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Skillful predictionof lengthof dayone year
ahead in multiple decadal prediction
systems
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Despite a small amplitude, Length of Day (LOD) change, which varies from one year to another due to
changes in Atmospheric Angular Momentum (AAM), determines the accuracy of Global Positioning
System (GPS) time calculation. In this study, we examine the prediction skill of LOD and AAM in nine
decadal prediction systems archived for the Decadal Climate Prediction Project. A persistence and
rebound in LOD prediction skill at one year or longer lead time is found in most models. A poleward
propagation ofAAManomaly viawave-mean flow interaction is alsoqualitativelywell reproduced. This
long-lead prediction of LOD and AAM is attributed to reliable predictions of the El Niño–Southern
Oscillation (ENSO) and the Quasi-Biennial Oscillation (QBO), the former being more systematically
related than the latter. This result indicates that the improvedENSOprediction and atmosphericwave-
mean flow interaction may lead to better prediction of LOD, AAM and related extratropical climate in
the decadal prediction systems.

Length ofDay (LOD), or the Earth’s rotation rate, does not remain constant
but varies in time at the scale of up to a few milliseconds1. Its variation on
decadal timescales or longer mainly arises from tidal torques by celestial
bodies 2,3 or interaction between the Earth’s core andmantle4–6. Meanwhile,
its variation on interannual or shorter time scales is often related to the solid
Earth’s interaction with the atmosphere, i.e., the transfer of angular
momentum between the Earth and the atmosphere1,4,7–9. Considering the
Earth system as an isolated system, changes in Atmospheric Angular
Momentum (AAM) are compensated by changes in the angular momen-
tum of the solid Earth, which leads to changes in the Earth’s rotation rate
and LOD.

Among various atmospheric phenomena, El Niño–Southern Oscilla-
tion (ENSO) and Quasi-Biennial Oscillation (QBO) are known to play an
important role in the interannual variation of AAM and LOD1. It has been
known that ENSO well explains the LOD variation on interannual or
shorter time scales; for instance, one study10 showed that ENSO has a cor-
relation of 0.58,−0.48, and 0.46 with annual, semi-annual, and short-term
trend of LOD variation, respectively. Strong El Niño events can increase the
LOD by about 750 μs. When accumulated, it can result in a net decrease in
the universal time (UT1) by 0.1 s, which is three times greater than its
seasonal variation (~±30ms)11. The LOD shows a delayed response to
ENSObyone to threemonths12–15, as it takes a fewmonths for the large-scale
atmospheric environment to respond to ENSO-related SST anomalies15.

Strong ENSO events also show high coherence with LOD on interannual
time scale16. The El Niño typically accompanies weakening of tropical
easterlies and strengthening of subtropical jet via thermal wind balance,
which leads to an increase in AAM and LOD15,17–19. It is noted that
strengthening or weakening of jet induced by El Niño- or La Niña-like
changes in sea surface temperature, respectively, are also associated with
long-term changes or climate shifts in AAM20. The QBO is also closely
associated with LOD as manifested by quasi-biennially oscillating compo-
nent within LOD13,21. The linear combination of these two climate vari-
abilities can explain a majority (r = 0.75) of interannual variation of LOD13.
Between them, ENSO more significantly contributes to LOD variation,
explaining twice as much as QBO. However, a significant coherence
between the linearly combined ENSO-QBO signals and LOD at biennial
periods indicates a non-negligible contribution of QBO to LOD13.

A recent study has shown that LOD can be predictable at long lead
times. Using the UK Met Office Hadley Centre Global Environmental
Model of the atmosphere and ocean, Scaife et al.22 showed that the predic-
tion skill of LOD remains significantly high for over a year with a skill
rebound at about a year after model initialization. Such a prolonged per-
sistence of LOD prediction skill was attributed to the long residence and
propagation ofAAManomaly from the tropics to the extratropics viawave-
mean flow interaction. Their result indicates that LOD and AAM may
potentially be apowerful predictor for long-rangepredictionof extratropical
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climate. However, as they used a single model, whether such behavior of
LODprediction skill can be generalized to othermodels is not yet examined.

In this study, we extend the previous study22 by investigating (1)
whether non-monotonic LOD and AAM prediction skills, with significant
skills at lead time longer than a year, are commonly found in multiple
decadal prediction systems and (2) whether LOD prediction skill is related
to tropical climate variabilities such as ENSO and QBO.

Results
LOD and AAM prediction skills
The time series of the observed LOD anomaly is shown in Fig. 1a (black
line). The amplitude of LOD anomaly is locked to the seasonal cycle. It
shows a larger variability in late winter (σ = 0.24ms in January–March;
JFM) than in other seasons (~0.17ms) (Supplementary Table 1). It also
exhibits an asymmetry in the amplitude between the positive and negative
events, the positive LOD anomaly being larger than the negative one. As in
the amplitude of LOD anomaly, the asymmetry (i.e., skewness of LOD
anomaly) is also locked to the seasonal cycle, showing a larger amplitude in
late winter (0.56 ± 0.19 in JFM) than in other seasons (~0.22 ± 0.19) (Sup-
plementary Table 2). These features of LOD resemble the general char-
acteristics of ENSO seasonality, with ENSO activity peaking in boreal
winter.

The LOD anomalies from Japanese 55-year Reanalysis data (JRA-55)
and the Coupled Model Intercomparison Project (CMIP) phase 6 decadal
climate prediction project (CMIP6 DCPP) multi-model ensemble mean
(hereafterMMM)prediction are also shown in red and blue, respectively, in
Fig. 1a. JRA-55 well reproduces the observed time series of LOD anomaly
(r = 0.75, p < 0.05). The overall variability of LOD anomaly (σ = 0.14ms) is
comparable to that of observation (0.19ms) (Supplementary Table 1). Its
seasonal cycle is also qualitatively reproduced (σ = 0.19ms in JFM;~0.12ms

in other seasons). This indicates that JRA-55 can be regarded as a reliable
baseline for studying LOD and AAM. It has been known that LOD and
AAM exhibit intraseasonal variability, such as the 30–90 day signal asso-
ciated with the Madden–Julian Oscillation8,23. In MMM, however, such
signal is filtered out by the ensemble mean, resulting in a smoothed time
series with an underestimated amplitude compared to the observation.
Although underestimated, MMM reasonably predicts the observed inter-
annual variationofLODanomalymonths to ayear ahead (r = 0.47,p < 0.05)
and reproduces the seasonal locking of its variability (σ = 0.13ms in JFM;
~0.06ms in other seasons) (Supplementary Table 1). This result is con-
sistent with ref. 22.

Figure 1b, c illustrates the AAM anomaly at each latitude and time
from JRA-55 and MMM prediction, respectively. As LOD anomaly is
proportional to globalAAM(GAAM) anomaly (Eq. (3)), the time and place
of zonal wind anomaly responsible for anomalous LOD can be deduced
from these figures. In both JRA-55 and MMM prediction, positive AAM
anomaly occurs in strong ElNiño winters (e.g., 1982/83, 1997/98, 2015/16),
while negative AAM anomaly occurs in strong La Niña winters (e.g., 1973/
74, 1988/89, 1998/99, 1999/2000, 2007/08, 2010/11), consistent with the
features of LOD anomaly as highlighted in Fig. 1a. This result suggests that
AAM anomaly is triggered in the tropics, and propagates poleward to the
extratropics (Fig. 1b). The poleward propagation has been explained by the
zonalmeanmass circulations in the subtropics8 and the interaction between
zonal flow and transient eddies in the extratropics22,24–26, although the
detailed mechanisms are not fully understood. In particular, it has been
proposed that the stationary eddies and zonal mean mass circulations
associated with tropical convection anomalies are partly responsible for the
AAM propagation in the subtropical region8. In the context of linear wave
dynamics, the critical latitude at which the equatorward-propagating
transient eddies dissipate has also been proposed to play an important role.

Fig. 1 | LOD and AAM anomalies in the observation, JRA-55, and CMIP6 DCPP
MMMpredictions. aMonthly LOD anomaly from the observation (black), JRA-55
(red) and 1-year predictions (1–12 lead months) of CMIP6 DCPP MMM starting
from the first January (leadmonth = 1) sincemodel initialization (blue). Numbers in
parentheses represent each data’s correlation with observation. Significant values at

the 95% confidence level, based on the two-tailed Student’s t-test, are indicated with
double asterisks. b Latitude-time evolution of AAM anomalies from JRA-55. Ver-
tical lines indicate January of each year. c Same as (b) but for 1-year predictions
(1–12 lead months) of CMIP6 DCPP MMM starting from the first January (lead
month = 1) since model initialization.
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As transient waves break around the critical latitude, the zonal wind
weakens and the critical latitude shifts poleward. This can lead to a poleward
propagation of the AAM anomaly22,25,26.

Regardless of the detailed dynamical mechanism(s) of AAM changes,
MMM qualitatively well predicts the observed fluctuation and propagation
of AAM anomaly months to a year ahead (Fig. 1c). The symmetric
poleward-migrating behavior of AAM anomaly about the equator is also
qualitatively reproduced in MMM prediction. However, the variability of
AAM anomaly in MMM (peak of 8.9 × 1022kg m2 s−1 at 21°N) is sig-
nificantly smaller than that of JRA-55 (peak of 1.7 × 1023kg m2 s−1 at 24°N)
at the 95% confidence level. This can be simply attributed to averaging effect
ofmultiplemodel ensembles. Individualmembers reproduce the latitudinal
distribution ofAAMvariability both qualitatively (spatial correlation r ≥ 0.9
when interpolated to reanalysis grid) and quantitatively (peak of
1.4–2.2 × 1023kgm2 s−1 at 20–40°N/S) (not shown).

The model prediction skills of LOD and AAM are quantitatively
summarized in Fig. 2 in terms of anomaly correlation coefficient (ACC; Eq.
(6)). The LODprediction skill decreaseswith lead times and rebounds at ~1
year after initialization in most models and MMM (Fig. 2a). This is again
consistent with the previous study22 who reported the re-emergence of LOD
prediction skill in the second winter (peak at 15 lead month, which corre-
sponds to 14 leadmonth in Fig. 2a) from a single decadal prediction system.
Thus, Fig. 2a extends their results22 by showing that such non-monotonic
behavior of LOD prediction skill is robustly found in multiple decadal
prediction systems.Note thatMMMprediction surpasses individualmodels
at 12–15 lead months. This superior performance of MMM might result
froma large ensemble size and/or amulti-model ensemble effect, as in other
climate property predictions27.

To identify where the re-emergence of LOD prediction skill comes
from, the prediction skill of AAM is illustrated for each latitude and
lead time in Fig. 2b. A poleward propagation of statistically significant
AAM prediction skill by MMM is observed along the latitudes where
AAM anomaly propagates (50°S–50°N). This is evident up to 18
months after initialization. The AAM prediction skill also shows a sign
of rebound at 12–15 lead months, which is consistent with Fig. 2a.
When theAAM is detrended, theAAMprediction skill at ~60°S about a
year later disappears (Supplementary Fig. 1). This suggests that a
rebound of AAM prediction skill in the Southern Hemisphere (SH)
extratropicsmay have resulted from the long-term strengthening of the
SH polar jet due to the ozone hole especially in the austral summer.
Nevertheless, as the AAM is associated with extratropical climate
components such as the mid-latitude jet22, Fig. 2 implies a potential of

LOD and AAM as useful predictors for mid-latitude climate from
months to over a year.

LOD prediction skills and tropical climate variabilities
As discussed earlier, two tropical climate variabilities, i.e., ENSO and QBO,
significantly affect the year-to-year changes in LOD anomaly13. To quantify
their effect in long-term predictions, the LOD anomaly is reconstructed by
performing the multiple regression of the ENSO and QBO indices from
observation (Eq. (4)). As shown in Fig. 3a, the reconstructed LOD anomaly
accounts for one-thirdof the observed total variability inLODanomalywith
a correlation coefficient of 0.55 (p < 0.05, red solid line). The ENSO-based
reconstruction also explains the observed LOD anomaly variability to
similar extent (r = 0.46, p < 0.05, red dashed line). It confirms that the
interannual variation of LOD anomaly is closely associated with ENSO and
QBO, the former being more important than the latter. When multiple
regression analysis is conducted using standardized LOD, ENSO and QBO
indices, the regression coefficient for ENSO (0.47 ± 0.033) is found to be
about 1.6 times as large as that for QBO (0.30 ± 0.034). This is qualitatively
consistent with the previous study13 who showed that ENSO and QBO can
well explain the interannual variation of LOD anomaly, with ENSO con-
tributing almost twice as much as QBO in terms of interannual standard
deviation.

When the reconstructed LOD index in MMM is generated using
regression coefficients from observation (Eqs. (4) and (5)) assuming perfect
prognostic28, it also closely follows the interannual variation of LOD
anomaly inMMMbut to a greater extent compared to the observation (Fig.
3b). Both ENSO&QBO-based and ENSO-based indices show significant
(p < 0.05) correlations with LOD anomaly (r = 0.89 and r = 0.88, respec-
tively). Their difference is negligible, indicating a strong relationship
between LOD and ENSO, with a minimal influence of QBO. Although not
shown, the results are almost identical when usingmodel output statistics or
regression coefficients from theMMMprediction.This result suggests that a
minor but non-negligible contribution of the QBO to the LOD variation is
not captured in the model predictions.

The relationship between LOD and tropical climate variabilities is
further illustrated in Fig. 4 in terms of model prediction skill. Figure 4a
shows that significant LOD prediction skill is observed in the first 5–10
months and re-emerges in 12–15 lead months for most models. The
majority of themodels also show a significant ENSO prediction skill for the
first 13–19 months (Fig. 4b). This is consistent with Choi and Son27 who
found significant ENSO prediction skill up to 25–27 leadmonths byMMM
of CMIP phase 5 and 6 models. The rapid decrease and the absence of

Fig. 2 | LOD and AAM prediction skills of CMIP6 DCPP models. a LOD pre-
diction skill of individual CMIP6 DCPP models (gray lines) and MMM (thick black
line). The black dashed line indicates the statistically significant skill at the 95% con-
fidence level based on the two-tailed Student’s t-test. Lead times when LOD prediction

skill ofMMMrebounds (12–15months) are shadedwith yellow.bAAMprediction skill
of CMIP6 DCPPMMM as a function of latitude and lead time. Statistically significant
values at the 95% confidence level, based on the two-tailed Student’s t-test, are hatched.
In (a, b), lead time 1 indicates the first January since model initialization.
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“spring barrier” in ENSO prediction skill in Fig. 4b compared to their
results27 may in part be attributable to differences in models considered or
analysis periods. Meanwhile, the behavior of QBO prediction skill shows a
strong model dependency (Fig. 4c). Some models, such as HadGEM3-
GC31-MM and MPI-ESM1-2-HR, predict QBO with lead times up to two
years or longer. This is qualitatively consistent with refs. 29,30, who have
reported high prediction skill (r > 0.7) at 12 lead months in similar decadal
predictionmodels; quantitative differences exist presumablydue todifferent
version of models analyzed. On the other hand, some models, such as

NorCPM1, fail to predict QBO even at short lead times. This may be
associated with low model top and the consequent limitation in fully
representing stratospheric processes31. It is noticeable that the QBO pre-
diction skill tends to decrease in most models during the boreal late spring
and early summer, especially in the high-top models (see 16 and 28 lead
months in Fig. 4c). Although unconfirmed, this may be related to the fact
that QBO phase transitions, which are less predictable than the westerly or
easterly QBO phases, occur more frequently in similar seasons32,33.

To clarify the impact of model top height on the models’ prediction
skills, Fig. 4a re-examines individual models’ LOD prediction skills by
separately considering high-top and low-top models. Individual models’
ENSO and QBO prediction skills are also illustrated in Fig. 4b, c. As shown
in Fig. 4a, high-top models have slightly better LOD prediction skills than
low-top models. This may be partly related with model prediction skill of
QBO.High-topmodels show significantly higherQBOprediction skill than
low-top models at lead times of 5–19 months (Fig. 4c). For ENSO predic-
tion, although statistically insignificant, high-top models also outperform
low-top models at relatively short lead times of up to 10 months (Fig. 4b).
However, both model groups show similar ENSO prediction skill at 12–15
leadmonths. Thismay explain theminor difference in LODprediction skill
between high- and low-top models at the lead times of skill re-emergence
(Fig. 4a). This result indicates that LOD prediction skill is more strongly
associated with ENSO prediction skill than QBO prediction skill.

To address an inter-model spread of LOD prediction skill and their
relationshipswith theENSOandQBOprediction skills, the LODprediction
skill of ensemble-mean and individual models are compared with those
using the reconstructed LOD indices in Fig. 5. Here the reconstructed LOD
indices, LODE&Q and LODE, are defined by applying Eqs. (4) and (5),
respectively, to individual ensemble members. The inter-model spread of
LOD prediction skills is largely explained by the prediction skills of the
LODE&Q with r = 0.88 (p < 0.05) (Fig. 5a). When all 80 ensemble members
are considered as independent samples, LOD prediction skills are also
positively correlated with the LODE&Q prediction skills with r = 0.81
(p < 0.05) (Fig. 5a). It indicates that the ensemble members with higher
ENSO andQBOprediction skills tend to have higher LODprediction skills.
Quantitatively similar results are foundwhen only ENSO index is taken into
account (Fig. 5b).Althoughnot shown,whendirectly comparingENSOand
LOD prediction skills, the spread of ensemble-mean and individual

Fig. 3 | Time series of LOD and reconstructed LOD indices. a Time series of LOD
anomaly from the observation (black line), ENSO&QBO-based reconstruction (red
solid line) and ENSO-based reconstruction (red dashed line). The ENSO&QBO-
based reconstruction is constructed by a linear combination of lagged Niño3 index
from ERSSTv5 and 30-hPa equatorial zonal wind index from JRA-55 that best
explains the observed LOD variation. The ENSO-based reconstruction is similarly

constructed but using Niño3 index only. Numbers in parentheses represent the
correlation between the LOD anomaly and each index. Significant values at the 95%
confidence level, based on the two-tailed Student’s t-test, are indicated with double
asterisks. b Same as (a) but for LOD anomaly and reconstructed LOD indices
from MMM.

Fig. 4 | Prediction skills of LOD,ENSOandQBO. aLODprediction skill ofCMIP6
DCPP models, same as Fig. 2a but separately showing high-top (red) and low-top
models (blue). Result forMMM(black) is identical to that in Fig. 2a, and shownhere as
a reference. b, c Same as (a) but for ENSO and QBO prediction skills, respectively.
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members show correlation coefficients of 0.58 (p > 0.05) and 0.61 (p < 0.05),
respectively; no significant correlations (r =−0.16 and r = 0.11, respectively)
are found when just QBO and LOD prediction skills are compared. These
results again suggest that LOD prediction skill is more sensitive to ENSO
prediction skill than QBO prediction skill in decadal prediction systems.

Discussion
As LOD is an Earth rotation parameter whose precise measurement is vital
for GPS applications, the mechanisms and relevant factors of its subtle yet
important variation have long been studied. A recent study by ref. 22 showed
that LOD is predictable more than a year ahead. However, although the
interannual LOD variation is known to be closely associated with AAM
variationmainly driven by ENSO andQBO, the relationship between LOD
prediction skill and ENSO/QBO prediction skill has not been reported thus
far. In this regard, the present study investigates LOD and AAMprediction
skills in the multiple decadal prediction systems and their potential linkage
to ENSO and QBO prediction skills.

The nine decadal prediction systems, that have participated in the
CMIP6DCPP, reasonably reproduce theobservedfluctuationandpoleward
propagation of LOD and AAM anomalies. The long persistence and
rebound of prediction skills of LOD and AAM anomalies at about a year
later are found in most models and MMM, thus generalizing the results of
ref. 22. It is further found that LOD prediction skill is significantly correlated
with ENSO and QBO prediction skills. In particular, ENSO prediction skill
is highly correlated with LOD prediction skill (r = 0.78, p < 0.05; Fig. 5b),
explaining nearly 60% of inter-model differences in LOD prediction skill.
QBO prediction skill also contributes to a slight increase in correlation
between LOD and reconstructed LOD prediction skills (Fig. 5a); however,
its contribution to inter-model spreads in LOD prediction skill is marginal
(less than 3.2%; not shown). Although the LOD variation explained by the
QBO is not negligible in the observation (Fig. 3a; see also ref. 13), the LOD
prediction skill is only weakly influenced by the QBO in climate model
predictions, as shown in Figs. 4, 5. It is yet unclear why the QBO-LOD
relationship is underestimated in the models, but it may imply that

stratosphere-troposphere coupling processes should be improved in the
climate models.

The present study suggests that decadal prediction systems can have
more accurate prediction of LOD when their predictions for ENSO, QBO,
and their teleconnections are improved. Thus, whether model can repro-
duce the linkage betweenLODand tropical climate variabilities is important
for a skillful and reliablepredictionof LODandAAM.SinceLODandAAM
are associatedwithmid-latitude climate components22, thismay also lead to
improved long-range prediction of extratropical climate. Further investi-
gation of the dynamics of poleward AAM propagation, which is not yet
completely resolved, will help us to better understand how AAM and LOD
signals influence themid-latitude climate components and their prediction.

Methods
Length of day
In this study, we used the Earth Orientation Parameters 14 Combined 04
(EOP 14 C04) dataset, provided by the International Earth Rotation and
Reference System Service (IERS). This dataset provides the daily LOD
observation data from 1962 to now with one-month latency measured by
techniques including Very Long Baseline Interferometry (VLBI), Satellite
Laser Ranging (SLR), and Global Navigation Satellite Systems (GNSS)
(https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.
html). The daily LOD data from 1960 to 2019 (60 years) is converted to
monthly data, andLODanomaly is calculatedby removing its seasonal cycle
(1960–2019) and 5-year running mean as in ref. 22.

For reanalysis and model data, global AAM (GAAM) is computed as
shown in Eqs. (1), (2), and then its anomaly is converted to LOD anomaly
using the approximation shown in Eq. (3).

AAM ¼ R1
a

R 2π
0 ρ Ωrcosφþ U

� �
r3cos2φ dλdr

ffi Pps
0

P2π
0

Ωacosφþ U
� �

a3cos2φΔλ Δp
g

ð1Þ

Fig. 5 | Relationship of prediction skills between LOD and reconstructed LOD
indices. a Scatter plot of LOD versus ENSO&QBO-based LOD reconstruction
prediction skills averaged over 12–15 lead months (December–March). For each
model, the ensemblemean is shown in boldmarker whereas individualmembers are
shown in dimmarkers. Numbers at the upper right corner represent the correlation

of prediction skills between LOD and reconstructed LOD indices for ensemble-
mean predictions (first number; n = 9) and all individual predictions (second
number; n = 80). Significant values at the 95% confidence level, based on the two-
tailed Student’s t-test, are noted with double asterisks. b Same as (a) but for ENSO-
based LOD reconstruction.
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GAAM ¼
Z π=2

�π=2
AAMdφ ffi

Xπ=2
�π=2

AAMΔφ ð2Þ

τ � τr ffi
ΔGAAM× τ2r

2πI
ð3Þ

where ρ is the atmospheric density, Ω is the mean angular velocity of the
Earth (7.292116 × 10−5 s−1),U is the zonal wind, g is the mean gravitational
acceleration (9.80665m s−2), r is the radial distance from the Earth’s center,
a is themean radiusof theEarth (6371.229 km),φ is latitude,λ is longitude,p
is atmospheric pressure, and ps is the pressure of the bottommost layer. In
Eq. (3),ΔGAAMis thefluctuationofGAAMin time, τr is the referenceLOD
(86400 s), and τ is the observed LOD from the EOP 14 C04 dataset. I is a
constant moment of inertia of the solid Earth (8 × 1037kgm2).

In Eq. (1), AAM is defined as the absolute angular momentum of the
atmosphere integrated in zonal and vertical directions. It is thus defined at
each time and latitude. Meridional integration of AAM gives global AAM
(GAAM;Eq. (2)).On interannual or shorter time scales, changes in the solid
Earth’s angularmomentumaremainly driven by atmospheric interactions9.
Thus, assuming that the Earth’s moment of inertia is nearly constant, the
perturbation in LOD can be attributed to the perturbation in GAAM as
shown in Eq. (3) and discussed in ref. 22. Unlike the ref. 22, we assume a
shallow atmosphere, with constant radial distance from the Earth’s core to
all atmospheric levels. The shallow atmosphere assumption is applicable
since nearly 99.9% of the atmospheric mass is located within the tropo-
sphere and stratosphere, or within ~50 km from the Earth’s surface. Unless
the zonalwind in the levels above is several orders ofmagnitude greater than
that in the lower levels, the vast majority of the AAMwould come from the
lower atmosphere. For the troposphere and stratosphere, the percentage
error in approximating the radius from the Earth’s center to that at the
surface is less than 1%. Thus, applying the shallow atmosphere assumption
would not significantly change the AAM values while simplifying the
calculation.

To computeAAM,weused the Japanese 55-yearReanalysis data (JRA-
5534) from 1960 to 2019 (60 years). The zonal wind (U) from JRA-55 is
available at 37 levels from 1000-hPa to 1-hPa levels at horizontal resolution
of 1.25° in latitude and longitude. Monthly U is used in Eq. (1), but daily U
gives almost identical results. We have also conducted the same analysis
with theEuropeanCentre forMedium-RangeWeather ForecastsReanalysis
version 5 (ERA535) and found consistent results (compare Fig. 2 and Sup-
plementary Fig. 2).

To ascertain the ability to predict LOD variability, a set of decadal
hindcasts from the Coupled Model Intercomparison Project phase 6
(CMIP6) decadal climate prediction project (DCPP) is used36. The nine
models used in this study are listed in Table 1. Each model is classified as
high-top or low-top model by applying a 1-hPa criterion for the model top
level31, which results in six high-topmodels and three low-topmodels. Each

model’s hindcast is initialized every October or November from 1960 to
2016 (57 years) or every January from 1961 to 2017 (57 years). Similar to
reanalysis, AAM and LOD are calculated using monthly U without any
horizontal interpolation. Then, for multi-model mean (MMM), each
model’s ensemble mean forecast starting from the first January after initi-
alization is interpolated to the coarsest horizontal model resolution
available.

Tropical climate variability
For ENSO index, sea surface temperature (SST) anomaly in the Niño3
region (5°S–5°N, 150°W–90°W) is used.Althoughnot shown, using 30-year
moving climatology according to the NOAA CPC definition gives almost
identical results. The SST data are obtained from the Extended Recon-
structed Sea Surface Temperature version 5 (ERSSTv5) dataset37 from 1960
to 2019 (60 years). For QBO index, the zonal-mean zonal wind anomaly at
30-hPa level averaged over 5°S–5°N from JRA-55 is used for the same
analysis period. Here, the Niño region and QBO level are chosen as those
that maximize the correlation of each index with LOD anomaly in obser-
vation (Supplementary Tables 3, 4).

To test whether LOD anomaly variation is associated with ENSO or
QBO, themultiple linear regression of the observedLODanomaly to lagged
ENSO and QBO indices from observation is performed. The combination
with the highest R2, or that best explains the LOD anomaly variation, is
chosen as the optimally reconstructed LOD index. Data from 1965 to 2016
(52 years) are used for regression, which is approximately the years with
valid LODanomaly after removing 5-year runningmean.The optimal LOD
index reconstructedwithENSOandQBO(LODE&QorENSO&QBO-based
index) and that with ENSO only (LODE or ENSO-based index) are:

LODE&Q tð Þ ¼ 1:0× 10�4 ×ENSO t � 1ð Þ þ 3:9× 10�6

× QBO t � 1ð Þ þ 5:7× 10�6
ð4Þ

LODE tð Þ ¼ 1:0× 10�4 ×ENSO t � 1ð Þ þ 5:1× 10�6 ð5Þ

When the reconstructed index is calculatedwithMMMprediction, the
regression coefficients are similar to the above values. One subtle difference
betweenMMMprediction and observation is that, while LODanomaly lags
one month behind ENSO and QBO in observations, they have a simulta-
neous relationship in MMM prediction. Further information of regression
results for observation and MMM are provided in Supplementary
Tables 5, 6.

Table 1 | List of CMIP6 DCPP models used in this study

Group Model name Initialized month Initialized years Ensemble size Model top Number of latitude grid points

High-top EC-Earth3 November 1960–2016 5 0.01 hPa 256

HadGEM3-GC31-MM November 1960–2016 10 85 km 325

IPSL-CM6A-LR January 1961–2017 10 80 km 143

MIROC6 November 1960–2016 10 0.004 hPa 128

MPI-ESM1-2-HR November 1960–2016 5 0.01 hPa 192

MRI-ESM2-0 November 1960–2016 10 0.01 hPa 160

Low-top CanESM5 January 1961–2017 10 1 hPa 64

CMCC-CM2-SR5 November 1960–2016 10 ~2 hPa 192

NorCPM1 October 1960–2016 10 ~2 hPa 96

Models with top height above 1-hPa level are considered as high-top models, whereas the remaining models are considered as low-top models.
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Measure of prediction skill
Theprediction skill is evaluated by using the anomaly correlation coefficient
(ACC) which is defined as follows:

ACC tð Þ ¼
1
n

Pn
j¼1 Ojt � �Ot

� �
Mjt � �Mt

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
j¼1 Ojt � �Ot

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
j¼1 Mjt � �Mt

� �2
r ð6Þ

�Ot ¼
1
n

Xn
j¼1

Ojt ; �Mt ¼
1
n

Xn
j¼1

Mjt ð7Þ

where O and M represent the observation (or reanalysis) and model pre-
diction, respectively, and overbar indicates their climatological mean. Here,
t is the forecast lead time (t = 1, 2,…, 37 month), j is the initialization year,
and n is the total number of initialization years (n = 57).

Statistical tests
Pearson’s correlation is used as ameasure of correlation. Standard deviation
is provided as an indicator of variability. Adjusted Fisher-Pearson stan-
dardized moment coefficient is used to calculate sample skewness.

Two-tailed Student’s t-test is used to judge whether regression or
correlation coefficients are statistically significant at the 95% confidence
level, assuming independent and identically distributed samples following
normal distribution. Based on the identical assumption, a two-tailed F-test
for equality of variances is conducted to determine whether AAM vari-
abilities of reanalysis and MMM are significantly different at the 95%
confidence level. A 95% confidence interval for the correlation coefficient is
calculated using Fisher’s Z-transformation, which also assumes indepen-
dent and identically distributed samples. The 95% confidence intervals for
standard deviation and skewness are estimated using chi-squared dis-
tributionandnormaldistribution, respectively,with the sameassumptionas
the two-tailed Student’s t-test.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All data sets used in this study are publicly available. The EOP 14 C04
data is downloaded from https://www.iers.org/IERS/EN/DataProducts/
EarthOrientationData/eop.html. A detailed explanation is provided at
http://eoppcc.cbk.waw.pl/. The ERSSTv5 data37 is freely available at https://
www.ncei.noaa.gov/products/extended-reconstructed-sst. The JRA-55
reanalysis data34 is freely available at https://doi.org/10.5065/D60G3H5B.
CMIP6 model outputs can be obtained from https://pcmdi.llnl.gov/
CMIP6/.

Code availability
The code to calculate AAM was built upon the code written by ref. 22

available at https://zenodo.org/records/7003975. All codes for the analyses
in this paper are available from the first author (yhs11088@snu.ac.kr) upon
reasonable request.
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