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Surface visibility (SV), a key indicator of atmospheric transparency, is used widely in the fields of
environmental monitoring, transportation, and aviation. However, the sparse distribution and limited
number of SV monitoring sites make it difficult to fulfill the urgent need for spatiotemporally seamless
fine-scale monitoring. Here, we developed the operational real-time SV retrieval (RT-SVR) framework
for China that incorporates information from multiple data sources, including Chinese Land Data
Assimilation System meteorological data, in situ observations, and other ancillary data. Seamless
hourly SV data with 6.25-km spatial resolution are available in real time via the operational RT-SVR
model,whichwas built using a two-layer stacked ensemble approach that combinesmultiplemachine
learning algorithms and adeep learningmodule. Sample-based cross-validation of theRT-SVRmodel
on approximately 41.3 million data pairs revealed strong robustness and high accuracy, with a
Pearson correlation coefficient (R) value of 0.95 and a root mean square error (RMSE) of 3.17 km. An
additional hindcast-validation experiment, performed with continuous observations obtained over
one year (approximately 20.8milliondata pairs), demonstrated the powerful generalization capabilities
of the RT-SVR model, albeit with slight degradation in performance (R = 0.85, RMSE = 5.28 km). The
seamless hourly SV data with real-time update capability enable tracking of the generation,
development, and dissipation of various low-SV events (e.g., fog, haze, and dust storms) in China. The
developed framework might also prove useful for quantitative retrieval of aerosol-related parameters
(e.g., PM2.5, PM10, and aerosol optical depth).

Surface visibility (SV), often used as a proxy for ambient air quality, exhibits
strong association with national transportation and human health1–4. In
recent decades, severe and frequent low-SV episodes related to air quality
during events such as haze and dust storms have received widespread
attention5–7. The main factors affecting SV are relative humidity (RH) and
ambient particulate matter (PM), which can affect SV by directly or indir-
ectly changing the transmission path of solar radiation8,9. However, the

relationships betweenPMconcentration and SVare complex andnonlinear
owing to variations in the size distribution, mixing state, and chemical
composition of aerosol particles10,11. Moreover, this relationship is also
affected by various meteorological factors (especially RH) that exhibit
notable regional and seasonal differences12.

Since 2015, the China Meteorological Administration (CMA) has
conducted automated observations of SV, gradually replacing the previous
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manual method of conducting observations only 3–6 times daily13. The
automated instruments for monitoring SV measure surface scattering coef-
ficients and can provide high-quality SV observations on an hourly basis.
Currently, the CMA has equipped more than 2400 sites with such instru-
ments, thereby providing a good opportunity to track the diurnal cycle of SV
variability. However, despite the considerable efforts made to date, the rela-
tively sparse distribution and limited number of SVmonitoring sites make it
difficult to meet the current urgent need for spatiotemporally seamless fine-
scale monitoring of SV. Thus, seamless hourly high-resolution SV retrievals
would be useful for tracking various low-SV events caused by different
weather conditions or background emissions. Moreover, such data would
also strongly support quantitative retrieval of aerosol-related parameters,
includingfinePM(PM2.5)

14–16, coarse PM(PM10)
17, and aerosol optical depth

(AOD)18,19, for which SV is recognized as a key intermediate variable.
To address the dearth of SV observational data, studies in recent

decades have investigatedobtainingSVdata indirectly. Initially, suchstudies
used statistical models or radiation theory for indirect estimation of SV
using synchronized observations of meteorological, aerosol optical, and
chemical component properties as key predictors20,21. Such a method is
somewhat accurate but has strong geographical dependence, which leads to
discrepancies in its spatial applicability. Additionally, it also relies on online
observations of chemical components, which can hinder its application to
large-scale estimation. In recent years, to resolve the difficulty in obtaining
SV data on a large scale, some studies indirectly retrieved the spatial dis-
tribution of SV based on spectral signals from polar-orbiting or geosta-
tionary satellites and their derivatives (e.g., AOD)22–25. However, satellite-
derived SV products can have incomplete spatial coverage due to cloud
interference, thereby limiting their application prospects26–28. Furthermore,
owing to the unavailability of nighttime aerosol products, satellite-based
retrieval strategies are not yet able to achieve seamless SV monitoring on a
24-h cycle. Consequently, a real-time seamless hourly SV retrieval frame-
work for China that can be operationalized and shared with the wider
community remains lacking.

In this study, a spatiotemporally seamless SV retrieval framework for
China with real-time operational capability was constructed based on
multisource data fusion and machine learning (ML) methods. Here, we
show the development of a real-time SV retrieval (RT-SVR) model in this
framework, which is an end-to-end stacked ensemble model composed of
bagging, boosting, and deep network algorithms. With the support of real-
time availability of multisource input data, the RT-SVR model has the
capability to provide real-time output of seamless hourly SV data for China
with 6.25-km spatial resolution. Real-time retrieval of high-accuracy
seamless hourly SV data is beneficial both for further improving the mon-
itoring capability of national-scale low-SV events, and for advancing the
application of spatiotemporally continuous multiple aerosol-related para-
meter retrievals.

Results
Advantages of the stacked ensemble model
In this study, we chose not to use an independentML algorithm to establish
the complex relationships between multiple predictors and observed SV.
Instead, we developed a two-layer stacked ensemble model that combines
five widely used ML algorithms (i.e., MLP, RF, CatBoost, XGBoost, and
LightGBM; see Methods) with robust performance and a deep residual
network (Fig. 1). In the following, we explain in detail the advantages of the
stacked ensemble model developed in this study compared to an indepen-
dent ML algorithm through consideration of a case that occurred at 02:00
CST (China Standard Time) onDecember 10, 2022 (Supplementary Fig. 1).

Supplementary Fig. 2a–f show the spatial distribution of SV at 02:00
CST on December 10, 2022, as estimated by the MLP, RF, CatBoost,
XGBoost, LightGBM, and RT-SVR models, respectively. For the MLP
model, although the estimated SV exhibits a continuous spatial pattern
similar to that of the observed SV (see Supplementary Fig. 1), the model
tends to be spatially over-smoothed in areas of high SV, e.g., northwestern
China (Supplementary Fig. 2a). This is an inherent drawback of the MLP

approach,where the bias between estimated SVandobserved SV tends to be
large on the tabular data29. Compared with the MLP model, the RF model
provides better portrayal of the spatial details of SV in the Tibetan Plateau
region, but overfitting occurs in the northwestern region (Supplementary
Fig. 2b). Overall, in areas of high SV, the three boosting models (i.e., Cat-
Boost, XGBoost, and LightGBM) successfully address the problems
encountered by the MLP and RF models. However, for regions with
extremely lowSV, e.g., theNorthChinaPlain (NCP), the SVestimatedby all
three boosting models exhibits unrealistic anomalies with negative retrieval
values (Supplementary Fig. 2c–e). The statistics indicate that the grid points
with negative retrieval values encountered by CatBoost, XGBoost, and
LightGBMover theNCP region comprise approximately 0.84%, 0.58%, and
0.63%of the total sample size, respectively. It shouldbenoted thatwe revised
the loss function of XGBoost to eliminate negative retrieval anomalies in the
model, which explains the lower number of negative retrieval values for the
XGBoost (Supplementary Fig. 2d)30.

To address the various shortcomings encountered by the different ML
models,we constructedadeepresidualnetwork in the second layerusing the
outputs of five independent ML models as inputs to comprehensively
integrate the strengths and weaknesses of the base models in the first layer
(Fig. 1). Supplementary Fig. 2f depicts the spatialmap of SV retrieved by the
RT-SVRmodel coupledwith a two-layer stacked structure. It is evident that
the deep residual network avoids the overfitting properties of the stacking
methods and is spatiotemporally capable of combining the advantagesof the
first layer of the base model.

Relative importance of explanatory variables
We used the permutation method to interpret the relative importance of
each predictor in the five base models in the first layer of the RT-SVR
model. The same approach was also applied to account for the relative
contribution of the retrieval from each base model in the first layer to the
final retrieval from the second layer (a deep residual network). The per-
mutation method calculates the relative importance of each feature by
shuffling it randomly during training31. The relative importance of the
predictors for retrieving SV in the RT-SVR model is illustrated in Sup-
plementary Fig. 3. In the first layer of the RT-SVRmodel, each basemodel
has different usage of the predictors. As expected, surface RH, which can
directly or indirectly affect fog or cloud formation and modify light
scattering and thereby lead to changes in SV, accounts for approximately
40% of the overall importance of predictors among the base models. For
tree-based models, RH and PM2.5 are the dominant factors affecting SV
retrievals because aerosol hygroscopic growth varies under different RH
conditions12. It is notable that in the MLP model, surface temperature
(TEM) is themost dominant predictor. Statistically significant correlation
between TEM and SV has also been identified in some previous studies.
On the one hand, TEM can affect the rate of aerosol hygroscopic growth
and indirectly affect SV32,33; on the other hand, TEM affects the stability of
the atmospheric boundary layer, which can influence pollutant
diffusion20. In addition to the predictors mentioned above, geographical
factors (e.g., the normalized difference vegetation index (NDVI) and
elevation) and temporal factors (i.e., day of year), which have notable
spatial heterogeneity, are also critical in estimations of SV.

Evaluation of the RT-SVRmodel performance
The performance of theRT-SVRmodelwas evaluated using a sample-based
cross-validation (CV) approach and a hindcast-validation (HV) experi-
ment. The k-fold CV is used most often to test model robustness. In this
study, a 5-fold CV approach was chosen, i.e., all site-based samples were
randomly divided into five subsets. Each time, the model was trained using
data from four subsets and tested on the remaining subset. In contrast, the
HV experiment evaluated the generalization ability of the model (i.e., the
real prediction ability) on a completely independent dataset that was not
involved in any training process of the model.

Figure 2 shows the overall fitting and the 5-fold CV results of the RT-
SVRmodel for all 24-hperiods during 2020–2021.Here, the performance of
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the RT-SVR model for SV retrieval is indicated using the Pearson correla-
tion coefficient (R), root mean square error (RMSE), mean absolute error
(MAE), and relative mean bias (RMB). Overall, the 5-fold CV results of the
model are comparable to the fitting results, indicating that our model is

robust and does not experience overfitting problems. The RT-SVR SVs
estimated from the 5-fold CV, tested on approximately 41.3 million data
pairs, exhibit reasonable agreement with the in situ observations (R = 0.95,
MAE = 2.16 km, and RMSE = 3.17 km).

Fig. 1 | Operational procedure of the RT-SVR framework for generating seamless hour-by-hour SV data in China.The first and second steps are the data pre-processing
and detailed model building process. The third step is the operational application of the model.
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To further check the performance of the model in real application
scenarios, we performed an additional HV experiment to examine the
model’s ability to generalizewhen using unused data. For theHVexperiment
using one-year’s (2022) continuous observations (approximately 20.8million
data pairs), the RT-SVR model still exhibits powerful generalization cap-
abilities, albeit with slight degradation in performance (R = 0.85,
MAE= 3.77 km, and RMSE= 5.28 km) (see Fig. 3i and Supplementary Fig.
4f). SimilarHV experiments were also undertakenwith five independentML
models in thefirst layer and the results are shown in Supplementary Fig. 4a–e.
Overall, in addition to the improvement in performance spatially, the RT-
SVRmodel also exhibits improved accuracy compared to all fiveMLmodels,
with the lowest RMSE and the highest value of R (Supplementary Fig. 4f).
Importantly, the RT-SVR model resolves the problems of anomalous nega-
tive retrievals encountered by the boosting models. Moreover, the RT-SVR
model demonstrates outstandingpredictive performance compared to that of
other models that use satellite-retrieved AOD as the predictor22.

In addition to examining the overall performance of themodel, the site-
scale performance was also evaluated. Supplementary Figs. 5, 6 show the
spatial distribution of the site-based statistical indicators associated with the
5-fold CV and HV experiment, respectively. For the 5-fold CV (Supple-
mentary Fig. 5), the averaged R, RMSE, and MAE across China is 0.93,
3.10 km, and 2.16 km, respectively. Among them, the number of sites with
R > 0.94 accounted for 45.4% (1091 sites) of the total number of sites, the
majority of which are located on the NCP. Meanwhile, those sites with
relatively low R-values are mainly located on the Tibetan Plateau and in
northeastern China. This is attributed to the fact that the SV sites in those
regions are sparsely distributed, making it difficult to acquire sufficient
information for model development (Supplementary Fig. 1). For the HV
experiment, the overall distribution pattern of the abovemetrics is similar to
that of the 5-fold CV (Supplementary Fig. 6). Statistically, the averaged R,
RMSE, andMAE for the HV experiment across China is 0.80, 5.08 km, and
3.77 km, respectively, and approximately 43.9% (1055 sites) of the sites have
anR-value of >0.85. Spatially, ourmodel has greater bias in south-central and
north-central China compared to that in the region of the NCP, mainly
because of the more complex relationships between SV, RH, and PM2.5 in
those areas34,35. The drier climatic background of the NCP allows SV varia-
bility in this region to bemodulatedmainly by atmospheric PM2.5 pollution.
The low bias in the region of the NCP is largely attributable to the relatively
accuratepollutant andmeteorologicalfields associatedwith the largenumber
of monitoring sites distributed throughout the region. We also note that a

similarly high bias in themodel also exists in northeastern and northwestern
China, which might be related to the inadequate spatial representation of
background PM10 information interpolated from the fewer observational
sites in those regions (see Methods).

Consistent accuracy on the full 24-h diurnal cycle
Supplementary Figs. 7, 8 show the performance of theRT-SVRmodel on an
hourly scale based on the sample-based 5-fold CV and HV experiments,
respectively. On the CV dataset, the RT-SVR model shows superior tem-
poral robustness and its statistical parameters do not exhibit significant
fluctuations over time; themodel has values of R > 0.93 andRMSE < 3.5 km
at all 24-h periods (Supplementary Fig. 7). On the HV dataset, although the
accuracy of the RT-SVR model is reduced compared to that on the CV
dataset at all 24-h periods, the performance of the model is robust across
hours (Supplementary Fig. 8).

We further selected six SV observation sites with different underlying
surface types, i.e., desert (Urumqi site), basin (Wenjiang site), plateau (Nagqu
site), andurban (Beijing,Nanjing, andShenzhen sites), to further examine the
performance of the RT-SVR model. Figure 3 and Supplementary Fig. 9
present the daily and hourly time series of SV at those sites retrieved by the
RT-SVR model during the HV experiment in 2022, respectively. In Beijing,
the estimated daily SV agrees well with the observed SV, with an R-value of
0.97 and RMSE of 2.47 km. Similarly good performance is observed in both
Nanjing (R = 0.96, RMSE = 2.22 km) and Wenjiang (R = 0.94,
RMSE = 2.28 km). At the other city site, i.e., Shenzhen, the model perfor-
mance is slightly reduced. In contrast, there is notable reduction in model
performance at the western sites of Urumqi (R = 0.85, RMSE = 2.68 km) and
Nagqu (R = 0.83, RMSE = 2.02 km) compared to that of the eastern sites in
China. However, it should be noted that there are also differences in model
performance across seasons at different sites (Supplementary Fig. 9). For
example, at theUrumqi site, larger error occurs in spring (SupplementaryFig.
9a), during which time frequent dust storm events tend to cause short-term
abrupt changes in SV, leading to an under-response of themodel5,36,37. At the
Nanjing and Wenjiang sites, the RT-SVR model has worst performance in
summer (Supplementary Fig. 9c, e), which might be related to the seasonal
increase in precipitation events caused by frequent strong convective
activities38,39. The combination of higher temperature and increased pre-
cipitation in summer highlights the difficulty the model has in accurately
retrieving SV under conditions of high RH12. The model performs poorly at
the Nagqu site in all seasons except winter (Supplementary Fig. 9d). The

Fig. 2 | The performance of the RT-SVR model. Density scatterplots between
observed SV and (a) fitted SV and (b) estimated SV across China for sample-based
fivefold CV from 2020 to 2021. CV results are generated with hourly temporal
resolution. The dashed black line is the 1-to-1 line and the solid red line is the linear

regression line. The number of samplematchups (N), Pearson correlation coefficient
(R), slope, mean absolute error (MAE), root mean square error (RMSE), and relative
mean bias (RMB) of the linear regression are shown in the lower-right corner of
each panel.
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uncertainty of the meteorological fields in the region of the Tibetan Plateau
might contribute to this level of performance. Figure 4 displays the dis-
tribution of the retrieved hourly SV averaged over the period 2020–2022 for
the RT-SVRmodel, trained using the 2020–2022 data. The site observations
are shown in Supplementary Fig. 10.Overall, theRT-SVRmodel captures the
features of the diurnal cycle of the seamless hourly SV inChina. For example,
in the earlymorning and evening, low surface temperatures (due to radiative
cooling) and high RH are conducive to fog formation, leading to reduced
SV40. Additionally, during this period, such meteorological conditions cou-
pled with low boundary layer heights favor accumulation of pollutants
(especially surface PM), leading to enhanced extinction, which further
reducesSV12,41. Spatially, lowSVvaluesaremainly located in the regionsof the
NCP, central-eastern China, Sichuan Basin, and Taklimakan Desert. In
contrast, as temperatures rise during the day, surface heating leads to

reduction in RH and enhancement of vertical motion, the latter of which
contributes to greater dispersion of pollutants and thus improves SV. Sup-
plementary Fig. 11 shows themultiyear averaged seasonal SVmaps retrieved
from the RT-SVRmodel during 2020–2022. During the summer, enhanced
surface heating leads to vigorous convective activity in the lower atmosphere
and significant precipitation, resulting in a notable improvement in SV. In
contrast, during the winter, the prevalence of low-SV events escalates due to
suboptimal atmospheric dispersion conditions that are compounded by the
synergistic effects of adverse weather conditions and anthropogenic emis-
sions, with this phenomenon being particularly pronounced in the central
and eastern regions of China. Supplementary Figs. 12–15 show themultiyear
averaged hour-by-hour SV maps retrieved from the RT-SVR model in the
four seasons during 2020–2022, respectively. Consistent with the patterns
observed in Fig. 4, the diurnal variations of SV in China exhibit a similar

Fig. 3 | Performance of the RT-SVR model in the hindcast-validation (HV)
experiment in 2022. Comparison of daily SV time series from observations and
from the RT-SVR model at six different sites in China: (a) Urumqi, (b) Beijing, (c)
Nanjing, (d) Nagqu, (e) Wenjiang, and (f) Shenzhen. g Geographic locations of the
six independent sites selected for this study. h Boxplot of observed and estimated SV
at the six sites (statistics performed on the daily time series for 2022). The boxplot
illustrates the median, the interquartile range, the upper (lower) whisker extending

from the hinge to the largest (smallest) value no further than 1.5× interquartile range,
and outliers as individual points. The box extends from lower to upper quartile
values of the data, with a horizontal line at themedian. Thewhiskers extend from the
box to show the range of the data. i Density scatterplots between observed SV and
estimated SV across China for the HV experiment in 2022 (results based on hourly
temporal resolution).
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pattern across different seasons, characterized by the lowest SV in the early
morning or evening, and the highest SV in the afternoon.Overall, the diurnal
and seasonal variations of SV inChina are driven by a complex process that is
influenced by a combination of factors such as topography, season,
meteorological conditions, and ambient air pollution.

Model applications: tracking low-SV events
To fully demonstrate the model’s ability to track the entire process of
occurrence, development, and dissipation of various extreme low-SV
weather episodes, we considered three typical events that can have major
impact on SV: fog, haze, and dust storms.

Fig. 4 | Hourly SV distributions in China. Multiyear averaged hour-by-hour SV maps retrieved from the RT-SVR model during 2020–2022.
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Fog event
Figure 5 shows the 3-h variability of SV retrieved from the RT-SVRmodel,
together with the observed PM2.5 and the geopotential height, wind vector,
boundary layer height, and RH from the fifth-generation ECMWF atmo-
spheric reanalysis (ERA-5) data, during the formation of a fog event that
occurredon theNCPduringNovember 19–20, 2022. The full hour-by-hour
evolution of this process is depicted in Supplementary Fig. 16. This event
began after 12:00 CST onNovember 19, 2022. As shown in Fig. 5, this event
was primarily driven by meteorological conditions because the regional
PM2.5 concentrations were at low levels. Specifically, from the night of
November 19 to the early morning of November 20, 2022, with the rapid
increase in RH (>90%) and the reduction in the boundary layer height, a
persistent foggy event affected the NCP and surrounding areas, which
caused rapid reduction in the regional SV to the 100-m level. Our retrieval
products well captured this process, demonstrating the ability of the RT-
SVR model to reproduce extreme low-SV events.

Haze event
Apart from fog, increase in atmospheric aerosols can also cause rapid
decline in SV.We further examined the performance of the RT-SVRmodel

in tracking extreme low-SV events caused by anthropogenic aerosols
(described as a haze event) and dust aerosols (described as a dust storm
event). Supplementary Fig. 17 shows the 6-hourly variability of SV during
the formation of a haze event that occurred in easternChina during January
20–22, 2021. Despite the spatial extent of the impact of this haze event being
comparable to that of the fog event (see Fig. 5), its duration was longer,
persisting for nearly three days.

Overall, this haze event was mainly caused by gradual accumulation of
local anthropogenically derived PM2.5 under unfavorable meteorological
conditions. From the early morning of January 21, 2021, gradual increase in
PM2.5 (up to 240 μgm−3) was observed in eastern China, especially in
southern Hebei, Shandong, Shaanxi, and Henan. Correspondingly, our
retrieval product also revealed gradual decline in regional SV, reaching a
minimum (approximately 500m) at approximately 10:00 CST on January
22, 2021 (Supplementary Figs. 17 and 18). This processwasmainly regulated
by changes in local meteorological conditions caused by the large-scale
circulation.During this period, the reduction in theplanetaryboundary layer
height and the diminished wind speed were not conducive to the dispersion
of pollutants. Meanwhile, the increase in RH further promoted the hygro-
scopic growth of aerosols and contributed to the increase in PM2.5

42,43. The

Fig. 5 |Model application to track typical low-SV events.Evolutionarymaps of 3-h
SV (first column), surface PM2.5 observations (second column), and meteorological
fields (third column: geopotential height (GH) and wind field at 850 hPa; fourth

column: boundary layer height (BLH); fifth column: surface relative humidity (RH))
during a fog event that occurred onNovember 19–20, 2022.Meteorological fields are
from the fifth-generation ECMWF atmospheric reanalysis (ERA5).
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formation of these unfavorable meteorological conditions collectively con-
tributed to the rapid accumulationofPM2.5 and the subsequent rapiddecline
in SV.After 10:00CSTon January 22, 2021, as atmospheric conditions led to
improved dispersion of pollutants and reduced RH, the regional PM2.5

concentration began to decrease, leading to improvement in SV.

Dust event
Figure 6 illustrates the evolution of amega dust storm event that occurred in
northern China during March 14–15, 2021. A recent study, based on long-
termsatellite observations, registered the intensity of thedust loadingduring
this event as the strongest episode over the past two decades5. Thus,
examining the retrieved SV products during such an event is beneficial for
deepening our understanding of the model’s reproducibility under large-
scale, dynamic, and extremely low-SV conditions.

ERA5 data showed that this dust storm event was triggered by a strong
Mongolian cyclone on March 14, 2021, in conjunction with a surface cold
anticyclonic system. Under the control of such powerful weather systems, a
sharp difference in pressure gradient between Mongolia and northeastern
China formed, inducing exceptionally strong air movement (wind speed at
850 hPaofup to20m s−1),whichdraggeddust aerosols fromthedust source
into the atmosphere. Subsequently, these dust aerosols moved rapidly from
the west toward the east in association with the trough. In terms of timing,
the dust storm entered China from northern-central Inner Mongolia at
approximately 21:00 CST onMarch 14, 2021, and it moved rapidly toward

the NCP region (Fig. 6 and Supplementary Fig. 19). Synergistic analysis
showed that our SV products correspond well with ground-based PM10

observations in terms of spatial and temporal variations. Specifically, at
03:00 CST on March 15, 2021, surface PM10 concentrations increased
rapidly at several sites in northern China, corresponding to sharp decline in
SV in southern Inner Mongolia. At 09:00 CST onMarch 15, 2021, the dust
belt was transported to the NCP and mixed with local PM2.5 pollution,
further reducing SV. Until 12:00 CST on March 15, 2021, as dust aerosols
continued to be deposited, SV in northern China began to improve, but it
remained below 5 km in some areas, e.g., southern InnerMongolia. Overall,
the RT-SVR model proved itself capable of accurately tracking the forma-
tion, transport, and dissipation processes of large-scale mega dust events
both spatially and temporally.

Real-time retrieval capability
We designed the RT-SVR framework with the ability to retrieve hourly SV
in real time. Several advantageous factors support this technical realization.
First, the two dynamic datasets involved in the model are available in real
time, i.e., thePMobservations and theCMALandDataAssimilationSystem
(CLDAS) data. In terms of the PM data, the National Meteorological
Information Center releases to the public the most recent hourly national-
scale observations in real time (with delay of approximately one-half hour).
The assimilation system of the CMA can assimilate quality-controlled
meteorological data from tens of thousands of ground-based sites to

Fig. 6 | Model application to track typical low-SV events. Evolutionary maps of 3-h SV (first column), surface PM10 observations (second column), and meteorological
fields (third column: GH and wind field at 850 hPa; fourth column: BLH; fifth column: RH) in a mega dust storm event that occurred during March 14–15, 2021.
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generate hourly CLDAS data in real time (with delay of approximately
40min). Second, although the RT-SVR model is a combination of several
basemodels, eachmodel is lightweight and efficient, and canbe deployed on
aGPU. As tested on a workstation with a GeForce RTX 3090 graphics card,
for each hourly SV retrieval, it was found that the entire RT-SVR framework
took approximately 35–40min (including time waiting for the PM and
CLDAS data to become available) in total from the processing of the model
input variables to the retrieval, of which model extrapolation took only
approximately 12 s. The entire framework is expected to run even faster
when running on a higher performance server. Therefore, the above con-
ditions powerfully support the RT-SVR framework to be operationalized to
provide real-time seamless hourly SV output in the future.

Discussion
In this study, an operational SV retrieval framework (i.e., RT-SVR) was
developed, which takes advantage of the real-time availability of ground-
based observations and CLDAS meteorological data to achieve real-time
retrieval of spatiotemporally seamless SV data. The retrieval accuracy and
reliability of the RT-SVR model were proven satisfactory through HV
experiments on more than 20 million data pairs.

The RT-SVR model adopts a double-stacked structure combining
multiple ML algorithms and deep residual neural networks, which resolves
several problems encountered by individual ML algorithms, including low
retrieval accuracy, negative anomalies of retrieval values, and spatial dis-
continuities. However, the RT-SVR model still has several limitations. First,
we noted underestimation of SV levels, as suggested by the slopes of 0.9 and
0.71 between the retrievals and the observations for the CV and HV
experiment (Figs. 2b and 3i, respectively). Such underestimation might be
related to inaccurate information on dynamic PM pollution, insufficient
spatial prediction capabilities, and uncertainties regarding the input pre-
dictors. In this study, the seamless PM2.5 and PM10 background fields were
generated through the spatial inverse difference weighting interpolation
technique, which caused large spatial bias in some areas with a limited dis-
tribution of air quality monitoring sites, e.g., western parts of China. The
limited number of SVmonitoring sites also resulted in insufficient learning of
the spatial information by the model. Moreover, some uncertainties exist
regarding the CLDAS data used in the model, and regarding all the other
predictors (e.g., anthropogenic emission inventories); these uncertainties, in
conjunction with modeling errors, contribute to the uncertainty in the final
SV retrievals. It is thus difficult to quantify the uncertainties of themodel and
its specific sources. Here, we expect that well-estimated air pollutant con-
centration fields could be developed in the future to further improve model
performance. As demonstrated in a previous study44–47, instead of using
traditional interpolation methods, more accurate pollutant reanalysis fields
can be estimated from site observations using deep learning models to learn
multivariable spatial correlations from chemical transport models. Second,
compared to other observational instruments, SV observation instruments
are special because most have an upper limit (i.e., up to 30 km). This leads to
large biases in SV under similar meteorological and PM conditions. Addi-
tionally, although rigorous quality control was implemented, automatic SV
sensors inherently have different uncertainties at different threshold ranges
(e.g., 10% for SV <10 kmand 20% for SV >10 km)13. This calls for the need to
develop distinct models to address the uncertainties that exist within the
different ranges of SV observations in future studies.

Despite these limitations, the RT-SVR framework developed in this
study has potential for application in several research areas. First, the
seamless hourly SV product enables us to provide refined real-time mon-
itoring of various low-SV events (e.g., fog, haze, and dust storms) at hor-
izontal resolution of 6.25 km, which addresses the shortcomings of
incomplete spatial coverage of observation sites. Second, once the complex
decoupling relationships between SV and the PM2.5/PM10 and prevailing
meteorological conditions have been resolved, such a product has potential
to serve as a keyparameter in real-time retrieval of the seamless diurnal cycle
of surface PM2.5/PM10 pollution in China. This will contribute to resolving
the limitations in spatial coverage and temporal resolution of current

retrieval strategies for surface PM2.5/PM10 using satellite-based AOD
products17,23–25,48–50. Meanwhile, it might also be used for retrieval of key
aerosol property parameters such as AOD and single-scattering albedo, as
implied by previous studies18,19,51,52. Moreover, with the availability of long-
term SV datasets, a short-term forecast model for SV could be built in the
future through ML-based spatiotemporal extrapolation techniques.

Methods
Figure 1 illustrates the entiremodeling architecture for the real-time surface
visibility retrieval (RT-SVR) framework, which is divided into three main
steps: multisource data processing and fusing, development of the stacked
ensemble model, and model application.

Multisource input data
This data uses multi-source datasets, including in situ observations,
meteorological fields, emission inventories, and other ancillary data such as
total population, elevation, normalized difference vegetation index (NDVI),
and land cover type. The in situ observations comprised surface visibility
(SV), fine particulate matter (PM2.5), and coarse particulate matter (PM10).
The hourly SV observations from 2020 to 2022, recorded at approximately
2400 stations distributed throughoutChina,were collected from theNational
Meteorological Information Center (http://data.cma.cn/) of the China
Meteorological Administration (CMA). To ensure the quality of the SV data,
we used only those SV records that were labeled “good” after the quality
control procedure. The quality control algorithm for the SV records was
proposed by the National Meteorological Information Center to eliminate a
few random and systematic errors in the raw data. We collected hourly
surface PM2.5 and PM10 concentrations for the same period from the China
National Environmental Monitoring Center network. For each site, we
removed PM2.5/PM10 outliers that exceeded three standard deviations from
the1-monthmoving average50. Themeteorologicalfieldswere taken fromthe
CMALandData Assimilation System version 2 (CLDAS-V2.0) at resolution
of 0.0625° × 0.0625°53. The CLDAS products are generated by fusing high-
density automated surface meteorological observations, multi-satellite
retrieval products, and numerical model analysis and forecast fields using
multiple grid variational data assimilation techniques, and they have lower
uncertainties and higher spatiotemporal resolution (spatial resolution of
6.25 km and temporal resolution of 1 h) in China compared with other
similar products (e.g., Global Land Data Assimilation System) used in the
international arena54,55. Currently, this product is updated in real time with a
delay of <1 h (approximately 40min). In this study, we utilized the following
parameters extracted from the CLDAS dataset: temperature at 2-m height
(TEM), specific humidity at 2-m height (SHU), wind speed at 10-m height
(WIN), U wind component at 10-m height, V wind component at 10-m
height, surface pressure (PRS), and downward surface shortwave radia-
tion (SSRA).

To further improve the retrieval capability of the model, multi-
source ancillary data were used. We utilized annual land cover type
and monthly NDVI data for 2020 from the Moderate Resolution
Imaging Spectroradiometer (MODIS) with spatial resolution of 500
and 250 m, respectively56,57. Population datasets for 2020 with reso-
lution of 30 arcseconds were taken from the Gridded Population of
the World (GPW) version 4 dataset and calibrated using the total
population reported in China City Yearbooks58. Monthly anthro-
pogenic emission inventories for 2020 for multiple species, including
primary PM2.5 and PM10, sulfur dioxide (SO2), organic carbon (OC),
black carbon (BC), nitrogen oxides (NOx), ammonia (NH3), and
volatile organic compounds (VOCs), were taken from the Multi-
resolution Emission Inventory for China (MEIC) with spatial reso-
lution of 0.25° × 0.25°. We also download elevation data at spatial
resolution of 300 m from the 2-min Gridded Global Relief Data
(ETOPO2). Apart from the features mentioned above, we also con-
sidered temporal features (day of year, month, and hour) and spatial
features (longitude and latitude) in our model to reduce the effect of
spatiotemporal heterogeneity.
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The data fusion step in the RT-SVR framework consists of three
procedures. First, we removed samples containing missing values
from all datasets. Second, PM2.5/PM10 observations and other
ancillary data (except for population, elevation, and land cover data;
the first two are averaged within the 6.25 km grid and the last are
summed within the 6.25 km grid) were interpolated to the same
spatial resolution (i.e., 6.25 km) as that of the CLDAS data using the
inverse distance weighting method. Finally, we sampled the pre-
dictors for every SV site based on geographic location and time using
nearest neighbor interpolation. In this way, a dataset containing
predictors and observed SV was constructed. The full datasets were
divided into two parts: the data from 2020 to 2021 were used to train
the RT-SVR model to perform sample-based 5-fold cross-validation,
and the data from 2022 were used to conduct a hindcast-validation
experiment to evaluate the generalization capability of the model.

Stacked ensemble model description
A stacked ensemble model (RT-SVR), incorporating multiple machine
learning (ML) algorithms and adeep learningmodule,was developed in this
study to generate seamless hourly SV in China, as illustrated in Fig. 1.
Overall, the RT-SVR model consists of two structural layers. In the first
layer,fivebaseMLmodels are used to establish the relationshipsbetween the
predictors and SV. These five base models comprise the Multilayer Per-
ceptron (MLP)59, Random Forest (RF)60, Categorical Boosting (CatBoost)61,
eXtreme Gradient Boosting (XGBoost)62, and Light Gradient Boosting
Machine (LightGBM)63.We chose five basemodels with different principles
because the purpose of stacked ensemble ML is that the diversity of base
models needs to be ensured64. TheMLPmodel is a deepnetwork thatfits the
target through the backpropagation method59. The RF model is a type of
bagging algorithm that reduces fitting errors through use of the bootstrap
aggregating method60,65. The boosting models (CatBoost, XGBoost, and
LightGBM) are currently the tree methods used most commonly for
retrieving surface pollutants (e.g., PM2.5, PM10, and ozone) because the
advantage of the gradient descent method can achieve better results66. In
addition, in our experiments, we found that due to the complexity of the
relationship between SV, PM, and meteorological elements, traditional
statistical-based methods for constructing models are less effective in
retrieving SV (e.g., linear regression models, generalized additive model,
etc.). To achieve better performance, we performed hyperparameter tuning
for each basemodel. Supplementary Table 1 summarizes the key parameter
information of the five base models finally selected for this study.

We found that different base models have distinct advantages and
disadvantages in retrieving the SV in this study, dependingon their accuracy
and spatial performance (see Results). Therefore, a deep residual network
was developed in the second layer to fully utilize (eliminate) the different
advantages (disadvantages) of the basemodels in thefirst layer.This residual
network comes from the transformer model, and its fixed feature size and
residual connection method can effectively resolve the problem of over-
fitting in the stacked ensemble model67,68.

In the residual feedforward network, the encoder block is repeated six
times to fully learn the features from the different base models. We employ
feature embedding and subsequent mapping in each block using the fol-
lowing equation:

G xð Þ ¼ max 0; xw1 þ b1
� �

w2 þ b2 ð1Þ

where max(x) represents the Rectified Linear Unit (ReLU) function. w
represents the weight, and b represents the bias in the feedforward network.

Compared to the models presented in previous studies, our model has
two major advantages. In the first layer, conventional gradient boosting
models typically employ the square error as the loss function, which results
in the same punishment for underestimation and overestimation for the
model. In experimental tests, we found that the estimated SV from the
boostingmodel suffered fromunrealistically frequent negative retrievals. To
address this issue, wemodified the gradient and hessian of the loss function

in the boosting model:

∂½LðYjf ðxÞÞ�
∂½f ðxÞ� ¼ �2 � ðYi � f ðxiÞÞ ð2Þ

∂½LðYjf ðxÞÞ�
∂½f ðxÞ� ¼ �2α � ðYi � f ðxiÞÞ; f ðxiÞ <Yi

�2β � ðYi � f ðxiÞÞ; f ðxi ≥YiÞ

�
ð3Þ

∂2½LðY jf ðxÞÞ�
∂½f ðxÞ�2 ¼ 2α; f ðxiÞ <Yi

2β; f ðxiÞ≥Yi

�
ð4Þ

Equation 2 represents the gradient of the conventional loss function
used in boosting models. We add two penalty coefficients α and β in the
gradient (Eq. 3) andhessian function (Eq. 4) to constraint the extremevalues
obtained from the boosting model. f(x) and Yi represent the retrieved and
observed SV respectively. In order to make the loss function have a pena-
lizing effect on the low values of the retrieval SV, α was always kept greater
than β during the experiments. In the field of artificial intelligence, the loss
function serves as a crucial metric for quantifying the disparity between the
predicted outputs of a model and the target values. The optimization ofML
models often involves theminimization of this loss function to enhance the
model’s ability to accuratelyfit the training data. The gradient informs about
the rate of change of the loss function at the current parameter values,
indicating the direction in which the loss function is ascending or des-
cending most rapidly. The hessian derivative provides insights into the
curvature of the loss function69. During the model training process, we
modified the gradient method of XGBoost, whilst keeping CatBoost and
LightGBM unchanged.

Additionally, compared to the traditional stacked ensemble model
constructed with a simple statistical model (e.g., generalized additive model,
linear regression model) in the second layer, our meta model in the second
layer has the following advantages. First, compared with simple statistical
models, residual feedforward networks are better able to capture the non-
linear relationships between predictors and the target by using nonlinear
activation functions and residual connections between layers70. Second, deep
residual networks have been theoretically demonstrated to possess superior
expressive capacity, enabling them to approximate more complex functions
with greater accuracy70. This endows them with an advantage in handling
large-scale and highly nonlinear datasets. Moreover, in the first layer, there
are boostingmodelswith negative outputs, which can have a large impact on
the linearmodels. Thus, the use of thismethod improves the accuracy of the
stacked ensemble model and maintains the same retrieval time.

Operational process of the RT-SVR framework
In the model application stage (step 3 in Fig. 1), the well-trained RT-SVR
model in step 2 can be directly deployed to a cloud server, such as the CMA
meteorological big data cloud platform “Tianqing”71. Benefiting from the
real-time access to hourly PM2.5 and PM10 observations and CLDAS
meteorological fields on the “Tianqing” platform, the RT-SVR model can
generate seamless hourly SV in real time once these data are made available
and automatically processed spatiotemporally to a uniform grid resolution
(6.25 km) to form an input predictor matrix.

Data availability
The PM and SV observations are accessible at https://air.cnemc.cn:18007/
and http://data.cma.cn/data/detail/dataCode/A.0012.0001.html, respec-
tively.TheCLDASmeteorologicalfields are accessible at http://data.cma.cn/
data/cdcdetail/dataCode/NAFP_CLDAS2.0_RT.html. The land cover type
and NDVI data are available at https://lpdaac.usgs.gov/products/
mcd12c1v006/ and https://lpdaac.usgs.gov/products/myd13q1v006/
respectively. The population data is available at https://beta.sedac.ciesin.
columbia.edu.The elevationdata is accessible at https://www.ncei.noaa.gov/
products/etopo-global-relief-model. The emission data across China is
accessible at http://meicmodel.org.
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Code availability
All codes needed to perform the analyses are available upon reasonable
request from the corresponding author (guik@cma.gov.cn).
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