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Influence of spatial and seasonal
asymmetries on long-range tropical
cyclone prediction in the western
North Pacific
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The seasonal predictability of tropical cyclones (TC) in the western North Pacific (WNP) reported in
previous studies are mainly based under the general consideration that the WNP is homogeneous in
termsof its spatial and temporal characteristics.Herewepresent evidence that thewestern (Domain 1)
and eastern (Domain 2) parts of the WNP exhibit spatial and seasonal asymmetric response to large-
scale environments (e.g., asymmetrical sea surface temperature anomalies distribution) leading to
distinct spatial and seasonal TC variability in the said domains. Exploring such asymmetries, we
propose an alternative approach on the long-range predictability of TC genesis frequency in theWNP
during its active TC season (i.e., June-November, JJASON) by separately predicting the TC genesis
frequency in two domains (i.e., Domains 1 and 2) in two distinct seasons (i.e., June-August and
September-October), respectively. Using a number of climate indices as predictors in different lead
times, our regression-based models present its best significant seasonal predictability of TC genesis
frequency during JJASON (i.e., r = 0.80, p < 0.01) that essentially captures the spatial and seasonal
asymmetry in theWNP. It is expected that this study provides valuable insights on the long-range and
more localized TC prediction in support of disaster risk reduction in the WNP region.

Among all the tropical cyclone (TC) basins worldwide, the Western North
Pacific (WNP) (Fig. 1a) is characterized by the most active tropical cyclone
(TC) activity in terms of frequency and intensity1. Each year, about 25
named TCs form in theWNPwhere its peak seasonal TC frequency begins
in June toAugust (JJA) anddips inSeptember toNovember (SON) (Fig. 1b).
Thus, the activeTC season in theWNP(86%of total annual TCs) runs from
June to November (JJASON). About 16 TCs eventually intensify into
Tropical Storm category and nine TCs continue to become major storms1,
which consequently render TCs as one of the most destructive natural
hazards in the region.However, it should be noted that TCs can still develop
and present considerable damages during the less active (i.e., December to
February) and quiescent TC seasons (i.e., March to May), respectively2,3.

Previous studies have reported increasing economic losses andnumber
of people affected byTCs alongwith the recent changes in the characteristics
of TCs in the WNP such as increasing activity and peak intensity4,5,

poleward migration of lifetime maximum intensity6, interdecadal changes
in TC translation speed7, among others. These changes effectively under-
score the need to provide reliable, timely, and more granular seasonal TC
prediction in the WNP. Seasonal TC prediction generally involves two key
components: long-range climate forecasting - the prediction of future cli-
mate state and/or its evolution across time and space, and TC forecasting,
which focuses on predicting the response of TCs to such future climate
state8–10.

The pioneeringworks in seasonal TC prediction weremainly based on
the relationshipbetweenTCs andElNiño SouthernOscillation (ENSO)11–14.
At present, several forecasting agencies worldwide remain to use predictors
that are closely related to the predicted evolution of ENSO and other related
sea surface temperature (SST)-based indices8,15. Among the challenges in
ENSO-based seasonal prediction is the springtime predictability barrier
where the prediction skill of ENSObecomes relatively low during the boreal
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Fig. 1 | Characteristics of tropical cyclones (TC) in the Western North
Pacific (WNP). a Location of TC genesis in Domain 1 (blue) and Domain 2 (red).
The large dots indicate the mean TC genesis location in Domain 1 (blue) and
Domain 2 (red), respectively. The crosses represent the mean TC genesis location in
June-August (JJA; blue) and September-November (SON; red), respectively.
bMonthly relative TC frequency in theWNP (black), Domain 1 (blue), andDomain
2 (red), respectively. The yellow box indicates the active TC season during June-

November (JJASON). c, d Correlation heatmap of mean seasonal TC genesis in
Domains 1 and 2, respectively. e Correlation heatmap of mean seasonal TC genesis
between Domains 1 and 2. f–h Time series of seasonal TC genesis frequency in
JJASON, JJA, and SON in Domain 1 (blue) and Domain 2 (red), respectively. The
significance of correlation is tested using the student’s t test with two-tailed
distribution.
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spring16, which consequently clouds ENSO-based TC outlook right before
the onset of active TC season in theWNP. Furthermore, the SST anomalies
associated with ENSO events exhibit asymmetrical patterns between the
western and eastern parts of the WNP. During warm (cold) ENSO events,
more (less) TCs occur in the eastern half-court of the WNP. A contrasting
pattern also typically occurs in the western half of theWNP during the said
events1. Such nuances in the asymmetric large-scale environment related to
ENSO that is favorable for TC development in the WNP are expected to
similarly prompt asymmetric response of TC activity1–3,17.

Meanwhile, the temporal variability of TC genesis is also expected to
change with respect to the seasonality of the Northern Hemisphere and the
WNP itself. For example, themore poleward location ofmeanTCgenesis in
JJA (Fig. 1a) is attributed with the northward shift of the Intertropical
Convergence Zone coincident with the boreal summer18, and more south-
ward locations during the latter seasons2. The more westward mean TC
genesis in JJA than in SONcanbe likewise attributedwith the location of the
WNP monsoon trough during the boreal summer where TC formation is
generally more conducive17. The spatial and temporal contrasts in seasonal
TC genesis frequency and associated large-scale environment are discussed
in succeeding analysis.

Another challenge in seasonalTCprediction is theprovisionof outlook
with sufficient lead time. Hence, the timely release of a seasonal outlook is
preferably during the pre-season or one to twomonths ahead of the start of
the active TC season (i.e., JJASON). With this earlier release, various end-
users can properly utilize the seasonal TCoutlook for strategic planning and
resource mobilization, more particularly in disaster risk reduction. There is
also a growing demand formore granulated seasonal TC outlook in smaller
sub-regions (or even country-level) of the WNP (e.g., Southeast Asia, East
Asia). Considering the WNP as a homogeneous spatial entity might over-
look smaller sources of variability in its sub-regions. Consequently, this
raises questions on the spatial and temporal homogeneity of TC char-
acteristics in the WNP. An example of varying TC characteristics in the
subregionsof theWNPishighlighted in a reportwhere there is an increasing
TC activity in East Asia during the boreal autumn but the same cannot be
said true for Southeast Asia and TCs that remain in the open ocean5.

Such enumerated challenges led us to explore an alternative approach
on the seasonal prediction of TCgenesis frequency in theWNPby using the
response of TCs on the asymmetric seasonality and spatial contrast of the
large-scale environments favorable (or unfavorable) for TC development.
Different long-range prediction models are developed for the western
(Domain 1) and eastern (Domain 2) half-courts of theWNPwhile another
set of long-range forecasts isimplemented for different seasons. To under-
score, our primary aim is to effectively highlight that taking advantage of the
spatial and seasonal asymmetries in the characteristics of TC genesis in
WNP results in improved long-range TC forecasting in lieu of the con-
ventional approach of clustering and predicting all TCs in the WNP alto-
gether. From our proposed approach, improved long-range TC
predictability are expected to provide more granular information with
sufficient lead-time, simple (e.g., straightforward and easy to implement),
open-source (e.g., accessible environment), and interoperable (e.g., acces-
sible in different computing languages) that can offer operational guidance
for forecasting agencies in theWNP in creating their respective seasonal TC
outlook. As away forward, it is expected that our proposed approachwill be
used as a platform for seamless seasonal TC prediction, including the
landfalling TCs and corresponding metrics of TC activity.

Results
Asymmetricseasonalityof tropicalcyclones in theWesternNorth
Pacific
The TC season in theWNP runs across two distinct meteorological seasons
—boreal summer (JJA) and autumn (SON). The derivative seasons in
between them (i.e., JAS and ASO) are often called transitional seasons. It is
previously reported that the relationshipof theWNPsummermonsoonand
convective activities around the Philippines dramatically reverses from the
boreal summer to the boreal winter19, which can be attributed to the

weakening and subsequent termination of the summermonsoonflow in the
WNP. A stronger summermonsoon flow leads to the eastward extension of
the monsoon trough17, which is generally accorded to provide favorable
environment (i.e., increased background vorticity and moist environment,
less vertical wind shear) for increased TC genesis in the WNP20.

We support such previous reports by presentingmore evidence on the
asymmetric seasonality of TCs from 1984 to 2020 (n = 37 years) in both
Domains 1 and 2, respectively (Fig. 1c, d). Unless otherwise stated, we used
the said period in our succeeding analysis. In Domain 1, the TC genesis
between JJA and SON is not significantly correlated with each other. While
the correlation of TC genesis between JJA and SON in Domain 2 is mar-
ginally significant (r = 0.36, p < 0.05), it should be noted that such correla-
tion, similar to Domain 1, considerably decreases across the intermediary
seasons. Interestingly, the cross-correlation of seasonal TC genesis between
Domains 1 and 2, respectively, show increasing negative correlation that
becomes more significant during the transition seasons (Fig. 1e), which
indicates two things: weaker spatial asymmetry in the large-scale environ-
ment favorable for TC genesis in JJA than in SON, and stronger asymmetric
seasonality ofTCgenesis in JJA and SON.Moreover, wenote that the higher
negative correlation of TC genesis in SON (r = –0.54, p < 0.01) than in JJA
(r = –0.26) might have contributed more to the significant negative corre-
lation in JJASON in (r = –0.50, p < 0.01) (Fig. 1f–h).We further corroborate
such findings by showing that there is a weaker asymmetric pattern in the
correlationof theoutgoing longwave radiation (OLR)withTCgenesis in JJA
(Supplementary Fig. 1) when compared with the SON. Such seasonal
asymmetry in convective activities from JJA to SON is possibly due to the
gradual weakening and/or termination of the WNP summer monsoon
during the intermediary seasons17,18.

The composite differences between JJA and SON, respectively, show
significant and contrasting patterns in TC tracks and in the large-scale
environmental conditions such as SST,OLR, andverticalwind shear (VWS)
in Domains 1 and 2, respectively (Fig. 2a–d). During JJA, warmer SSTs,
lower OLR, and reduced VWS is evident in Domain 1, which are more
favorable conditions for TC development. Warmer SSTs thermo-
dynamically fuel TC development where the increased cloudiness (heur-
istically represented by OLR) and lower VWS promote positive feedback
mechanisms that further promote TC development. Such patterns are
reversed in SON, which could additionally explain why there is an asym-
metric seasonality and significant negative correlation in the time series of
TC genesis in the WNP (Fig. 1c–h).

Many studies on seasonal TC characteristics consider the entire WNP
as a homogenous entity in terms of its spatial characteristics21. However,
some studies have reported otherwise.More particularly, it is shown that an
increase in TC genesis is usually observed in the southeastern quadrant of
the WNP during an El Niño event1,2,17,18,22, which is attributed to more
favorable environment for TC formation such as warmer SSTs, increased
background vorticity, reduced VWS, and extended monsoon trough20. In
reverse, during a La Niña the active TC development region shifts towards
the western part of the WNP1 where associated large-scale environment
tends to be generally unfavorable for TC genesis. Meanwhile, the Pacific
Meridional Mode (PMM), which is another SST-based non-ENSO climate
mode that influences interannual TC variability in theWNP, is reported to
be more significantly correlated with TC genesis frequency in the eastern
half than in thewestern half of theWNP23. Unlike ENSO, the PMMreaches
itsmaximum seasonal amplitude during the boreal spring24, whichmakes it
useful as a potential predictor of seasonal TC variability in the WNP.

We further support the asymmetric variability of TCs in the WNP
between Domain 1 and Domain 2 by showing the correlation of indicated
seasonalTCgenesis frequencywithOLR (SupplementaryFig. 1a–i) and SST
(Fig. 3a–i), respectively. Such an asymmetric pattern becomes more pro-
minent in SONapproximately along 140°E inDomains 1 and 2, respectively
(Supplementary Fig. 1f, i). The negative correlation between SST and TC
genesis frequency is stronger in Domain 2 than in Domain 1 across all
seasons (Fig. 3d–i), particularly in SON. The spatial correlation pattern in
Domain 1 is less asymmetric during JJA than SON. These findings further
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confirm that there is a less contrast in the spatial correlation between TC
genesis frequency, OLR, and SST in JJA, respectively, when compared with
those in SON.

Furthermore, we note that there is less significant contrasting spatial
correlation found in JJASON between TC genesis frequency and OLR
(Supplementary Fig. 1a–c), and SST (Fig. 3a–c), respectively. Our findings

show that the asymmetric seasonality is more prominent in SON than in
JJA, particularly in Domain 2. Banking on our findings on the spatial and
seasonal asymmetry of TCs in the WNP, we confirm the use of the time
series of seasonalTCgenesis frequency into twohalf-courts along140°E (i.e.,
Domain1 andDomain 2) andused them in thedevelopment of seasonalTC
prediction models.

Fig. 3 | Relationship of tropical cyclone (TC) genesis frequency and sea surface
temperature (SST). a–c Spatial correlation of indicated seasonal TC genesis fre-
quency in the entire WNP (black box) and SST. d–f Spatial correlation of indicated
seasonal TC genesis frequency in Domain 1 and SST. g–i same as (d–f) but in

Domain 2. The black boxes indicate the location of the indicated domains. The dots
denote significant correlation at p < 0.05 tested using student’s t test with two-tailed
distribution.

Fig. 2 | Asymmetric seasonality of tropical cyclones (TC) and large-scale envir-
onmental variables in the Western North Pacific (WNP). a Composite difference
map of TC tracks between June-August (JJA) and September-October (SON) in the
WNP, respectively. The mean position of the monsoon trough during JJA (blue

dashed line) and SON (red dashed line) are displayed accordingly. b–d Composite
difference map of sea surface temperature, vertical wind shear, and outgoing long-
wave radiation in JJA and SON, respectively. The dots denote significant correlation
at p < 0.05 tested using student’s t test with two-tailed distribution.
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Forward predictor selection
Given our secondary aim to develop an interoperable (i.e., accessible in
different computing languages) prediction system, we selected several cli-
mate indices as potential predictors in our analysis that are regularly
updated (i.e., sufficient historical data), open-source (i.e., accessible envir-
onment) and freely downloadable from reputable institutions such as the
National Oceanic and Atmospheric Administration25,26 and Japan
Meteorological Agency27 (Supplementary Table 1).

We also developed a forward predictor selection technique based on
the collinearity reduction in the pool of the identified climate indices. To
ensure the timely release of seasonal TC outlook, we used the pre-season
months (i.e., Lead 1; January to April) because the updated climate indices
for themonthofApril are typically released in the secondhalf ofMay. Lead2
employed in-season predictors (i.e., January to May) because the updated
climate indices for themonth ofMay are released in the second half of June,
whichmeans the TC season has already started (hence the term in-season).
Accordingly, Lead 3 (i.e., February to June) and Lead 4 (i.e., March to July)
also utilize in-season predictors. Therefore, the TC genesis frequency in JJA
can only be predictedwith Lead 1 predictors while the TCgenesis frequency
in SON employs predictors from Lead 1 to 4, respectively. Based on such
predictor selection, the WNP Trade Wind (TW) index is identified as pri-
mary predictor of TCgenesis frequency inDomain 1 fromLead 1 to 2 but in
Lead 3 to Lead 4, PMM becomes the primary predictor for TC genesis
(Supplementary Table 2). Meanwhile, PMM primarily influences the TC
genesis frequency inDomain 2 in all leads (SupplementaryTable 3). Further
details of such forward predictor selection are provided in the Methods
under predictor selection and regression modeling while the mechanisms
associated with the aforementioned primary predictors are discussed in
succeeding analysis.

Long-range tropical cyclone prediction
We employed an Ordinary Least Square (OLS) regression technique in our
statistical prediction of seasonal TC genesis frequency. Compared to the
other linear regression techniques, OLS is one of the most straightforward
statistical prediction methods that is relatively simple to implement and is
proven to produce accurate forecasts when applied to suitable datasets and
conditions. Furthermore, while dynamical and hybrid models have made
significant strides in TC prediction, the statistical method remains valuable
by leveraging historical relationships between TC activities and various
climate drivers and environmental factors making them easy to implement
and to update8. Owing to advancements in numerical climate models and
the accessibility of high-performance supercomputing facilities, dynamical
models have become an appealing approach for seasonal tropical cyclone
forecasts but they are expensive and resource-intensive to implement8,15,21.
However, uncertainties due to inherent or systematic biases and errors
remain a challenge as model performance highly depends on both the data
and model predictability. Forecast agencies opt for model ensembles to
minimize uncertainties, however, this has proven to be resource-intensive in
terms of computing power and time.

On the other hand, the statistical approach is cost-effective as they are
often less computationally intensive compared to dynamical models. Sta-
tistical models often rely on open-source tools and are designed with
interoperability in mind making them user-friendly and adaptable to var-
ious data sources and platforms8,15,21.While we do not explicitly suggest that
one approach is generally superior to the other, it remains that dynamical
forecasts require statistical pre- and post-processing to be competitive with
or superior to the statistical models27. Hence, the statistical models are
comparable even with dynamical schemes, if not better for the reasons of
being more practical and efficient due to their shorter development cycles
and flexibility, which allows economical and rapid implementation.

Initially, we implemented the forward predictor selection to predict the
TC genesis frequency in the homogeneousWNP using a no-split approach.
A no-split approachmeans that the entire timeseries is used as training data
for prediction; hence, there is no split in the timeseries. The predicted TC
genesis frequency in theWNP is significantly correlated with the actual TC

genesis frequency during JJA (r = 0.65, p < 0.01) and SON (r = 0.65,
p < 0.01) giving a combined predicted correlation in JJASON with r = 0.71
(p < 0.01) (Supplementary Fig. 2a–c). Note that the predicted TC genesis
frequency in JJASON is the sumof predictions in JJA and SON, respectively.
While these scores are already good, it prompts us to ask whether such
scores can still be improved. By exploring the presented asymmetric sea-
sonality of TC variability in theWNP during JJA and SON, we propose an
alternative approach in long-range TC prediction by separately predicting
the seasonal TC genesis frequency inDomains 1 and 2 during JJA and SON,
respectively (Fig. 4a–i). The predictions in Domain 1 and Domain 2 in JJA
are added to get the predicted TC genesis frequency in theWNP. The same
operations are implemented in SON. Lastly, we define the predicted TC
genesis frequency in theWNP during JJASON as the sum of predictions in
Domains 1 and 2 in JJA and SON, respectively.

Following the similar implementation of forward predictor selection in
ano-split ratio approach, the predictedTCgenesis frequency inDomain 1 is
significantly correlatedwith the actualTCgenesis frequencyduring JJASON
with r = 0.83 (p < 0.01). Meanwhile in Domain 2, the predicted TC genesis
has a significant correlation with the actual TC genesis count during JJA-
SON but slightly lower than in Domain 1 with r = 0.81 (p < 0.01). Adding
the predictions in Domain 1 and Domain 2, the predicted TC genesis
frequency in theWNPhas significant correlationwith the observed value in
JJASON (r = 0.77, p < 0.01). Thus, the performance of the predicted TC
genesis frequency using our alternative approach (r = 0.77, p < 0.01;
NRMSE = 0.64; RV = 0.49) is better than the conventional approach of
predicting the clustered TC genesis frequency in the entire WNP (r = 0.71,
p < 0.01; NRMSE = 0.71, RV = 0.40) (Fig. 4g, Fig. 5g, Supplementary Fig.
2a). Refer toMethods for further description ofmodel output statistics used
in the analysis.

Comparing the performance of the models across different lead times
(Fig. 5a–i), Lead 1 and Lead 2 have the highest performance in predicting
SONTCgenesis inDomain 1 (r = 0.78, p < 0.01;NRMSE = 0.63; RV = 0.60)
while Lead 2 performed best for Domain 2 (r = 0.75, p < 0.01; NRMSE =
0.66, RV = 0.56). Adding the combined predicted TC genesis frequency in
JJA using Lead 1 and SON using Lead 2 in Domain 1 and Domain 2, the
WNP TC genesis in JJASON can be best predicted using Lead 2 (r = 0.80,
p < 0.01; NRMSE = 0.60, RV = 0.56) (Fig. 5g). Thesemetrics clearly indicate
that byusing ourproposed alternative approach theTCgenesis frequency in
theWNP during the active TC season (i.e., JJASON) can be predicted with
sufficient lead time (e.g., one to two months ahead) along with very satis-
factory performance skill scores. While the results show that updating the
predictionmodels using in-seasonpredictors (i.e., Lead2) canprovidebetter
performance, the pre-season prediction models (i.e., Lead 1) also achieves
comparable results, which supports the efficiency and flexibility of our
proposed statistical approach.

Meanwhile, an 80-20 split ratio approach between training (n = 30
years) and test (n = 7 years) dataset in JJASON was also employed to con-
firm the robustness of the prediction models (Supplementary Fig. 3a–f).
Unlike the no-split ratio approach, the 80-20 split ratio approach divides
between the training and test dataset in JJASON,which corresponds to 80%
and 20% of the entire timeseries, respectively. Overall, the predicted TC
genesis frequency in WNP during JJASON using an 80-20 split approach
have confirmed good predictability scores in both training (r = 0.79,
p < 0.01; NRMSE = 0.62; RV = 0.51) and test (r = 0.54; NRMSE = 0.94;
RV = 0.18) periods, respectively.

Influence of the primary predictors
Given that the identifiedprimarypredictors are theWNPTWindex and the
PMM, respectively, we proceed to explain the possible mechanism of the
asymmetric seasonal TC genesis predictability during JJASON using the
said indices. While it is true that the secondary to tertiary predictors also
contribute to the regressionmodel,weunderscoreourprimary aim,which is
to highlight that the regional and temporal asymmetry in theWNP can lead
to a better seasonal TC predictability but notwithstanding the performance
of the prediction model itself. In future studies, we encourage more
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investigations on identifying more and/or better predictors based on the
asymmetry of TC characteristics in the WNP.

Meanwhile, a positiveWNPTWindex translates to strengthened trade
winds or anomalous easterlies (Fig. 6a) that flow towards Domain 1 where
they converge with weaker westerlies leading to the rise of increased con-
vective activities in Domain 1 (Fig. 6b). The risen air from the upper-air
divergence in Domain 1 zonally rises and descends as dry air, which
exacerbates the anomalous dry environment inDomain 2. Thismechanism
produces positive feedback for further strengthened trade winds drawn
towards the warm SST anomalies in Domain 1 (Fig. 6c). The dry envir-
onment in Domain 2 prompts a strengthened North Pacific High where it
weakens the subtropical jet, and ultimately, limits and amplifies the warm
SST anomalies in Domain 1. The warm SST anomalies, increasedmoisture,
and pre-existing anomalous convective activities consequently render a
favorable environment for increased TC development and convective
activities in Domain 1 (Fig. 6b). However, a strengthened TW index that is
favorable for TC genesis in Domain 1 is not necessarily suppressing the TC
genesis in Domain 2.

Another possible mechanism that encourages the dipole TC genesis
pattern is through the influence of the PMM (Fig. 7a). A positive PMM is
associated with anomalous westerlies from the summer monsoon flow
drawn towards the warmer SST region in Domain 2 (Fig. 7b, c). The
anomalous westerlies also weaken and relax the trade winds that lead to
anomalous low-level convergence or increased convective activities in
Domain 2. A positive PMM is characterized by a meridional pattern of
warm SST anomalies in the central Pacific, which influences reduced zonal
wind shear in the eastern section of theWNP and is one of the reasons why
there is an increased TC development in Domain 2 in a positive PMM
phase23. The risen air from the convective activities in Domain 2 zonally
descends as dry air, which exacerbates the anomalous anticyclonic

circulation in Domain 1. Meanwhile, the warm and moist air meridionally
transported fromDomain 2 weakens the North Pacific High resulting in an
increased equatorward cold air intrusion cooling the SSTs in the North
Pacific (Fig. 7c). At the same time, the anomalous convective activities in
Domain 2 meridionally influence a strengthened subtropical jet, which
confine the cold SSTs off the coast of Japan. In totality, the mechanism
associatedwith apositivePMMrendersmoreTCdevelopment inDomain2
and less TCdevelopment inDomain 1. Furthermore,wenote that thePMM
typically reaches its maximum amplitude during the boreal spring where it
becomes meridionally closer to theWNP, which could be a possible reason
why PMM becomes a good predictor for seasonal TC predictability, parti-
cularly in Domain 2.

Using theWNP TW index and PMM as the primary predictors of TC
genesis frequency in Domain 1 (Supplementary Table 2) and Domain 2
(Supplementary Table 3), respectively, the prediction models still show
satisfactoryperformance in JJASON(SupplementaryFig. 4a–f). In ano-split
ratio approach, the predicted TC genesis frequency in the WNP has sig-
nificant correlation with the observed value in JJASON (r = 0.53, p < 0.01;
NRMSE = 0.85, RV = 0.21). In an 80-20 split approach, the predicted TC
genesis frequency in JJASON remains to have good predictability scores in
both training (r = 0.51, p < 0.01; NRMSE = 0.86, RV = 0.31) and test
(r = 0.69, p < 0.01; NRMSE = 0.81, RV = 0.13) periods, respectively. These
scores confirm the satisfactory performance of the prediction models even
when only using the dominant predictors (i.e., WNP TW index, PMM) in
Domain 1, Domain 2, and WNP during the JJA, SON, and JJASON,
respectively. Ultimately, the results of our proposed seasonal TC genesis
predictions are comparable to the results of recent literature on the statistical
prediction of seasonal TC genesis in the WNP and in the Philippines28,29.

We further support the robustness of our results by showing that the
sensitivity of the predicted TC genesis frequency in the WNP during

Fig. 4 | Predictability of tropical cyclone (TC) genesis frequency in the Western
North Pacific (WNP) using Lead 1 predictors using a no-split approach. a–cTime
series of predicted (red) and actual (black) TC genesis frequency during June to
November (JJASON), June to August (JJA), and September to November (SON) in
Domain 1 from 1984 to 2020, respectively. d–i, same as (a–c) but for Domain 2 and

in the WNP, respectively. Inset statistics indicate the model output statistics mea-
sured using bivariate correlation (r), Normalized Root Mean Squared Error
(NRMSE), andRatio of Variance (RV). The significance of correlation is tested using
the student’s t test with two-tailed distribution.
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JJASON using a 130°E partition (r = 0.71, p < 0.01; NRMSE = 0.71; RV =
0.45) (Supplementary Fig. 5g–i) is generally inferior in Lead 2 (see lead time
with best prediction in Fig. 5g) than in a 140°E partition (r = 0.80, p < 0.01;
NRMSE = 0.60; RV = 0.56) (Fig. 5g–i). Moreover, we also found lower
model performanceduring JJASON inWNPusing a 150°Epartition inLead
2 (r = 0.56, p < 0.01; NRMSE = 0.85; RV = 0.54) (Supplementary Fig. 6g–i).
Such consistent results corroborate that the seasonal TC genesis frequency
in WNP can be best predicted in the two domains equally partitioned
along 140°E.

Discussion
In the age of emerging technologies, it is not surprising that end-users look
for more granulated information with finer spatial resolution or lower
temporal resolution to support their various requirements on seasonal cli-
mate prediction. There is also a demand among end-users for accessible and
open-source information that is simple, inexpensive, and easy to implement.
In the case of seasonal TC prediction, a timely release of information is
generally preferred to serve as guidance for operational forecasting, resource
mobilization in disaster risk reduction, and strategic planning for most
industries and sectors such as hydropower generation, water resources, and
agriculture.

Following such expectedoutcomes,wepropose analternative approach
in predicting the seasonal TCgenesis frequency in theWNPduring its active
season (i.e., JJASON)by separately predicting theTCgenesis in twodomains
(i.e., Domains 1 and 2) and two seasons (i.e., JJA and SON), respectively.
Such separation is based on two distinct asymmetries: the reversal in the
seasonality of TCs between JJA and SON, and the spatial inhomogeneity in
the large-scale environments favorable (or unfavorable) forTCdevelopment
between the western (Domain 1) and eastern (Domain 2) half-courts of the
WNP, respectively.

Using a number of open-source and freely downloadable climate
indices, we have identified possible sources of predictability of seasonal TC
genesis frequency in JJA, SON, and JJASON, respectively. Among these
predictors, we show that the PMM and the WNP TW index can mostly
explain two possible mechanisms of asymmetric seasonality of TC genesis
frequency in WNP. In fact, the said two climate indices alone produce
satisfactory model output statistics such that they can be considered as the
smart predictors of seasonal TC genesis frequency in theWNP. For a timely
release, considerable performance scores are also demonstrated using Lead
1, whichmeans that it is possible to release a seasonal TCoutlook one to two
months ahead of the active TC season. Since the spatial and temporal
inhomogeneity are accounted for in the development of anOLS regression-
based prediction model of seasonal TC genesis frequency, therefore, our
results can effectively provide more granulated information by providing
seasonal TC outlook in three domains: the WNP itself, and the western
(Domain 1) and eastern (Domain 2) half-courts of the WNP.

Finally, our findings are comparable with known literatures on sea-
sonal TC prediction in the WNP even with dynamical models. While our
statistical models may not be as fancy as most dynamical models, their
predicted results remain and perhaps provide more added value to opera-
tional long-range TC forecasting because they are inexpensive and practical
with efficient statistical methods, which allows their rapid implementation.
It is expected that our findings can be used to provide additional insights as
well as operational guidance for seasonal TC outlook in the WNP.

Methods
Tropical cyclone best track
The TC best track data in theWNP from 1984-2020 was obtained from the
International BestTrackArchive forClimate Stewardship version 430, which
covers the reported reliable period in the WNP beginning in 198431. Con-
sequently, all time series, plots, and statistical tests in our analysis used the

Fig. 5 | Summary of prediction model scores in various lead times using Domain
1 (100–140°E) and Domain 2 (140–180°E) using a no-split ratio approach.
a–c Summary of model output statistics measured using bivariate correlation,
Normalized Root Mean Squared Error (NRMSE), and Ratio of Variance (RV),

respectively. d–i same as (a–c) but for Domain 2 and in the WNP (Domain 1 +
Domain 2), respectively. The blue, orange, green, and red columns correspond to the
different lead times in predictor selection from Lead 1 to Lead 4, respectively.
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period 1984-2020. The domain ofWNPdefined as 0-35°N and 100-180°E is
further divided into two half courts with similar latitudes: Domain 1 (100-
140°E) and Domain 2 (140-180°E) (Fig. 1a). The TCs considered in the
analysis include all named storms that reached at least Tropical Storm
category (maximum sustained wind speed ≥ 35 knots). The location of TC
genesis is defined as the first reported coordinates of a TC while the TC
genesis frequency is the count of the considered TCs in the indicated
domains.

Climate indices and reanalysis data
A total of 21 climate indices (Supplementary Table 1) from the National
Oceanic and Atmospheric Administration Physical Sciences Laboratory
(NOAA-PSL)25, Climate Prediction Center26, and Japan Meteorological
Agency Tokyo Climate Center were utilized as potential predictors in our

analysis27. The ERA5 reanalysis data products are used in the analysis of
zonal wind, meridional wind, and SST32 while the OLR is taken from the
NOAA-PSL33. The location of the monsoon trough is estimated along the
overturning zonal wind flow at approximately –0.5ms-1 contour. The VWS
was obtained from the calculated zonal and meridional winds at 200 hPa
and 850 hPa.

Statistical and significance tests
WeusedPearson’s correlation tomeasure the strength of linear relationship
between indicated variables where their significance is tested using a stu-
dent’s t test with two-tailed distribution. A value of ±1 is considered perfect
correlation. The Normalized Root Mean Squared Error (NRMSE) refers to
the amount of error between the predicted and actual values normalized by
the actual standard deviation to account for the differences in data spread.

Fig. 6 | Influence of the Western North Pacific (WNP) Trade Wind (TW) Index
on tropical cyclones (TC). a Schematic of the influence of a positiveWNPTW index
on TC genesis in Domain 1 (blue box) and Domain 2 (red box), respectively. The
strengthened trade winds are drawn towards Domain 1 where it converges with the
weaker westerlies leading to the formation of anomalous convective activities in
Domain 1. The warm sea surface temperature anomalies and anomalous convective
activities associated with positive WNP TW index led to increased TC genesis in

Domain 1. The zonally-transported rising air from Domain 1 to Domain 2
exacerbates the anomalous anticyclonic circulation rendering less TC genesis in
Domain 2. The response of the midlatitude environment to the WNP TW index
amplifies the asymmetric spatial TC genesis distribution in the WNP. b, c Spatial
correlation of WNP TW index with outgoing longwave radiation and sea surface
temperature during June to November. The dots denote significant correlation at
p < 0.05 tested using student’s t test with two-tailed distribution.
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An NRMSE value equal to 0 corresponds to a perfect score. The Ratio of
Variance (RV) quantifies the dissimilarity between the predicted and actual
values. A perfect score of 1 for RV denotes that the predicted and observed
values have the same variance.

Predictor selection and regression modeling
We used at least two-month lead data ahead of the start of each season to
define four lead times (Lead 1 - January to April; Lead 2 - January to May;
Lead 3 - February to June; Lead 4 - March to July). For instance, the data of
pre-season climate indices (i.e., prior to the start of the active TC season in
June) is released in May, which means the Lead 1 is the only pre-season
prediction. Therefore, the updated climate indices used in Lead 2 are
released in June, Lead 3 in July, and Lead 4 in August, respectively, which
make these lead times as in-season predictions already. In turn, JJA can only

be predicted with Lead 1 while SON can be analyzed until Lead 4, thus,
JJASON has four lead times.

Among the 21 climate indices, we selected the first climate index with
the highest bivariate correlation between the seasonal TC genesis frequency
and the indicatedmonthly climate indices. To highlight the influence of the
first climate index, we reduced its linear contribution from the other climate
indices by removing the line of bestfit between them. After such collinearity
reduction, we repeated the process of such influence removal until we found
the remaining set of predictors with significant correlation. This sequential
process was implemented to eliminate any possiblemulticollinearity among
thepredictors.The resulting set of predictorswasused topredict thenumber
of TC genesis in each lead time in JJA and SONusing OLS. After which, the
predicted values of both seasons were added to predict the entire JJASON.
We implemented both 80-20 train-test split ratio and no split ratio
approaches to support the robustness of the developed predictionmodels. A

Fig. 7 | Influence of the Pacific Meridional Mode (PMM) on tropical cyclones
(TC) in theWesternNorthPacific (WNP). a Schematic of the influence of a positive
PMM index on TC genesis in Domain 1 (blue box) and Domain 2 (red box),
respectively. The warm sea surface temperature anomalies and anomalous con-
vective anomalies associated with a positive PMM lead to increased TC genesis in
Domain 2 while the zonally-transported rising air from Domain 2 to Domain 1

exacerbate the anomalous anticyclonic circulation rendering less TC genesis in
Domain 1. The response of the midlatitude environment to the PMM amplifies the
asymmetric spatial TC genesis distribution in the WNP. b, c Spatial correlation of
PMM index with outgoing longwave radiation and sea surface temperature during
June to November. The dots denote significant correlation at p < 0.05 tested using
student’s t test with two-tailed distribution.
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no-split approachmeans that the entire timeseries is used as trainingdata for
prediction while an 80-20 split ratio approach divides between the training
and test dataset corresponding to 80%and20%of the number of years in the
entire timeseries, respectively.

Data availability
The reanalysis and best TC track data products, and climate indices used in
the analysis are available for download from their respective websites.

Code availability
The data and codes used to process TC frequency in the WNP and in
Domains 1 and 2, respectively and data used in the analysis can be down-
loaded fromhttps://bit.ly/TCfrequency.The other codesused in the analysis
are available upon an email request with permission from the lead author,
Joseph Basconcillo (jbasconcillo@pagasa.dost.gov.ph).
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