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Subseasonal prediction fills the gap between weather forecasts and seasonal outlooks. There is
evidence that predictability on subseasonal timescales comes from a combination of atmosphere,
land, and ocean initial conditions. Predictability from the land is often attributed to slowly varying
changes in soil moisture and snowpack, while predictability from the ocean is attributed to sources
such as the El Niño Southern Oscillation. Here we use a set of subseasonal reforecast experiments
with CESM2 to quantify the respective roles of atmosphere, land, and ocean initial conditions on
subseasonal prediction skill over land. These reveal that the majority of prediction skill for global
surface temperature in weeks 3–4 comes from the atmosphere, while ocean initial conditions become
important after week 4, especially in the Tropics. In the CESM2 subseasonal prediction system, the
land initial state does not contribute to surface temperature prediction skill in weeks 3–6 and
climatological land conditions lead to higher skill, disagreeing with our current understanding.
However, land-atmosphere coupling is important in week 1. Subseasonal precipitation prediction skill
also comes primarily from the atmospheric initial condition, except for the Tropics, where after week 4
the ocean state is more important.

Subseasonal forecasts fill the gap between short-termweather forecasts that
extend to 14 days and long-range seasonal outlooks that predict anomalous
patterns several months ahead. Skillful forecasts on the subseasonal time-
scale are in high demand across multiple society-relevant sectors1, however
they are difficult to achieve and pose a frontier challenge in Earth system
prediction2. In order to increase subseasonal prediction skill, the sources of
subseasonal predictability on this timescale must be understood. While
accurate atmosphere initial conditions (ICs) are of primary importance for
skillful weather forecasts, predictability on the subseasonal timescale is
believed to come fromprocesses that evolvemore slowly than the variability
of the atmosphere, such as soil moisture and snowpack2–4. For example,
anomalously dry soil can contribute to heat waves5 and anomalously moist
soil can contribute to persistent low temperature anomalies. The ocean state
can also contribute to predictability, especially via coupled ocean-
atmosphere modes of variability such as the El Niño Southern Oscillation
(ENSO), the Madden–Julian Oscillation (MJO), and tropical-extratropical
teleconnections6,7. There is evidence of a connection between ENSO and

subseasonal prediction skill over the United States8,9, and prediction of
subseasonal variationsof 2-m temperature anomalies overNorthAmerica is
improved during certain phases of the MJO10,11.

Figure 1, adapted from a commonly shown graphic12, illustrates the
current hypothesis of the contributions of the atmosphere, land, and ocean
to subseasonal prediction, assuming the ICs are a good approximationof the
realworld at that time.Specifically, the ICswould contain informationabout
the background climatology plus coincident anomalies. The figure was
originally developed byPaulDirmeyer and ismeant to be representative of a
surface temperature forecast over land for a mid-continental location, like
the central US, viewed as a combined initial-value problem for each of the
three components. In such a location, the rapidly-decaying skill of the
forecast onweather timescales (1 to 10 days) comes predominantly from the
atmosphere. On monthly to seasonal timescales, the influence of remote
ocean variability is thought to emerge as themain source of prediction skill.
Predictability from the land initial state is hypothesized to be dominant
between theweather and the seasonal timescale, with the importance of land
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peaking around day 7 and slowly declining into the subseasonal window13.
TheNationalOceanic andAtmosphericAdministration (NOAA)’sClimate
Prediction Center (CPC) subseasonal outlooks focus on the weeks 3–4
forecast. According to Fig. 1, in the weeks 3-4 forecast window, the land
initial state is the largest source of predictability, with the ocean and
atmosphere states having smaller, similarly sized contributions to
predictability.

Despite the widespread acceptance of the graphic in Fig. 1, little
research has been done to quantify the relative contributions of atmosphere,
land, and ocean to predictability with the current generation of subseasonal
prediction systems. Several studies have examined the contribution of land
to subseasonal prediction skill. In particular, one study utilized the Global
Land-Atmosphere Coupling Experiment (GLACE-2) consisting of coor-
dinated experiments with and without realistic land surface initialization
carried out by ten subseasonal forecast systems14 and showed that realistic
land had a notable positive impact on surface temperature prediction skill
over North America out to 60 days, with the largest improvements of
forecast skill for days 16–30 (r2 increase of 0.05 to 0.1 for all dates, and up to
0.3 increase in some regions for extreme events). Some improvements were
also noted for precipitation, however the impact was much smaller. The
analysis of GLACE-2 was extended to all land areas in a subsequent study15,
which found soilmoisture contributes to significant air temperature forecast
skill. The impact of soilmoisture onpredictability as a functionof timeusing
the NOAA CFSv2 model was subsequently quantified13. The study showed
that the land surface contributes to predictability the most between 5 days
and 2weeks, with a long tail of potential impacts stretching out to 2months.
A recent study found that the weeks 3–6 precipitation prediction skill over
North America is primarily driven by sea-surface temperatures16, implying
that land and atmosphere instead have a very small contribution. Here we
quantify the respective contributions of atmosphere, land, and ocean to
subseasonal prediction skill over all land areas in the subseasonal prediction
window,with a focus on surface temperature using a set of experimentswith
the Community Earth System Model, version 2 (CESM2) subseasonal
prediction system.

Results
Surface temperature prediction skill
We quantify the respective contributions of atmosphere, land, and ocean to
2-meter temperature (2mT) prediction skill via reforecast experiments
where the ICs of one or twomodel components are set to climatology (Table
1). By using climatological ICs for one component, we isolate the skill lost
from not including the realistic state in that IC. Whereas, by using clima-
tological ICs for two components, we estimate the skill gained fromhaving a
realistic state in the remaining component and its coupling with the other
two components (see Table 1 and Calculations section). Figure 2 shows the
annual 2mT anomaly correlation coefficient (ACC) for all the reforecast

experiments. There are some seasonal variations in 2mT ACC, with the
highest skill in December, January, February (DJF) and lower skill in June,
July, August (JJA) (Supplementary Figs. 1 and 2). Annual values capture the
most distinguishing features, though, and the seasonal variations over land
areas are discussed in subsequent sections.

Consistent with findings from other subseasonal prediction systems17,
the standard forecasts show high ACC in weeks 1–2, a sharp decline into
weeks 3–4, and a furtherminor decline into weeks 5–6 over the majority of
land areas. The northern part of South America is the only land area that
does not show a decrease of 2mT ACC from weeks 3–4 to weeks 5–6.
Changing from realistic to climatological atmospheric ICs dramatically
reduces the weeks 1–2 ACC over all land areas (Fig. 2d). Over the oceans,
2mTACC is not impacted in the tropical eastern Pacific and Atlantic but is
significantly smaller in the extratropics and western Pacific. The ACC
remains lower for weeks 3-4 compared to the standard forecast, implying
that the atmosphere contributes to prediction skill during this timeperiod as
well (Fig. 2e). This is confirmed by the complementary climoOCNcli-
moLND reforecast experiments (Fig. 2p, q), with realistic atmosphere ICs
only, in which 2mT ACC over the majority of land areas and the Arctic
Ocean is not significantly different from the standard reforecasts for weeks
1–2 and weeks 3–4.

At all lead times and over most regions, the change from realistic to
climatological land ICs unexpectedly does not impact 2mTACC, except for
equatorial South America and Africa, Southeast Asia, and Siberia over
which 2mT ACC increases (Fig. 2g, h, i). Many of the regions showing
increased prediction skill with climatological land ICs are rainforests with
high rainfall and taiga with permafrost, snow, and bogs, hence they have
high levels of soil moisture year-round. In the absence of realistic atmo-
sphere and oceanic ICs, the land ICs provide up to 30% of 2mT skill derived
from the standard forecasts in weeks 1–2 as the land strongly couples with
the atmosphere near the surface (Fig. 2s, t, u). In weeks 3–4 and weeks 5–6,
the areas of skill from having realistic land ICs become sparse and largely
overlap regions obtained from climatological initialization of all model
components (Fig. 2m, n, o). The exceptions are northernmost South
America and Australia where 2mTACC is 0.2–0.3 in weeks 3–4 and weeks
5–6 (Fig. 2t, u). Overall, we find that in the absence of initializing the
atmosphere, the surface air temperature over land will rapidly equilibrate
with the realistic land surface and thereby gain some low-level pre-
dictive skill.

Initializing the ocean with climatological ICs results in a decrease in
2mT ACC over all oceans except the Arctic (Fig. 2 j, k, l). However, there is
no statistically significant loss of skill over land inweeks 1–2, and little loss of
skill in weeks 3–4 and weeks 5–6, excepting equatorial South America and
Africa (Fig. 2 j, k, l) suggesting a rather small role of the ocean on the weeks
1–6 forecast. Teleconnections from oscillations such as ENSO and MJO in
which the ocean plays a role are expected to be the strongest in DJF and are
one of the reasons why 2mT ACC is expected to be higher in DJF. Indeed,
there is an increase in 2mTACC over equatorial SouthAmerica andAfrica,
as well as the westernUnited States inDJF and JJA, but those differences are
rather small (Supplementary Figs. 2j, k, l and 2a, b, c). In the absence of
realistic atmosphere and land ICs, realistic ocean ICs lead to small 2mT
ACC (<0.2) inWeeks 1–4 over the majority of land areas (Fig. 2 v, w, x). In
weeks 3–4 and weeks 5–6, the 2mT ACC over South America and central
Africa is greater than that in the standard reforecasts, showing that ocean is
themain sourceofprediction skill in those regions (Fig. 2v,w, x).The impact
of the ocean on predictability in weeks 3–6 comes primarily from ENSO
which is illustrated by an increase in ACC over South America, Africa, and
the west coast of North America during active ENSO years (Fig. 3).

Quantification of sources of 2mT prediction skill
This set of reforecast experiments allows us to attribute subseasonal pre-
diction skill due to the individual components and the coupling among
them. From here onward, when we refer to skill from a coupled model
component (atmosphere, land, or ocean), we are referring to the skill
associated with that component’s anomalies being present in the ICs. We

Fig. 1 | Sources of subseasonalpredictability of temperature.Predictability coming
from the atmosphere (yellow), land (green), and ocean (blue) as a function of
forecast time for annual mean 2m temperature from 30oN to 60oN over land regions
only: a) Hypothesis, adapted from a graphic by Paul Dirmeyer7, (b) derived from
CESM simulations Panel (b) includes additional two coupling terms: land-
atmosphere (green dashed) and ocean-atmosphere (blue dashed). The derivation of
(b) is described throughout the paper and further investigated in Fig. 4.
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also derive skill gained from coupling between the model components by
comparing experiments with realistic initialization of one and two model
components (seeTable 1 andCalculations section). BasedonACCaveraged
over global land, the largest contribution to 2mTprediction skill comes from
atmosphere in weeks 1–4 (Fig. 4a). Beyond week 4, the ocean contributes
most to 2mT prediction skill. In the CESM2 subseasonal prediction system,
land does not contribute directly to prediction skill, however land-
atmosphere coupling contributes during the first week of the forecast. As an
example, if theobserved land surface at initialization is colder thannormal, it
will draw the boundary layer toward colder than normal temperatures,
regardless of whether the atmosphere is initialized with climatological or
realistic conditions. In addition, ocean-atmosphere and land-atmosphere
coupling also contribute to 2mT prediction skill throughout the forecast
period at a level similar to that of the ocean.

The influence of land, atmosphere, and ocean on subseasonal predic-
tion skill of 2mT varies as a function of latitude (Fig. 4b–d). In the Tropics
(Fig. 4b), the role of the ocean is the largest, and prediction skill from the
ocean and ocean-atmosphere coupling begins to exceed that from the
atmosphere starting in week 3,most likely due to ENSO (Fig. 3). The role of
land-atmosphere coupling in the Tropics is comparable to the role of the
ocean for weeks 2–6. This is primarily true over SouthAmerica likely due to
the very large fraction of land coverage with vegetation (~90%) in that
region18. In contrast to the Tropics, inmid and high latitudes, the prediction
skill of 2mT comes primarily from the atmospheric initial conditions (Fig.
4c, d), with the ocean beginning to play a greater role only at week 5 of the
forecast period.

For a direct comparison to Fig. 1a, b shows the CESM-derived sche-
matic of sources of subseasonal predictability for annual mean 2m tem-
perature for land regions averaged from 30oN to 60oN. The large role the
atmosphere plays in the subseasonal window is similar between the
hypothesis and CESM-based derivation. The role of land is strikingly dif-
ferent and needs future detailed exploration. The role of the ocean in
CESM2-based prediction system is also lower than expected.

Linearity of the response
As shown by the reddish pink line and black line in Fig. 4, the ACC for the
standard reforecast set and the sum of ACC for individual model compo-
nents and coupling are approximately the same for the majority of the
Earth’s land surface, except for theTropics. This implies that prediction skill
is generally a linear combination of prediction skill from the atmosphere,
ocean, and land, as well as atmosphere-land and ocean-atmosphere cou-
pling, except for the Tropics where there is some redundancy from the
coupling terms. For 2mTover land, effect of ocean-atmosphere coupling are
small and land-atmosphere coupling is important during the first week of
the forecast.

Sources of precipitation predictability
Subseasonal prediction skill of precipitation is about 4 to 5 times lower than
that for 2mT16,19,20. Averaged over global land, the atmosphere is the
dominant source of prediction skill for weeks 3–4 with the ocean and
atmosphere playing approximately equal roles in weeks 5–6 (Fig. 4e).
Similar to 2mT predictability, the land does not contribute much to pre-
diction skill on the subseasonal timescale inCESM2, and the coupling terms
are also small here. The prediction skill of precipitation varies with latitude.
It is the largest in the Tropics and decreases with latitude (Fig. 4f–h). The
atmosphere is the largest contributor to precipitation skill throughweek 3 in
the Tropics, and the ocean becomes the dominant source of skill thereafter.
This is primarily due to ENSO. During strong ENSO years, there is a
50–100% increase in precipitation prediction skill, primarily over South
America and SE Asia/Australia in weeks 3–6, with the ocean being the
dominant driver (not shown). In mid and high latitudes, the atmosphere is
the primary source of precipitation predictability through week 3, with all
terms being very small thereafter. Similar to 2mT, the ACC for the standard
reforecast set and for sum of skill from individual model components and
coupling are approximately the same for precipitation, with the coupling
terms being fairly small.

Discussion
Using a set of experiments conducted with the CESM2 subseasonal pre-
diction systemwedemonstrated that the atmosphere is thedominant source
of subseasonal prediction skill of 2mT and precipitation over global land
throughweek 3. Inweeks 4 through 6, the role of the ocean is approximately
equal to that of the atmosphere, except for theTropicswhere the ocean is the
dominant source of prediction skill. These results do not agree with the
commonly accepted paradigm in which the role of land is much greater
throughout the subseasonal window, and the ocean contribution is
increasing fromweek2onward implying that either the commonly accepted
paradigm needs adjustment or that the CESM2 based system is not cap-
turing accurately some of the interactions between the Earth systemmodel
componentsTheCESM2-based systemhas overall competitive subseasonal
prediction skill21. Areas of improvement include addition of coupled data
assimilation system and improved representation of coupling and feedback
processes among various model components.

When interpreting these results it is important to keep inmind that the
findings are representative of the entire 1999 to 2020 reforecast period as a
whole, and that the role of predictivewindows of opportunity such as ENSO
and MJO are not explicitly displayed. By isolating active ENSO years we
show that the role of the ocean on 2mT prediction skill is indeed larger
during ENSO; However, it is still much smaller than what Fig. 1 suggests
except in parts of South America and Africa. With the knowledge that
CESM2 has a very good representation of ENSO teleconnections22, these

Table 1 | Summary of CESM2 reforecast experiments, including reforecast set name, designation of whichmodel components
have climatological and standard ICs, and sources of predictability

Reforecast Set Climatological IC Standard IC Predictability Sources

standard ______ atmosphere, land, & ocean ClimALL, AATM, ALND, AOCN, CLNDATM, COCNATM, CLNDOCN

climoATM atmosphere land & ocean ClimALL, ALND, AOCN, CLNDATM, COCNATM, CLNDOCN

climoLND land atmosphere & ocean ClimALL, AATM, AOCN, CLNDATM, COCNATM, CLNDOCN

climoOCN ocean atmosphere & land ClimALL, AATM, ALND, CLNDATM, COCNATM, CLNDOCN

climoOCNclimoLNDa ocean, land atmosphere ClimALL, AATM, CLNDATM, COCNATM

climoATMclimoOCN atmosphere, ocean land ClimALL, ALND, CLNDATM, CLNDOCN

climoATMclimoLND atmosphere, land ocean ClimALL, AOCN, COCNATM, CLNDOCN

climoALL atmosphere, land, ocean ______ ClimALL

Ocean here refers to ocean and sea-ice ICs. Predictability sources in the rightmost column include: climatology of atmosphere, land, and ocean initial states (ClimALL), atmosphere anomalies (AATM), land
anomalies (ALND), ocean anomalies (AOCN), coupling between the land and atmosphere (CLNDATM), coupling between the ocean and atmosphere (COCNATM), and coupling between the land and ocean
(CLNDOCN). When two model components are set to climatological ICs, we assume their coupling is close to zero.
aDue to limited computational resources, this set contains only 10 years of reforecasts for themonths of April-October, and a full set for November-March.We have verified that a reduced time sample does
not significantly change the results: it just makes them slightly noisier in the later weeks.
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Fig. 2 | Prediction skill in CESM2reforecast experiments. Annual 2mT ACC for
CESM2 over ocean and land for weeks 1–2 (a, d, g, j, m, p, s, v), weeks 3–4
(b, e, h, k, n, q, t, w), and weeks 5-6 (c, f, i, l, o, r, u, x) for standard reforecasts (a–c),
climoATM (d–f), climoLND (g–i), climoOCN (j–l), climoALL (m–o), cli-
moOCNclimoLND (p–r), climoOCNclimoATM (s–u), climoATMclimoLND

(v–x). The white shading indicates regions not significantly different from zero
according to a t test at the 95% confidence level. Areas of ACC in the experimental
reforecast sets that are not statistically different from standard reforecasts are
stippled.
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results imply that the role of the ocean on prediction skill is only beginning
to grow in the subseasonal window and is not fully developed at these
timescales, even when we look at active ENSO years. The quantification of
theMJO and how it changes as a result of different initial conditions will be
explored in future work.

In our modeling system, realistic land model initialization (including
soil moisture) does not lead to improved prediction skill of 2mT or pre-
cipitation. Soil moisture initializations and its predictability are well repre-
sented in the CESM2 subseasonal prediction system given the initialization
method used (Supplementary Fig. 3), however there still could be defi-
ciencies in initial state representation due to lack of data assimilation. The
standard reforecast experiment shows statistically significant soil moisture
forecast skill in many land areas, including North America, Europe,
Southeast Asia, and Australia. Soil moisture forecast skill is considerably
higher in the standard reforecast experiment than the climoLND experi-
ment, e.g., 50% higher for a point in the central US (bottom panel in
Supplementary Fig. 3). However, we saw no increased temperature pre-
diction skill in those places either. The high-latitude regions, e.g., including
northernCanada, Alaska, northern and centralAsia, andparts ofAfrica and

South America, show minimal skill improvement due to soil moisture
initialization. This result is partly related to data uncertainty issue, i.e.,
climate model-based soil moisture data, in this case, CESM2 subseasonal
reforecast and ERA5-Land, agree well in the regions where a higher density
of precipitation observation are found15. Additionally, we found a much
higher soil moisture forecast skill by comparing the CESM2 subseasonal
predictionswith the corresponding land-only (CLM5) simulation driven by
CFSR meteorological data (not shown).

We investigated further why the improved soil moisture forecast skills
did not translate into the temperature prediction skill. The impact of soil
moisture on surface temperature comesprimarily via evaporation,withhigh
soil moisture anomalies leading to increased evaporative cooling of the
surface and negative surface air temperature anomalies, and vice versa for
dry soils23.We found that the land surface air temperature and precipitation
predictability was highest in areas with both strong soil moisture-
evaporation coupling and long soil moisture memory24. Due to the differ-
ing strength of land-atmosphere coupling throughout the year, it was found
that although soil moisture predictability was high over North America
throughout spring and summer, atmosphere predictability was low in early
spring and in fall due to low land-atmosphere coupling strength24. Cap-
turing this atmosphere-land interaction in global models is dependent on a
realistic representation of surface fluxes and their feedback on the atmo-
sphere, which are difficult to validate as their observations are sparse. In
order to understand the reason for why the land-atmosphere feedback in
CESM2 is weak25, and the contribution of the land initial state to prediction
skill has not been realized, we have compared CESM2’s terrestrial coupling
index to available FLUXNET towers as well as to CESM1, a model that was
closer to that used in the GLACE-2 study. Supplementary Figure 4 shows
that in CESM2, strong and negative coupling is present between soil
moisture and sensible heat flux in the summer hemispheres for each season.
InDJF in the SouthernHemisphere, this is true in bothCESM2andCESM1,
and is to some extent consistent with observations (particularly over Aus-
tralia and SouthAmerica).However, coupling in theNorthernHemisphere,
while weaker than in the south, is stronger in CESM1 than in CESM2Thus,
it is likely that there is a weakened impact of soil moisture on surface fluxes
in the boreal winter in CESM2. In JJA, there are also striking differences
between CESM2 and CESM1. The latter indicated strong and negative
couplingover almost all land regions,whichwould enable relatively stronger
soil moisture-based modulation of surface fluxes than more modern ver-
sions of the model. Hence, overall our analysis suggests that land model
changes that have occurred between CESM1 and CESM2 have reduced the
strength of land-atmosphere coupling, especially in the Northern Hemi-
sphere. Many of the model updates have occurred between the time of
GLACE-2 and this particular study, making it somewhat unsurprising that
our results may diverge from what has been established previously. The
relatively weaker coupling could explain why the role of land initialization
has a limited impact on subseasonal forecast skill, though this is a topic that
deserves additional attention in the future. Future studies can explore the
effects of land initialization on climate extremes, e.g., heat waves, where
observation-based studies have found a critical role of land-atmosphere
coupling5,26. A weak land-atmosphere coupling and/or lack of data assim-
ilation could limit CESM’s ability to capture these phenomena. As the
findings of this study differ from the commonly accepted paradigm of the
dominant sources of subseasonal predictability, it would be beneficial for
similar studies to be carried out by other modeling centers to compare
findings and for a focused effort to be carried out to improve land initi-
alization and data assimilation, as well as to improve the representation of
land-atmosphere coupling in Earth system models.

Methods
Forecasting system
We utilize the Community Earth System Model, version 2 (CESM2) sub-
seasonal prediction system with the Community Atmosphere Model, ver-
sion 6 (CAM6) as its atmospheric component21. The CESM2 subseasonal
prediction system includes fully coupled atmosphere, ocean, land, sea-ice,

Fig. 3 | Role of ENSO.Difference of 2mT ACC for Active and Neutral ENSO states
for the standardCESM2 reforecast set for (a)Weeks 1-2, (b) weeks 3-4, (c) weeks 5-6.
Active ENSO states are defined as those forecasts that are initialized when the
absolute value of SST anomalies averaged over the Nino 3.4 region are greater than
1 oC and neutral ENSO refers to absolute SST anomalies less than 0.5 oC at any time
of the year. Findings are very similar for other reforecast sets with realistic ocean
initialization (not shown). The white shading indicates regions not significantly
different from zero according to a t-test at the 95% confidence level.
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river, and wave models with approximate 1° horizontal resolution in all
components27. Standard CESM2 reforecasts are initialized weekly from
1999 to 2020. Reforecasts are 45 days long with an 11-member ensemble.
The atmosphere model is initialized using the National Centers for Envir-
onmental Prediction (NCEP) CFSv2 reanalysis28,29 interpolated to the
CAM6 grid. Land ICs for CESM2 reforecasts come from a stand-alone
Community Land Model, version 5 (CLM5) simulation forced by CFSv2
reanalysis21. Ocean and sea-ice ICs are obtained from a stand-alone ocean
sea-ice coupled configuration of CESM2 forced with the adjusted Japanese
55-year reanalysis product state fields and fluxes (JRA55-do forcing29).
Ensemble spread is generated using a random field perturbation
method21,30,31.

The realism of land model initialization has been verified by
comparing root zone soil moisture (0–0.5 m) forecast with the ERA5-
Land observation32(Supplementary Fig. 3). Snow-pack initialization,
which affects primarily high-latitudes in boreal winter was also com-
pared to observation. In agreement with other Earth system models
participating in phase 6 of the Coupled Model Intercomparison Pro-
ject, CESM2 overestimates the snow water equivalent in high-
latitudes33 however the seasonal cycle, location, and inter-annual
variability is in good agreement with the observations (Supplementary
Fig. 5). The sea surface temperatures (SSTs) from JRA55-do forced

ocean simulation used to initialize the reforecasts correlate very highly
with the Hadley Centre Sea Ice and Sea Surface Temperature dataset5

(HadISST34). Specifically, correlations between the simulation and
HadISST were found to be close to 1 over the majority of ocean basins,
with smaller values in the Arctic Ocean and near the maritime con-
tinent. JRA55-do forced ocean simulation also tracks the observed
ENSO index very closely21.

Subseasonal forecasting skill of key quantities was evaluated21 showing
that the CESM2 subseasonal prediction systemhas surface temperature and
precipitation skill comparable to the National Oceanic and Atmospheric
Administration (NOAA) CFSv2 model, but slightly lower than that of the
European Centre forMedium-RangeWeather Forecasts (ECMWF)model.
It was also shown that the MJO in CESM2 is predictable out to ~25 days, a
few days longer than in the NOAACFSv2 system, but slightly less than that
in the ECMWF system21. The CESM2 subseasonal prediction system
exhibits a small initialization shock during the first day of the forecast due to
the initialization methods and lack of data assimilation, which could con-
tribute to spurious results during the first few days of the forecast. Although
the CESM-based prediction systems do not use data assimilation in model
initialization, the subseasonal prediction skill is equal to or higher thanother
SubX models, several of which do use data assimilation, as shown for
CESM1-based system30.

Fig. 4 | Sources of subseasonal predictability ofprecipitation. 2mT (two left col-
umns) and precipitation (two right columns) ACC as a function of forecast lead time
for the standard reforecast set (black) and attributed contributions of ACC from the
atmosphere (yellow solid, AATM), land (green solid, ALND), and ocean (blue solid,
AOCN). Contributions from land-atmosphere coupling (green dotted, CLNDATM)
and ocean-atmosphere coupling (blue dotted, COCNATM) are also shown. Sum
(pinkish red) is the total of these components. Averages over global land are shown

in panels (a) and (e), Tropics (30oS - 30oN) in (b) and (f), Mid-latitudes (30oN - 60oN
and 30oS - 60oS) in (c) and (g), andHigh-Latitudes (60oN to 90oN and 60oS to 90oS) in
(d) and (h). Light gray shading highlights the weeks 3–4 forecast window. Note that
the first two weeks are missing from the labeled precipitation figures to highlight the
subseasonal window. The entire forecast period for precipitation is shown in the top
right panel for global land.
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Experiments
Wecarryout sevenadditional subseasonal reforecast sets following the same
reforecast protocol as for the standard reforecasts but with climatological
ICs for one or more of the model components as described in Table 1. For
example, the climoATM reforecast set uses climatological atmosphere ICs
in conjunction with land and ocean ICs from the standard set. Climatolo-
gical atmosphere ICs for every day of the year were created from the CFSv2
daily reanalysis for the time period from 1999 to 2020. Climatological ocean
ICs were created in a similar manner by averaging the daily ICs from the
default forecasts. Due to discontinuities in sea-ice from year to year, the
simple averaging procedure did not work for creating the sea-ice climatol-
ogy, hence 2010 conditions were chosen as a neutral year, in the middle of
the reforecast period, instead of climatology for sea-ice in the climoOCN
runs. To create land ICs,we spunupCLM5 in a stand-alonemode, forcedby
the NCEP CFSv2 atmospheric datasets from 1979 to 1984. This 6-year
segment was cycled 115 times until a quasi-equilibrium state was achieved.
Thus, this spin-up run was integrated for 690 years. To obtain the standard
land ICs, we started from the end of the spin-up run and integrated forward
from 1979 through 2020, using the standard NCEP CFSv2 atmospheric
datasets as the forcing. For the climatological land ICs,we again started from
the endof the spin-up runandperformedanadditional 210-year integration
using climatological annual-cycle NCEP CFSv2 atmospheric datasets
averaged for the 1979–2020period.At the end of this simulation,we verified
that a quasi-equilibrium climatological state was achieved for certain vari-
ables of interest, such as total leaf area index and soilmoisture. Thefinal state
of this simulation was then used as the climatological IC for land (e.g.,
Supplementary Fig. 3e).

Verification Datasets
The ECMWF Reanalysis v5 (ERA5) is used for 2mT verification to
include global ocean and land coverage. We use daily mean 2mT output
and interpolate it onto a 1ox 1o grid to match the post-processed format
of the CESM2 reforecast output. The Global Precipitation Climatology
Project (GPCP)35 dataset is used for precipitation verification, and it is
also interpolated. Calculations were repeated using the NOAA Climate
Prediction Center (CPC) Global Daily Temperature and Gauge-Based
Precipitation36 datasets, which yield very similar results over land.
Finally, we used ERA5-Land31 data for soil moisture and snow water
equivalent verification.

Calculations
Wecalculate globalACC for temperature andprecipitationusing anomalies
relative to a lead dependent climatology, following the methodology
described by ref. 19.We use the resulting ACC to define the prediction skill
for variousmodel components over different land regions. For time-varying
ACC figures (Fig. 4), ACC is calculated daily and subsequently averaged
over the globe and various latitude bands (over land only). For precipitation,
a 3-day moving average is applied to reduce noise.

By using ACC to define prediction skill in our reforecast sets, we can
also use it to deduce skill in individual components. In order to derive
contributions from the atmosphere, land, and ocean, we assume that the
ACC from the standard reforecast set is equal to a linear sum of ACC from
climatology (ClimALL), anomalies in the three model components (AATM,
ALND, and AOCN), and coupling between components (CLNDATM,
COCNATM, and CLNDOCN). By using climatological conditions for certain
model components in our experimental reforecast sets, we create ICs that
lack anomalies and coupling interactions between certain model compo-
nents. By calculating ACC in these various simulations, we can derive ACC
associated with individual components, and derive the coupling terms by
comparing the various simulations. We define coupling as interactions or
adjustments that take place between two components. Coupling will be
small whenmodel components are in balance and larger when they are not.
For example, land-atmosphere coupling (CLNDATM) will be small when the
atmosphere and land are both set to climatology, and it will be larger when
one is out of balance.

The ACC derived from the standard forecast is a combination of ACC
from climatology, anomalies, and coupling. Speaking in terms of ACC, we
can define:

standard ¼ ClimALL þ AATM þ ALND þ AOCN þ CLNDATM

þCOCNATM þ CLNDOCN

ð1Þ

where bolding indicates that the quantity is directly derived from a given
reforecast set. When climatological initial conditions are used for a single
component, that component’s anomaly term no longer contributes to the
ACC, and the ACC for those reforecasts sets comes from fewer terms:

climoATM¼ClimALL þ ALND þ AOCN þ CLNDATM þ COCNATM þ CLNDOCN

ð2Þ

climoLND¼ClimALL þ AATM þ AOCN þ CLNDATM þ COCNATM þ CLNDOCN

ð3Þ

climoOCN¼ClimALL þ AATM þ ALND þ CLNDATM þ COCNATM þ CLNDOCN

ð4Þ

The above assumes that the average coupling between the various
components does not change much between the reforecast sets. For
example, we expect the coupling between the atmosphere and land in the
standard reforecast set to be similar to the atmosphere and land coupling in
the climoATM reforecast set.

We can solve for the ACC associated with atmospheric anomalies
(AATM) by subtracting Eq. (2) from Eq. (1). We can also calculate the ACC
associated with land (ALND) and ocean (AOCN) anomalies in a similar
fashion, hence:

ðClimALL þ AATM þ ALND þ AOCN þ CLNDATM þ COCNATM þ CLNDOCNÞ
� ðClimALL þ ALND þ AOCN þ CLNDATM þ COCNATM þ CLNDOCNÞ ¼ AATM

ð5Þ

ðClimALL þ AATM þ ALND þ AOCN þ CLNDATM þ COCNATM þ CLNDOCNÞ
� ðClimALL þ AATM þ AOCN þ CLNDATM þ COCNATM þ CLNDOCNÞ ¼ ALND

ð6Þ

ðClimALL þ AATM þ ALND þ AOCN þ CLNDATM þ COCNATM þ CLNDOCNÞ
� ðClimALL þ AATM þ ALND þ CLNDATM þ COCNATM þ CLNDOCNÞ ¼ AOCN

ð7Þ

When climatological initial conditions are used for two components,
we assume their two anomaly terms are negligible, along with their shared
coupling term, and the ACC for those sets is as follows:

climoOCNclimoLND¼ClimALL þ AATM þ CLNDATM þ COCNATM ð8Þ

climoOCNclimoATM¼ClimALL þ ALND þ CLNDATM þ CLNDOCN ð9Þ

climoATMclimoLND¼ClimALL þ AOCN þ COCNATM þ CLNDOCN ð10Þ

The ACC from climatology (ClimALL) is derived from the climoALL
suite, or simply:

climoALL ¼ ClimALL ð11Þ

By subtracting Eq. (11) from Eqs. (8) through (10) we can deduce the
anomalies and coupling terms associated with each component:

ðClimALL þ AATM þ CLNDATM þ COCNATM

� ðClimALLÞ ¼ AATM þ CLNDATM þ COCNATM

ð12Þ
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ðClimALL þ ALND þ CLNDATM þ CLNDOCNÞ
� ðClimALLÞ ¼ ALND þ CLNDATM þ CLNDOCN

ð13Þ

ðClimALL þ AOCN þ COCNATM þ CLNDOCNÞ
� ðClimALLÞ ¼ AOCN þ COCNATM þ CLNDOCN

ð14Þ

Assuming that the land-ocean coupling (CLNDOCN) is nearly zero over
land, we can then use ALND and AOCN, (from Eqs. 6 and 7) to solve for
CLNDATM and COCNATM in the right-hand side of Eqs. (13) and (14),
respectively. If the linearity assumption holds, we should be able to arrive at
the standard ACC by adding the ACC from individual model components:

sum ¼ ClimALL þ AATM þ ALND þ AOCN þ CLNDATM þ COCNATM

ð15Þ
Figure 4 shows us that this assumption is valid.
In addition to ACC, we have calculated the Ranked Probability Skill

Score (RPSS) for all the simulations presented here. The changes in RPSS
between various simulation reflect the sane key findings of our study based
on the ACC calculations, and are not shown.

Data availability
GPCP data and the ERA5 Reanalysis are available freely from the NCAR/
UCAR Research Archive at https://rda.ucar.edu/datasets/. All CESM2
reforecast sets are available on the NCAR Climate Data Gateway at https://
doi.org/10.5065/0s63-m767.

Code availability
All CESM2 simulations were carried out with CESM tag: cesm2.1 which is
freely available from https://github.com/ESCOMP/CESM/tree/cesm2.1_
s2sfcst1.0.Calculationandplotting scripts are available fromhttps://doi.org/
10.5281/zenodo.7926660.
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