. Concurrently, the updraft cores within the weather
system increase in size for both theirmedian andmaximumvalues (Fig. 3b).
The proximity of convective cores to the center of the convection cluster
(referring to the collection of convective cores), which is not necessarily the
TC center, exhibits no significant change in the lower levels but has sig-
nificant increases at upper levels in thewarmed climate (Fig. 3c). The counts
of updraft cores exhibit significant decreases at lower levels but no sig-
nificant change at upper levels (Supplementary Fig. 5). These alterations
suggest deep convective cores in TC rainbands expand horizontally under
global warming, and at low levels, shallow cumulus and cumulus congestus
are either killed or merged into deep convection due to the expansion.
Consequently, even as individual cores weaken slightly in the mid-
troposphere with warming, the consolidation of larger cores enhances the
spatial and temporal accumulation along the weather system’s path to
strengthen at a rate exceeding that of small-scale local rainfall.

Fig. 2 | The intensity and sensitivity to warming of extreme precipitation as
functions of spatial and temporal scales. a The present climate (2015−2034), top
16 event-mean maximum rainfall accumulated over given temporal scales and
averaged over square regions of given spatial scales. b Same as (a), but for future
(2081−2100) top 16 events. c The sensitivity of extreme rainfall to warming as a

function of spatial and temporal scales. d Scatter plot comparing the rainfall of the
present and future top 16 events for three specific temporal-spatial scales; those cases
are re-ranked and then paired for the plot. The percentage values marked near the
lines are the results of linear regression.
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The spatial scales of 25−50 km and temporal scales of 12−18 h exhibit
higher sensitivity than other scales, probably because of the characteristic
scales of convection clusters and TC rainbands. Spectrum analysis of mid-
level vertical velocity around the center of the maximum precipitation
(Supplementary Fig. 6a) suggests that the kinetic energy in vertical motions
hasno change at very small and large scales but exhibits a significant increase
at scales roughly between 10 and 100 km. Radially averaged precipitation
distribution (Supplementary Fig. 6b) suggests that the e-folding radius from
the maximum precipitation center is 15 km and 22 km for the present and
future cases, respectively. Therefore, the effects of expanding deep convec-
tion cores are more prominent at those scales than at the smaller scales of
1−10 km.Meanwhile, the temporal accumulationof rainfall depends on the
evolution and movement of rainbands, which include not only convective
regions but also stratiform regions. Outgoing longwave radiation (OLR)
composite (Supplementary Fig. 6c, d) suggests that the inner area of TC
rainbands with strengthened OLR30 (≤150Wm−2) is on the scale of
100−200 km. Given that the convective regionmoves at the speed of about
10−20m s−1 (Fig. 3d), it is reasonable that the time scale of 10−20 h is the
duration with significant local rainfall enhancement in TCs. This finding
differs from previous studies probably because previous kilometer-scale
resolution simulations focusedonnon-TCconvection,which is organized at
a smaller spatial scale and has a shorter lifetime.

Local accumulation of precipitation depends on rain intensity and the
overlapping time of TC rainbands and the interested local area, the latter of
which, as pointed out by earlier studies31, is inversely proportional to TC
translation speed. Previous study31 hinted that a slowdownofTC translation
speed could also contribute to TC precipitation strengthening. Our analysis
(Fig. 3d), however, shows that TC-related convection clusters seem tomove
more quickly at low levels but exhibit no significant change in the upper
troposphere except near the tropopause, where they move more slowly in
the future climate. However, it should noted that the movement of the
convection clusters is mostly dominated by the rotation wind environment
of TCs instead of their translation speed.We composited the synoptic fields
of the extreme events for 700 hPa and 200 hPa levels (Supplementary Fig. 7)

and found that, indeed, the low-level geopotential height field suggests
future TCs are substantially stronger. However, at the upper level, the
present cases composite exhibits weak easterlies around the TCs, while
future TC composite has southerlies to their south and easterlies to the
north. Such changes in the upper-level environment are probably related to
the response of the western North Pacific subtropical high to global
warming32.

Tracking the movement of sea level pressure low centers of those TCs
for 24-h windows producing maximum local 24-h precipitation suggests
there is about a 24% increase in the TC centers’ translation speed. This
discrepancy with previous research findings31 might mainly be due to the
fact that our analysis focused on the 24-h period with maximum pre-
cipitationwhen theTCs are close to the coast and relatively small sets of TCs
near the South China region, which do not represent the general trend of
TCs. Nevertheless, the recent study by ref. 33 suggests that in the Western
North Pacific, TCs’ translation speed before they reached their maximum
intensity actually increased between 1980 and 2018. They attributed this
change in translation speed primarily to the enhancement of TC intensity.
Tu et al. 34 further found that the TC rain rate is larger for TCs with a faster
translation speed due to low-level inflow enhancement and vertical wind
shear.Therefore,while theTC translation speed increase in our casesmaybe
specific to the South China coast, it may have contributed to the stronger
convection and higher rain rate in future cases.

Previous modeling studies suggested that the strengthening of TCs
due to a warmer sea surface temperature would be counterbalanced by the
stabilization of the troposphere under warming35. Yet, these studies did
not account for cloud-radiative feedback, an element underscored by
recent research for its pivotal role in enhancing TCs36–39. The changes in
the convective core size and organization might stem from enhanced
cloud-radiative feedback under warming. The potential causes of the
changes in TCs’ internal convection organization require further inves-
tigation, which is beyond the scope of this study. However, it is worth
noting that while including many more TC simulations can yield a larger
sample size, the DL model prediction results (Supplementary Fig. 3)

Fig. 3 | The distribution of the characteristics of
convective updraft cores in extreme events. a The
distribution of updraft intensity, which is the mean
velocity in the updraft cores. b The distribution of
diameters of updraft cores at different height levels.
c The distribution of the distance between updraft
cores and the averaged center of the core cluster.
d The distribution of core cluster center horizontal
moving speed. For each height, the upper orange
violins indicate the distribution for future extreme
events, and the lower blue violins are for present
extreme events. Updraft cores are defined as a two-
dimensional continuous region with updraft velo-
city greater than 1 m s−1 everywhere within it.
Hourly data for the 24 h producing the maximum
rainfall in each case are sampled. The analysis
includes all cores within a 100 km radius from the
grid point with the maximum 24-h precipitation,
which must be within the 1-km domain, but the
vertical velocity data is from the larger 3-km reso-
lution domain. The upward arrow ( ), downward
arrow ( ), and dash (–) indicate future median
values at the corresponding levels increase, decrease,
or have no change, respectively, at the 5% sig-
nificance level according to the Mann−Whit-
ney U-test.

https://doi.org/10.1038/s41612-024-00654-w Article

npj Climate and Atmospheric Science |           (2024) 7:107 4



suggest that a strong correlationmight exist onlywhenwe examine a small
number of extreme events and their corresponding longer-term mean
temperature. Nature variability might generate noise that makes the
relationship between TC characteristics and short-term temperature
statistically insignificant. Future studies need to balance between sample
sizes and natural variability.

Impacts from TC structure and intensity changes
The super-CC scaling of extreme precipitation intensity in response to
warming, accompanied by changes in spatial-temporal structure, imposes
significant implications for climate adaptation. A detailed spatial and
temporal distribution of extreme rainfall is vital for assessing its impacts on
landslide risks. The 24-h maximum rolling rainfall (MRR) is a commonly
adopted metric used by researchers40,41 to predict landslides that occur on
slopes in Hong Kong. Figure 4 shows the 24-h MRR patterns at three
different spatial resolutions (50 km, 10 km, and 1 km) for the most intense
events in the present and future periods over the Hong Kong region. At 50-
kmresolution, the 24-hMRR for themost intensive present and future cases
are uniform at 399mm (Fig. 4a) and 602mm (Fig. 4d), respectively. At 10-
km resolution, a 24-h MRR pattern is observed with the rainfall amount
ranging from 245 to 684mm for the present case (Fig. 4b) and 244 to
955mm for future case (Fig. 4e). At 1-km resolution, the 24-hMRRamount

ranges from 209 to 753mm for the present case (Fig. 4c) and 217 to
1163mm for the future case (Fig. 4f).

The computed results reveal that the importance of finer spatial
resolution is two-fold. Firstly, the spatial details of precipitation predicted at
1 kmgradually disappearwhen the spatial resolutiondecreases to10 kmand
50 km. Secondly, the maxima of 24-hMRR is reduced for both present and
future cases. As a result, the predicted precipitation at the 1-km spatial
resolution is around 90% larger than that predicted at the 50-km resolution,
which will have severe consequences for estimating the impact of rainfall-
induced hazards. Furthermore, comparing the present and future cases at
1-km resolution shows that the maxima of 24-h MRR in future cases
increase remarkably by 54% due to 4 Kwarming. This increase indicates an
increase of 13%K−1 warming, consistent with the super-CC scaling sug-
gested in Fig. 2c. The CC-scaling (7%K−1) can substantially underestimate
the 24-h MRR for future cases.

The number of landslides under given rain events can be predicted
based on Hong Kong’s Landslip Warning System (LWS)40, a statistical
model based on historical observations. As precipitation in future cases
exceeds historical maxima, the LWS is modified to provide a lower-bound
prediction of future landslide cases by assuming the number of landslides
does not increase when rainfall exceeds the historical maximum. Figure 5
shows the predicted number of landslides against themean 24-hMRRusing

Fig. 4 | Precipitation in the most intense pre-
cipitation events in present and future periods. a
−c are the spatial distribution of maximum 24-h
precipitation of themost intense event in the present
period for different spatial averaging scales. d−f are
for that in the future period. Every grid point sear-
ched for its 24-hwindow in the event independently.
The center of precipitation is the point with max-
imum24-h rainfall in the event. This center of rain is
located at the star symbol for each case. The star
symbol represents the shortest total distance fromall
of Hong Kong’sman-made slopes used in this study,
also known as the median center. Such a translation
enables us to compare the impact of changing pre-
cipitation intensity and patterns on the stability of
the same slopes.
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the current and modified LWS. For the present cases (black squares), the
existing andmodified LWSgive almost identical predictions for the number
of landslides because the precipitation does not exceed the historical max-
ima for most areas. The average number of predicted landslides for present
cases is 130. If we assume the precipitation increases according to CC-
scaling (green triangles), which implies an increase of 28% of precipitation
for the 4 K warming compared with present cases, the average number of
predicted landslides will rise to 191 (+47%) by the end of this century.
However, when we use the actual high-resolution simulation data, the
averagepredictions using themodifiedLWS(blue crosses) and current LWS
(red circles) show 250 (+92%) and 410 (+215%) landslides, respectively,
for the future extreme cases. For themodified LWS, the increase ismore due
to the expansionof heavy rain area than the strengtheningof rainfall because
the landslide risk plateaus when rainfall exceeds the historical maximum.
Therefore, future rainfall scenarios with 4 K warming reveal an increase in
the number of landslides up to 215% by the end of the century, highlighting
amplified threats from landslides under climate change.

It is worth noting that the actual high-resolution simulation data
also reveals that the 24 h MRR in extreme events increases by 13%K−1

warming as opposed to the CC scaling assumption of 7%K−1, and this
sensitivity can be directly used for estimating the change in landslides.
The prediction of the number of future landslides from amplifying the
present-case 24 h MRR according to the super-CC scaling of 13%K−1

and using the modified LWS is shown in orange diamonds in Fig. 5,
which indicate an average of 250 landslides (+92%), the same as that
predicted for the future cases using the actual rainfall. Using the current
LWS and applying the super-CC scaling also yield good approximations,
though the expected number of future landslides is not identical to that
using actual precipitation data (Supplementary Fig. 8). This exercise
implies that our estimation of the scale-dependent sensitivity of extreme
precipitation, as shown in Fig. 2c, has some degrees of generalizability
and can be used to estimate the responses of precipitation-related
hazards to global warming.

Discussion
Determining the response of tropical precipitation extremes to global cli-
mate change has been a notoriously difficult task for global climate
models22,42,43. The inherent uncertainties in these models have often led to
substantial variations in their projections. Our study used cloud-resolving
simulations to explicitly resolve convectiondetails, providing amore reliable

assessment of extremeprecipitation response to globalwarming, specifically
for TCs in the South China coastal region.

Contrary to past studies that typically propose a singular sensitivity of
precipitation extremes, our evaluation reveals scale-dependent sensitivities.
When considering kilometer-scale spatial averages and short-duration
accumulation, we found that the sensitivity of extreme precipitation
approximates the classic Clausius-Clapeyron (CC) scaling, ~7%K−1. How-
ever, when factoring in rainfall accumulation over larger spatial scales
(20−50 km) and temporal scales (10−24 h), the sensitivity of accumulated
precipitation surpasses the doubled CC scaling rate. These results have
important implications: on the scales relevant to managing flood and
landslide risks for typical cities, TC-induced extreme precipitation
demonstrates an accelerated intensification under global warming.

Our analysis suggests that this super-CC scaling stems from the
expansion of convective cores in future TCs despite slightly weakening their
upwardmotions under warming conditions. Analogous findings have been
observed using cloud-resolving simulations for mesoscale convective sys-
tems (MCSs), which show an accelerated intensification of precipitation
averaged over a scale of about 40 km due to the enhancement and changed
organization of convective cores44,45.

Using kilometer-scale resolution is critical for faithfully assessing the
impact of extreme precipitation. We employed a statistical model to esti-
mate the landslide risks in Hong Kong from such extreme events. Global
warming can potentially amplify the number of landslides by 92 to 215%.
The structural modifications in extreme precipitation are decisive in gov-
erning how landslides respond to warming. Owing to the nonlinear rela-
tionship between rainfall and landslides, landslide risks may escalate
severalfold relative to precipitation intensification. Global warming has the
potential to unleash amplified societal repercussions via compound
events46–48. For instance, Hurricane Harvey in 2017 delivered catastrophic
rainfall in and around Houston, and its effects were exacerbated by a slow-
moving storm surge causing extensive flooding49. Super Typhoon Man-
gkhut in 2018 is another example, where extensive rainbands, severe winds,
and subsequent storm surges culminated in substantial damages in the
Philippines and South China50.

However, while the kilometer-scale resolution simulations represent a
significant advancement relative to coarse-resolution GCMs, they are tools
with limitations. They still necessitate complex turbulenceparameterization
— an area at the forefront of model development demanding efforts in the
relevant physics51. Challenges also reside in the limited distribution of the

Fig. 5 | Predicted number of landslides for present and future top 16 cases of
extreme precipitation. The landslide prediction is based on 24-hour maximum
rolling rainfall usingHongKong’s LandslideWarning System (LWS). Themean 24-
h maximum rolling rainfall is the average of the maximum 24-h rainfall for each
slope in an event. Black squares ( ) are the prediction based on the present-period
top 16 cases. The red circles ( ) are the prediction based on the current LWS and the

future-period top 16 case rainfall. The blue crosses ( ) are based on amodified LWS,
which assumes the number of landslides does not increase when rainfall exceeds the
historical maximum (see Methods). The green triangles ( ) and orange diamonds
( ) are the predictions using modified LWS, where the precipitation in the present-
period 16 cases are assumed to increase according toCC scaling of 7%K−1 and super-
CC scaling of 13%K−1, respectively.
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observation network required for model validation. Weather stations,
typically dispersed between 1 and 100 km, are strategically situated in rural
areas to mitigate disruptions to human activities and infrastructure52,53, and
weather radars are usually spaced over 100 km apart. Since flash floods and
landslides are highly localized phenomena, accurately modeling them
remains challenging for bothmodels andobservations. Therefore, this study
underscores the necessity for high-resolution data, especially in urban
regions, to capture the spatial dynamics of extreme rainfall.

The intensification of TCs and subsequent landslides, rising sea levels,
and storm surges present formidable challenges for climate change adap-
tation. These challenges encompass reinvestment in urban drainage infra-
structure to prevent flooding, relocation of at-risk communities, and
comprehensive climate riskmanagement. To provide the scientific evidence
needed for reinventing infrastructure and relocating communities, inte-
grated risk assessments ofTCswill be essential.While earlywarning systems
for TCs arewell-established, riskmanagement strategies before, during, and
after TCs in coastal cities like Hong Kong and many others remain
underdeveloped.Climate adaptation for coastal cities threatenedbyTCswill
necessitate increased cross-disciplinary collaboration.

Methods
Selective dynamical downscaling
The deep learningmodel structure follows the previous work19. Its structure
features regular convolution and channel-wise separable convolution
operations. The model in the last work was designed for classification, but
here,we addeda regression layer to predict rain intensity. Its trainingdataset
for atmospheric circulation is from the ERA5 reanalysis54, including five
variables (geopotential, specific humidity, temperature,u and v components
of wind) at six pressure levels (250, 500, 600, 700, 850, and 925 hPa) for 18
years (1998 to 2015) in 6-h intervals. The ERA5 data is coarsened to 1°
latitude by 1° longitude using linear interpolation tomatch the resolution of
the global climate model. The training dataset for precipitation, the model
prediction target, is APHRODITE’s (Asian Precipitation - Highly-Resolved
Observational Data Integration Towards Evaluation) gridded daily
precipitation25 for 1998−2015. The precipitation data has a spatial resolu-
tion of 0.25° latitude by 0.25° longitude. We group precipitation data onto
4 × 4 blocks so that each block corresponds to one atmospheric circulation
data grid cell. Then, we record the maximum daily rainfall among the 4 × 4
grid cells of each block and use it as the training target for the deep learning
model. To predict the maximum rainfall of each block, the deep learning
model takes in the atmospheric circulation data in a 48° × 48° square region
centered at the block.

After training, the deep learning model was applied to six-hourly cli-
mate simulation data from the Community Earth System Model 2
(CESM2)23 run under the SSP5-8.5 scenario for 2015−2100. We predicted
the daily subgrid maximum rainfall for the South China coastal region
(Supplementary Fig. 1 innermost domain). The first and last 20 years of the
SSP5-8.5 run were defined as “present” and “future” periods. The top 16
cases for the present (2015−2034) and future (2081−2100) periods were
simulated with the Weather Research and Forecast (WRF)20 model, which
used four nested domains and 1 km grid spacing in the innermost domain
(Supplementary Fig. 1) and 75 vertical levels up to 10 hPa. Physical para-
meterizations used in the simulations are listed in Supplementary Table 1. If
we define one rain event as a number of consecutive days with minimum
daily precipitation larger than 5mm in at least one grid cell in the South
China region, we have approximately 600 to 700 events per 20 years.
Therefore, the top 16 events approximately correspond to the top 2.5%of all
rain events. The simulation of each eventwas run for a fewdays,with at least
one day before the day of the DL model-predicted rain maximum and one
day after. If the DLmodel selected two or more consecutive days, they were
merged and treated as one event.

The above deep learning-assisted approach is named smart dynamical
downscaling (SDD). Another possiblemethod for selecting extreme cases is
examining the precipitation from CESM2 directly, and it can be referred to
as direct dynamical downscaling (DDD). The drawback is that we can only

get a coarse resolution (1° × 1°) rainfall, which is not necessarily propor-
tional to smaller-scale rain intensity. Nonetheless, it is helpful to test this
approach and supplement the set of extreme events from SDD. Therefore,
we also selected the top 16 extreme cases for the present and future periods
by examining the CESM2 precipitation outputs and conducting WRF
simulations. The SDD and DDD selections have some overlap. For the
present period, seven cases appear on both the SDD and DDD top 16 lists,
and for the future period, six cases appear on both lists. Therefore, the total
number of WRF simulations we ran for the present and future periods,
combining SDD and DDD recommendations, are 25 and 26 cases. We re-
rank those cases based on their WRF daily precipitation coarsened to a 25-
km resolution grid mesh. Supplementary Fig. 9 shows that the SDD selec-
tions are more accurate recommendations, especially for the future. Pre-
cision@k in the figure measures the proportion of relevant recommended
items in a recommendation list of size k. For example, for k = 8 and the
future period, SDD’s precision is 5/8, and DDD’s precision is 1/4. That
means five out of SDD’s top eight recommendations appeared in the final
top eight list,while only twooutofDDD’s top eight list.Oneof thefinal eight
cases was neither in SDD’s nor DDD’s top eight list. Nonetheless, we
dropped the weaker precipitation cases and kept the top 16 cases in the
combined present and future sets for further analysis.

It is worth noting that the high-resolution WRF simulations can
generate precipitation extremes comparable to observation. The observed
maximum 24-h rainfall in Guangdong Province between 2003 and 2017 is
707.6mm, recorded on September 21, 201055. HongKong’smaximum24-h
rainfall after 2000 is 638.5 mm, whichwas recorded on September 8, 202356.
Those two cases were related to decaying Typhoons Fanapi and Haikui,
respectively. From our WRF simulations for the period of 2015−2023, the
top 3 cases ofmaximum24-h (grid-point scale) rainfall have values of 707.7,
609.6, and 594.3 mm.

Regional landslide prediction
Hong Kong has a well-documented landslide inventory and currently
applies a LWS based on this inventory40. Due to urban development,
approximately 60,000 man-made slopes are densely distributed across the
land area of Hong Kong (Supplementary Fig. 10). The total number of
landslides that happened on these man-made slopes under a rain event can
be predicted by summing the probability of landslides on each slope when
the 24-h rolling rainfall is obtained. To enable the prediction of landslides
under extreme rain in the future, the rainfall pattern is shifted from the point
with themaximal 24-h rolling rainfall to themedian center of Hong Kong’s
man-made slopes. Moreover, the landslide conditioning factors associated
with the man-made slopes such as material properties, slope geometries,
maintenance conditions41,57, are assumed constant. Only the rainfall con-
ditions are changed, which is explicitly carried out to isolate the impact of
rainfall on landslides and quantify the effects of future extreme rainfall on
landslides.

The bi-linear relationship between the logarithm of landslide fre-
quency and precipitation in the current LWS is based on historical rainfall
records and landslide inventory (black lines in Supplementary Fig. 11).
However, it is questionable to apply the current LWS to predict the
number of landslides for future cases, as the precipitation for future cases
exceeds the range of the historical data of the LWS. To address this issue,
we provide a modified version of the LWS, in which the rainfall that
exceeds the range of historical data (800mm for soil-cut slopes and
600mm for rock-cut slopes, fill slopes, and retaining walls) does not cause
the landslide frequency increases (red dash lines in Supplementary Fig.
11). This might be over-optimistic. However, during intense rainfalls,
surficial permeability governs infiltration; thus, some rainwater becomes
surface runoff when rainfall intensity far exceeds the surficial perme-
ability. This implies that a stormwith higher intensity does not necessarily
produce a more adverse effect on slope stability once a critical return
period is reached because infiltration depends on surficial permeability58.
Therefore, the modified LWS offers a lower bound for estimating future
extreme precipitation-induced landslides.
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Data availability
The ERA5 reanalysis data is available in the Copernicus Climate Change
Service’s (C3S)ClimateData Store (https://cds.climate.copernicus.eu/). The
APHRODITE precipitation data is available on its project website (http://
aphrodite.st.hirosaki-u.ac.jp/). The CESM2 simulation data was down-
loaded from the CoupledModel Intercomparison Project Phase 6 (CMIP6)
website (https://pcmdi.llnl.gov/CMIP6/). Our WRF simulations include a
large volume of data, which are available upon request.

Code availability
The codes used to preprocess data, train and apply the deep learningmodel,
and prepare WRF simulations are available at https://github.com/MetLab-
HKUST/SDD.
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