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Winter precipitation predictability in
Central Southwest Asia and its
representation in seasonal forecast
systems
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In Central Southwest Asia (CSWA; 22°N to 40°N and 30°E to 70°E), winter (November to February)
precipitation contributes up to 70% of the annual mean, but substantial interannual variations exist.
Dynamical models exhibit subpar predictability in this region, but the limits of their skills are not well
established. Here, we identify the tropical and extratropical forcings that explain ~75% of area-
averaged seasonal variability in CSWAwinter precipitation. Tropical forcing comes from the indirect El
Niño-Southern Oscillation (ENSO) pathway, the leading mode of tropical Indian Ocean precipitation
variability. Thismode is coupledwith ENSO-related PacificOcean sea surface temperature variability.
A direct ENSO influence onCSWAdoes not extend beyond its IndianOcean connection. Extratropical
forcing comes from a large-scale mode of internal atmospheric variability. The spatial structure,
variability of tropical forcing, and teleconnection with CSWAwinter precipitation are skillfully depicted
in two seasonal forecasting systems: the fifth-generation seasonal forecasting system (SEAS5) and
Seamless System for Prediction and Earth System Research (SPEAR). Extratropical forcing’s spatial
structure is also produced skillfully in the two modelling systems; however, the representation of its
interannual variability and teleconnection requires improvement. While SEAS5 displays skill in
representing extratropical forcing influence on CSWA winter precipitation and marginal skill in
reproducing interannual variability, SPEAR has negligible ability in both areas. Consequently, these
models have limited predictive skills over CSWA in winter. While improvements in representing
extratropical forcing may be inherently limited as it arises from internal atmospheric variability, further
research is needed to establish its predictability limits fully.

TheCentral and Southwest Asia (CSWA) region includes countries or parts
of countries in South,West, andCentralAsiawith arid to semi-arid climates.
Many countries within the CSWA are drought-prone andwater-stressed1–4,
as precipitation exhibits strong seasonality and substantial year-to-year
variability5–7. Most of the region except parts of the western Himalayas
receives the predominant fraction (up to 90%) of annual precipitation
during winter and spring (November to April; Supplementary Fig. 1),
known as the wet season. Extratropical weather systems or western

disturbances are the most effective synoptic-scale precipitation-producing
mechanisms that facilitate moisture transport from oceanic and terrestrial
evaporative sources during the wet season in this region8,9. A subtropical
westerly jet that spans northern Africa to East Asia facilitates themovement
of weather systems through the CSWA, and changes in its characteristics
influence precipitation distribution5,6,10–12.

Because of precipitation seasonality in CSWA and the high vulner-
ability of the region’s population to natural and forced climate
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variations7,9,12–16, significant scientific efforts have been carried out over the
past decades to understand the drivers ofwet seasonprecipitation variability
and change. Natural modes of variability influencing precipitation dis-
tribution in the region have been identified primarily by examining con-
nections between sea surface temperature (SST) variability in the tropical
Pacific, the El Niño-Southern Oscillation (ENSO), and the most prevalent
atmospheric variability pattern in the northern hemisphere, the North
Atlantic Oscillation (NAO). For most of the 21st century, studies have
suggested that both natural modes of variability have a positive tele-
connection with wet season precipitation in CSWA3,7,14,17. However, recent
studies demonstrate a lack of spatial robustness and sub-seasonal con-
sistency in their influences9,18–20.

According to Abid et al.18, ENSO influences CSWA precipitation
through two pathways. The direct pathway is via an eastward propagating
Rossby wave originating in the central Pacific. This influence lacks persis-
tence at the sub-seasonal scale and varies between positive to no influence.
The indirect pathway is via ENSO-induced precipitation anomalies in the
tropical IndianOcean, which generate a Rossbywave response in the higher
latitudes. This indirect influence is also positive and persists throughout the
season when analyzed on a monthly timescale. Mehmood et al.9 further
establish that the tropical IndianOcean’s influence via atmospheric diabatic
heating anomalies is among the strongest remote teleconnections over the
CSWA region at amonthly timescale. The authors also note that theNAO’s
influence on CSWA precipitation is inconsistent sub-seasonally and not
among the strongest. Instead, other modes representing the northern
hemisphere’s internal atmospheric variability, such as the East Atlantic
Mode (EAM) and East Atlantic West Russia pattern (EAWR), are more
substantial and sub-seasonally consistent contributors to precipitation
variability over CSWA. EAWR’s role in precipitation variability has also
been established by Rana et al.15 Mehmood et al.9 also highlights the
importance of tropical-extratropical interactions in the propagation of
tropical forcing over CSWA.

The understanding that tropical and extratropical modes of variability
contribute to year-to-year variations in precipitation over the CSWA
motivates investigation of how predictable these modes are at a seasonal
scale and how well their teleconnections are represented in state-of-the-art
seasonal forecasting systems. The accuracy or inaccuracy of models in
representing the interannual variability of these natural forcings and
describing their teleconnections with CSWA precipitation may provide
insight into the causes of seasonal prediction capabilities or shortcomings
over this region. Earlier studies focusing on sub-regions within CSWA
suggested a limited skill in predicting wet season precipitation14,21–27. Sea-
sonal forecasting systems are less confident in predicting interannual
variability of extratropical forcings than tropical forcings28–30 though some
promise has been noted in predicting NAO31 and EAM30. The extent to
which their lack of skill regarding CSWAwet season precipitation is caused
by their inherent limitations in representing extratropical climate variability
remains to be determined. Moreover, since previous investigations
regarding the potential predictability of precipitation over CSWA, the
Geophysical Fluid Dynamics Laboratory (GFDL) and the European Center
for Medium-Range Weather Forecasts (ECMWF) have developed new
next-generation seasonal prediction modelling systems32,33, Seamless Sys-
tem for Prediction and Earth System Research (SPEAR), and the fifth-
generation seasonal forecasting system (SEAS5).

Theseupdatedmodelling systems still need tobe evaluatedoverCSWA
for their effectiveness.

Using recent advancements in understanding CSWA winter pre-
cipitation variability and new seasonal prediction modelling systems, this
study aims to achieve two goals. The first goal is to develop a seasonal-scale
statistical model representing year-to-year CSWA precipitation variability
after minimizing the number of independent variables selected from the
natural modes of variability. We only focus on the winter months
(November to February) due to the inhomogeneity of dynamic and ther-
modynamic processes regulating precipitation-generating mechanisms in
winter and spring9. The second objective is to examine how the SPEAR and

SEAS5 seasonal prediction modelling systems represent the identified
sources of predictability of CSWA winter precipitation and how the
representation of these independent forcings affects their skillfulness over
the region.

Results and discussion
Dominant ENSO forcing
We use Empirical Orthogonal Function (EOF) analysis to examine SST
variability in the equatorial PacificOcean and precipitation variability in the
tropical Indian Ocean (see “Methods” section). In the Pacific Ocean
between 10°S to 10°N and 160°W to 80°E, the first EOF of winter SST
explains 83% (81%) of the variance in ERA5 (MERRA2) (Fig. 1a, Supple-
mentary Fig. 2). It exhibits a zonal maximum in the equatorial region and
representsENSO-relatedSSTvariability.There is ahighcorrelationbetween
the associatedPrincipalComponent of thefirst EOF (PC1) andall fourNiño
indexes (Fig. 1b, Supplementary Fig. 2). For this study, we preferred the
EOF-based ENSO index over the Niño indexes since it represents SST
variability in the entire equatorial Pacific region and helps address ENSO
diversity influencing its teleconnections. In the tropical Indian Ocean
between 10°S to 10°N and 40°E to 140°E, the first EOF of precipitation
accounts for 38% (36%) of the variance in ERA5 (MERRA2). There is a
semi-zonal dipole pattern with stronger (weaker) precipitation in the wes-
tern (eastern) tropical Indian Ocean. A tongue of wet anomalies extends
eastward into the equatorial Indian Ocean from the western Indian Ocean.
The associated PC1 time series highly correlates with the index defined by
Abid et al.18 using precipitation differences over the western and Indian
Ocean regions (Fig. 1c). The EOF-based precipitation index is preferred for
this study as it is less sensitive to the selection of boxes for defining the
precipitation dipole in the western and eastern Indian Oceans. We refer to
the EOF-based precipitation dipole in the tropical Indian Ocean as the
Indian Ocean Precipitation Dipole (IOPD) in the rest of the manuscript.

A high correlation (ERA5: 0.86, MERRA2: 0.87) exists between IOPD
andENSOon a seasonal scale. As previously noted, earlier studies described
IOPD as indirect ENSO forcing, resulting from anomalies in the Indian
Ocean’s Walker circulation branch. The ENSO-induced atmospheric
anomalies in theWalker circulation cause a precipitation anomaly dipole in
the tropical Indian Ocean with above- (below-) average precipitation in the
western (eastern) Indian Ocean during the positive ENSO phase and vice
versa. Theprecipitation response toENSO forcing leads to adiabatic heating
dipole in the atmosphere above the tropical Indian Ocean. A numerical
model experiment incorporating such diabatic anomalies produces Rossby
wave propagation in higher latitudes, influencing the precipitation dis-
tribution remotely over distant regions18.

The seasonal-scale correlation between IOPD and ENSO, shown in
this study, is farmore robust than themonthly correlation reported in earlier
studies9,18,34. The high correlation suggests that both direct and indirect
forcingsmaynotbenecessary toexplainENSO’s seasonal-scale influenceon
CSWA precipitation variability. We investigate this possibility in several
ways. First, we calculate the Pearson correlation between the CSWA pre-
cipitation index and tropical forcings (ENSO, IOPD) by analyzing their
interannual anomalies. Second, we perform the regression of CSWA pre-
cipitation anomalies onto ENSO and IOPD indexes to understand their
remote influences’ strength, direction, and spatial characteristics. Lastly, we
perform partial correlation analyses to examine the association of ENSO
forcing with CSWA precipitation while controlling for the IOPD effect and
vice versa.

We would like to briefly describe CSWA winter precipitation char-
acteristics before presenting the results of these analyses. The climatological
precipitation distribution over most high-elevation regions in CSWA is
about 5millimetres day−1 during winter (Fig. 2a, Supplementary Figs. 3–5).
These include thewesternHimalayas andKarakoram inPakistan, thePamir
Mountains in Tajikistan, and the Zagros Mountains in Iran. Other moun-
tain ranges with relatively high magnitudes of winter precipitation include
theHindukush inPakistan andAfghanistan.Winter precipitation in the rest
of theCSWAregion ranges from less than 1mmday−1 to~2mmday−1. The
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spatial distribution of interannual winter precipitation variability is gen-
erally proportional to seasonal averages (Fig. 2a and Supplementary
Figs. 3–5).

The CSWA precipitation index is well correlated with ENSO and
IOPD indexes at the seasonal level. It has a 0.62 (0.6) correlationwith ENSO
and a 0.7 (0.69) correlation with IOPD in ERA5 (MERRA2) (Fig. 2b,
Supplementary Fig. 4). The spatial patterns based on the regression of
CSWAprecipitation onto ENSO and IOPD indexes reveal a predominantly
positive influence of similar characteristics throughout the region. Both
regressions show statistically significant teleconnections over a broad zonal
area between the northern Arabian Peninsula (Iraq, Syria) and northern
Pakistan. Regression coefficients are more robust over mountain ranges in
Pakistan, Afghanistan, Tajikistan, and Iran, which receive relatively higher
winter precipitation (Fig. 2c and Supplementary Fig. 4). ENSO and IOPD
also exert a significant favourable influence over the central Arabian
Peninsula. In addition to these positive influences common to both forcings,
the IOPDalso exerts substantial positive effects on southern Iran and central
and west Pakistan. This influence is nonexistent in ENSO’s teleconnection.
Partial correlationanalyses further explain thedominanceof IOPD(indirect
ENSO) forcing over direct ENSO forcing in the case of CSWA winter
precipitation. While controlling for the ENSO effect, the linear relationship
between IOPD and CSWA precipitation remains statistically significant in
several parts of Pakistan, Afghanistan, and Iran. Themost notable exception
is Tajikistan, where IOPD’s significant positive influence becomes

insignificantly negative after controlling for ENSO’s effect (Fig. 2d, Sup-
plementary Fig. 4). When averaged over CSWA, the IOPD partial corre-
lation is 0.42 (0.41) in ERA5 (MERRA2).

Conversely, most ENSO teleconnection in the region becomes insig-
nificant positive or reverses to weak negative, leading to 0.05 (0.01) area-
averaged partial correlation in ERA5 (MERRA2). When taken together,
Pearson correlation, linear regression, and partial correlation analyses
suggest that the IOPD alone can best describe ENSO’s seasonal-scale tele-
connection with CSWA precipitation and that including direct ENSO for-
cingmay not uniquely account for its remote influence further. This point is
additionally supported by themultilinear regression analysis described later.

Extratropical forcings
Previous studieshavehighlighted the importance of extratropical forcings in
shaping precipitation variability in the CSWA region4,7,14,15,25,35. Various
modes of atmospheric variability in the northern hemisphere have been
identified as extratropical forcings, including the NAO, EAM, and EAWR.
The Climate Prediction Center (CPC) at National Oceanic and Atmo-
spheric Administration (NOAA) uses rotated EOF analyses on monthly
200-hPa geopotential height to distinguish these modes sub-seasonally36.
Consequently, the CPC-defined monthly indexes of these modes are, by
definition, uncorrelated. However, when averaged seasonally, these modes
can coexist and correlate, so it is not straightforward to identify their
independent teleconnections with CSWA precipitation. Moreover, tropical

Fig. 1 | Tropical forcing indexes. aThe first EOF patterns (EOF1) of the 1991–2022
winter (November to February) related to the Pacific Ocean SST (K) and the Indian
Ocean precipitation (mm day−1). b Standardized Nino indexes and PC time series of

Pacific Ocean SSTs EOF1. c Standardized precipitation-based index based on Abid
et al. (2020) and PC time series of Indian Ocean precipitation EOF1. The results are
based on ERA5 reanalysis.
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forcings, such as ENSO and IOPD, can also project onto these modes to
remotely influence distant regions9,37,38.

Therefore, to identify the most relevant seasonal-scale atmospheric
variability pattern related to the CSWA precipitation, we perform EOF
analyses on 200-hPa geopotential height anomalies over a region between
20°W to 150°E and 20°N to 70°N after linearly removing the influence of
ENSO and IOPD from geopotential height. The first three EOFs (Supple-
mentary Fig. 4) pass the North’s uniqueness test and explain ~60% of the
residual variance in ERA5 and MERRA2. However, only the second EOF
(EOF2) is significantly related to CSWA winter precipitation variability,
which represents 19.3% (18.5%) of variance in ERA5 (MERRA2). The PC
time series associatedwith EOF2 (PC2) displays a 0.51 (0.5) correlationwith
the CSWA precipitation index in ERA5 (MERRA2). The corresponding
correlation of PC2 with the residual CSWA precipitation index after
removing IOPD influence is 0.71 (0.69).

The spatial pattern in EOF2 consists of a high over the eastern Atlantic
Ocean/western Europe and a zonally elongated trough at the subtropical
latitudes spanning the CSWA region. The pattern also exhibits a relatively
weak high over Mongolia and Siberia. This atmospheric pattern closely
resembles several named Northern Hemisphere atmospheric modes. This
point is explained by regressing the geopotential height anomalies onto the
CPC indexes after linearly removing tropical forcings from both, then cal-
culating the correlation betweenEOF2 and the regressedpatterns. Themost
prominent is the negative EAMpattern, which exhibits a pattern correlation

of 0.85 (0.88) inERA5 (MERRA2) (Fig. 3b, SupplementaryFigs. 7, 8).Ahigh
temporal correlation exists between the EAM index andPC2 (ERA5:−0.59,
MERRA2: −0.58). A significant association has also been found between
EOF2 and EAWR and polar Eurasian (POL/EUR) patterns. The pattern
correlation between EOF2 and EAWR (POL/EUR) is 0.74 and 0.76 (0.79
and 0.75) in ERA5 and MERRA2, respectively (Supplementary Figs. 5, 6).
The temporal correlation between the EAWR index and PC2 is 0.43 (0.5) in
ERA5 (MERRA2), while that between POL/EUR and PC2 is 0.44 (0.43).
These comparisons suggest that the EOF2 of the 200-hPa geopotential
height predominantly represents those modes of atmospheric variability in
the northern hemisphere that shape interannual precipitation variability
over CSWA in winter. After linearly removing tropical forcing from their
indexes, EAM, EAWR, POL/EUR also exhibit significant but weaker than
IOPD correlation with the CSWA precipitation index in ERA5 (EAM=
−0.47; EAWR= 0.30; POL/EUR = 0.41) and MERRA2 (EAM=−0.44;
EAWR= 0.39; POL/EUR = 0.42).

The influence of some of these extratropical forcings on CSWA
precipitation at seasonal and sub-seasonal scales has also been reported in
earlier studies9,15. For example, Mehmood et al.9 found that the EAM had
the most substantial negative impact on monthly CSWA winter pre-
cipitation. Additionally,Mehmood et al.9 and Rana et al.15 demonstrated a
positive influence of EAWR on a monthly and seasonal basis. Therefore,
we assume that a multilinear regression model representing tropical
(IOPD) and extratropical forcing (PC2 of 200-hPa geopotential height)

Fig. 2 | CSWA precipitation and tropical teleconnections. aAverage precipitation
(color;mmday−1) and standard deviation (contour;mmday−1). b Standardized time
series of CSWA precipitation, ENSO, and IOPD. c Regression of CSWA

precipitation (mm day−1) onto standardized ENSO and IOPD Indices. d Partial
correlation of ENSO and IOPD with CSWA precipitation. Stippling indicates sig-
nificance at the 95% confidence level.
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forcings should explain a substantial part of CSWA precipitation varia-
bility in winter.

Multilinear regression analysis
Weconstruct amultilinear regressionmodel using IOPD (tropical) andPC2
of 200-hPa geopotential height (extratropical) as independent forcings and
CSWAprecipitation as a dependent variable. Given that IOPD and PC2 are
independent, the partial regression coefficient describing IOPD influence
(Fig. 4, SupplementaryFig. 8) is similar to that shown inFig. 2b. Extratropical
forcing influence is significantly positive over northern and southwest
Pakistan, Tajikistan, Afghanistan, and parts of Iran. Limited extratropical
influence is also present in parts of the Arabian Peninsula, consistent with
earlier studies3,8,39,40. In addition to regression coefficients,we alsoprovide the
correlation between precipitation and the two forcings over CSWA

(Supplementary Fig. 10), which shows a predominantly positive influence of
extratropical forcing across CSWA except in the northern Arabian Penin-
sula, where it is insignificantly negative. Spatially, the combined effect of
tropical and extratropical forcings explains up to 75% of precipitation var-
iance over CSWA in winter, with the strongest magnitude of the coefficient
of determination (r-squared) over northeast Iran, southern Turkmenistan,
and Afghanistan (Fig. 4, Supplementary Fig. 9). The r-squared values in
southeastern Pakistan, central Iran, and the western Arabian Peninsula are
negligible due to low precipitation magnitudes and variability.

The regression model accurately represents most of the interannual
variability of spatially averaged CSWA winter precipitation. This is parti-
cularly true in exceptionally dry (1996, 1998, 2017) and wet (1997, 2004,
2018) years. The spatially averaged precipitation using the regressionmodel
represents 75% (72%) of ERA5 (MERRA2) precipitation variability.

a)a) b)b)

Fig. 3 | CSWA-relevant extratropical forcing. a The second EOF of 200-hPa geopotential height after linearly removing ENSO and IOPD influences. b The regression of
200-hPa geopotential height onto the negative East Atlantic Mode.

Fig. 4 | Multilinear regression analyses. a Partial regression coefficients of IOPD
and PC2. Stippling indicates significance at the 95% confidence level. b the coeffi-
cient of determination (r-squared) based on the multilinear model. Stippling

indicates the statistical significance of the F-test (p < 0.05). c Area-averaged pre-
cipitation time series in ERA5, CRU, CPC, and regression model. The results are
based on ERA5 reanalysis and r-squared values are available in the legend.
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Interestingly, the addition of ENSO direct forcing as an independent vari-
able in the regression model does not add much to the explained variance
(<1%; Supplementary Fig. 11). The lack of significant influence of direct
ENSO forcing in the presence of IOPDis consistentwith our earlierfindings
that seasonal ENSO’s influence overCSWAduringwinter is predominantly
mediated by its indirect pathway through the Indian Ocean. While we use
reanalyzed (ERA5 and MERRA2) precipitation as our primary reference
datasets, interannual precipitation variability has also been shown based on
CRU and CPC data. The spatially averaged reanalyzed precipitation data
(ERA5 andMERRA2) correspond well with grid-based observations (CRU
and CPC). The correlation coefficient exceeds 0.93 in all cases.

Our analysis establishes that combining identified tropical and extra-
tropical forcings can explain three-fourths of area-averaged winter pre-
cipitation variability over the CSWA region. Therefore, representing these
forcings in seasonal forecasting systems would be imperative for reliably
predicting winter precipitation in this region.With this knowledge, we now

analyzeGFDL andECMWFseasonal prediction systems to investigate their
skillfulness over the CSWA region and its linkage to accuracy in repre-
senting identified tropical and extratropical forcings.

Tropical and extratropical forcings in SEAS5 and SPEAR
As a next step, we explore the representation of tropical and extratropical
forcings in SEAS533 and SPEAR32, and their relationship to seasonal pre-
dictability of winter precipitation over CSWA. The ensemble mean of
precipitation in both modelling systems reasonably captures elevation-
driven magnitude heterogeneity (Fig. 5a). However, winter precipitation
over northernPakistan, Tajikistan, Turkmenistan, Afghanistan, and eastern
Iran is relatively lower in SEAS5 than SPEAR and two reanalyses. Fur-
thermore, SEAS5 exhibits less interannual precipitation variability than
SPEAR and reanalyses for most of these regions, while SPEAR exhibits
substantially higher variability over Afghanistan and northwestern CSWA
than reanalyses (Fig. 5a).

Fig. 5 | CSWA precipitation and tropical teleconnections in SEAS5 and SPEAR.
a Average precipitation (color;mm day−1) and standard deviation (contour; mm
day−1). Standard deviation is defined as the mean standard deviation of all model
members. b Standardized IOPD index in SEAS5 (blue) and SPEAR (red), ERA5
(black), and MERRA2 (grey). Light colour lines represent individual ensemble

members in SEAS5 and SPEAR. The correlation numbers are based on ERA5.
c CSWA Precipitation (mm day−1) onto the standardized IOPD index after con-
catenating ensemble members. Stippling indicates statistical significance at the 95%
confidence level.
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The two modelling systems represent the first mode of SST variability
in the equatorial Pacific Ocean, precipitation variability in the tropical
Indian Ocean (Fig. 5b), and IOPD and ENSO interannual variability
exceptionallywell (Fig. 5b, Supplementary Fig. 12). The correlation between
reanalyses and models’ ensemble mean ENSO indexes is 0.95 or greater
(Supplementary Fig. 12). SEAS5 IOPD also exhibits an exceptionally high
correlation with reanalyses-based IOPD indexes (ERA5: 0.93, MERRA2:
0.89). The SPEAR IOPD index correlation is also high with reanalyses but
slightly weaker than SEAS5 (ERA5: 0.82, MERRA2: 0.80). Relatively lower
correlations between the SEAS5/SPEAR ensemble mean and ERA5/
MERRA2 reanalyses in the case of IOPD than ENSO are understandable as
the IOPD index is based on precipitation whereas the ENSO index is based
on SST. Precipitation anomalies, in general, are spatiotemporally more
variable than SSTs, and therefore, it ismore challenging to represent them in
model simulation with very high accuracy.

The regression ofCSWAprecipitation anomalies onto the IOPD index
based on the concatenated ensemble data in SEAS5 and SPEAR yields
widespread positive influence consistent with reanalyses (Fig. 5c). However,
the magnitude of the SPEAR regression coefficient is substantially higher
than SEAS5, especially over mountainous regions in Pakistan, Afghanistan,
and Iran. The higher magnitudes over the Zagros mountains in Iran and
Iraq are comparable with those in reanalyses (Fig. 2c), while those in
Afghanistan and northern Pakistan are stronger. Compared to the

reanalyses, SPEAR exhibits higher precipitation variability, contributing to
its stronger IOPD and CSWA precipitation relationship. Conversely,
compared to the reanalyses, seasonal precipitation magnitude and varia-
bility are lower in SEAS5. As a result, the regression coefficient describing
the IOPD and CSWA relationship in SEAS5 is less strong. These results are
consistent if regression is performed on the ensemble mean rather than the
concatenated ensemble data (Supplementary Fig. 13).

While tropical forcing is accurately reproduced in both seasonal
modelling systems, extratropical forcing relevant to CSWA winter pre-
cipitation variability needs improvements in representation (Fig. 6, Sup-
plementary Fig. 14). To highlight this point, EOF analyses are conducted for
the concatenated ensemble of SEAS5 and SPEAR, using the same criteria as
for reanalyses, i.e., both ENSO and IOPD influences are linearly removed
from each ensemble member individually before concatenation and EOF
analyses on 200-hPa geopotential height over a domain between
20°W–150°E longitudes and 20°N–70°N latitudes. The CSWA-relevant
EOF pattern inmodels and reanalyses is similar, except that it is the second
EOF in Fi inmodels (Fig. 6, Supplementary Fig. 14). The pattern correlation
between ERA5 EOF2 and SEAS5 (SPEAR) EOF3 is 0.83 (0.85). The
respective correlations are slightly higher at 0.85 (0.88) betweenmodels and
MERRA2.However, the zonally elongated troughacrossCSWAisweaker in
SPEAR’s EOF3. Relatively lower pattern correlations are exhibited for other
corresponding EOFs in ERA5 and models (Supplementary Fig. 14).

Fig. 6 | Extratropical forcing in SEAS5 and SPEAR. a The second EOF of 200 hPa
geopotential height of concatenated model data after linearly removing ENSO and
IOPD influences (b) Standardized EOF3 PC in SEAS5 (blue) and SPEAR (red), with
EOF2 PC in ERA5 (black), and MERRA2 (grey). Light colour circles represent

individual ensemble members in SEAS5 and SPEAR. The correlation numbers are
based on ERA5 (c) Regression of CSWA precipitation (mm day−1) onto EOF3
indices.
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Unfortunately, while the model-based EOF3 has a strong spatial cor-
respondence with the reanalyses-based EOF2, the seasonal prediction of the
corresponding PCs (Fig. 6b) lacks substantial skill. The correlation skill in
SEAS ismarginally significantbut low(r = 0.35),whereas the skill inSPEARis
statistically insignificant (r = 0.19). The correlation of SEAS5 PC3 with the
CSWA precipitation index is also statistically significant (0.34) but weaker
than the corresponding correlations in reanalyses (~0.5). SPEAR PC3 does
not significantly correlatewith theCSWAprecipitation index.A regressionof
CSWA precipitation onto concatenated PC3 in SEAS5 shows a widespread
statistically significant impact on CSWA precipitation variability. This is
associatedwith strongregressioncoefficients innorthernPakistan,Tajikistan,
Afghanistan, and the Zagros mountains in Iran. Though weaker, the SEAS5
regression pattern matches reasonably well with those in the reanalyses (Fig.
6c). SPEAR, on the other hand, mostly shows negligible influence. Together,
these results highlight a lack of skill in representing extratropical forcing,
particularly in SPEAR, which should limit winter precipitation predictability
over the CSWA region in these seasonal forecasting systems.

The insignificant (SPEAR) or marginally significant (SEAS5) skill in
predicting the CSWA-relevant atmospheric mode (Fig. 6) indicates either
substantial biases in the seasonal prediction systems or that most of the
seasonal variability of these modes can be attributed to seasonally unpre-
dictable atmospheric noise. Previous studies suggest that the spatial struc-
ture of such extratropical modes can be robustly represented in model
simulations, such as SEAS5 and SPEAR, but their seasonal evolution is often
unpredictable on interannual timescales41. Dynamical models demonstrate
some skill in the seasonal predictability of NAO, the leading mode of
atmospheric variability in the northern hemisphere31. When relevant
sources of predictability are identified, empirical models are even better at
predicting seasonal NAO evolution42. The CSWA-relevant atmospheric
mode, however, is closely related to less prevalent atmosphericmodes in the
northern hemisphere. Therefore, the seasonal predictability of such modes
and determining their sources of predictability is more challenging.

However, there is evidence that IOPD-based tropical forcing can be
predictedwell in advance (Fig. 5b). Recent studies suggest thatOctober IOD
and contemporaneous ENSO can affect precipitation variability in the
western Indian Ocean during early winter43. To understand this phenom-
enonmore deeply, we analyze the association of bi-monthly IOPDwith the
October pre-conditioning of IOD and ENSO. In October, ENSO and IOD
are strongly correlated (ERA5 = 0.67; MERRA2 = 0.62).

Consequently, we have conducted partial correlation analyses in
addition to Pearson correlations to determine their combined and inde-
pendent roles in IOPD variability (Fig. 7). As the season progresses, the
correlation between IOD (ENSO) and IOPD decreases (increases) without
controlling for ENSO (IOD). The October IOD correlation with winter
IOPD declines sharply after we control for ENSO, from a very strong
(ERA5 = 0.85; MERRA2 = 0.75) in October-November to insignificant in
the late winter (<0.2; January-February; Fig. 7a). In contrast, after control-
ling for IOD,OctoberENSOcorrelationwithwinter IOPDsharply increases
from ~0.4 in October-November to >0.6 in January-February (Fig. 7b). By
analyzing the monthly EOF pattern that defines IOPD, we can explain the
weakening correlation with October IOD and a strengthening correlation
with October ENSO. As the winter progresses, precipitation in the western
IndianOceanweakens (Supplementary Fig. 15), which correlatesmorewith
IOD43.Hence, IOD loses its influence over IOPD.On the other hand, ENSO
strongly correlates with IOPD and eastern IO precipitation. Due to this, it
maintains its correlation strength. SEAS5 and SPEAR represent this fun-
damental characteristic of October IOD and ENSO pre-conditioning on
IOPD though their associations are overly strong in SEAS5, whereas
ENSO’s association remains relatively unchanged in SPEAR.

Predictability of CSWA precipitation in SEAS5 and SPEAR
Based on prediction skill, potential predictability, and their ratio (see
“Methods” section),we analyzeCSWAwinter precipitationpredictability in
models (Fig. 8, Supplementary Fig. 16). SPEARhas amuch higher potential
predictability than SEAS5 (Fig. 8a). There are only a few regions of SEAS5
that show statistically significant potential predictability, such as Afghani-
stan, parts of Tajikistan, Turkmenistan, and the Zagros mountains in Iran.
SPEAR,on theotherhand, exhibits significantpotential predictability across
all regions. There is a lower ratio (<1; red; Fig. 8c, Supplementary Fig. 16) of
prediction skill to potential practicability in northern Pakistan, Tajikistan,
the Arabian Peninsula, and northwestern Central Asia. In these regions, the
ensembles of the models strongly agree with each other, indicating over-
confidence. Bothmodels show areas of under-confidence (ratio >1; blue) in
parts of the northern Arabian Peninsula (Iraq, Syria) and Turkmenistan.
Additionally, SEAS5 has low confidence in parts of Afghanistan and Iran.
These results indicate that model-based potential predictability estimates in
SEAS5may not represent true predictability, suggesting that CSWAwinter
precipitation may be more predictable44,45.

a)a) b)b)

Fig. 7 | IOPD, IOD, and ENSO Correlation. a The correlation of the October IOD
in ERA5 (black), MERRA2 (grey), SEAS5 (blue), and SPEAR (red) with overlapping
two-month IOPD between October and March. Dashed lines represent partial

correlations controlled for October ENSO values. b same as (a) but for ENSO values.
Dashed lines represent partial correlations controlled for IOD values.
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The interannual variability of CSWA winter precipitation in SEAS5,
SPEAR, reanalysis (ERA5,MERRA2), regressionmodel, and observations
(CRU, CPC) is shown in Fig. 9a. This figure adds SPEAR and SEAS5
results, and their mean, to those already shown in Fig. 4 and Supple-
mentary Fig. 7. Hollow circles represent individual ensemble members.
Seasonal forecasting systems are less capable of capturing area-averaged
interannual winter precipitation variability over CSWA than regression
models. The low skill in themodels can be explained based on the analyses
presented so far in this study. The regressionmodel considers the effects of
tropical (ENSO) and extratropical (internal atmospheric variability) for-
cings on CSWA precipitation. Almost half of the variability in area-
averaged CSWA winter precipitation can be attributed to IOPD (indirect
ENSO) forcing. Extratropical influences explain a further 50% of the
remaining half. Tropical forcing is quite accurately represented in SPEAR
and SEAS5, but extratropical forcing is not. The atmospheric mode in the
northern hemisphere (EOF2 in reanalyses) that influences CSWA pre-
cipitation variability is present in models but exhibits interannual varia-
bility inconsistent with that observed in reanalyses (Figs. 4a, 6c,
Supplementary Fig. 9). Therefore, a lack of skill in simulating its correct
interannual variability limits its potential role in improving the predict-
ability of CSWA precipitation in models. In fact, it may be possible that
misaligned interannual variability of extratropical forcing is responsible
for reducing the ENSO-driven predictability of CSWA precipitation in
these modelling systems.

It should be noted that SEAS5 performs slightly better in predicting
CSWA precipitation in ERA5/MERRA2 (R2 = 0.63/0.60) than SPEAR
(R2 = 0.60/0.56), owing to its relatively better representation of interannual
variability of extratropical forcing. However, the unequal size of ensembles
(SEAS = 25; SPEAR = 15) may affect correlations between ensemble mean
and reanalysis. Therefore, to rule out this possibility, we examine the impact
of ensemble size on correlations through bootstrapping in which 15
ensemble members of SEAS5 are randomly selected 1000 times (Fig. 9b),
and the resultant ensemble mean is compared with results from reanalyses
and observations. According to the histogram generated by this analysis,
SEAS5 remains slightly superior to SPEAR. Hence, the ensemble size in the
two modelling systems does not affect these results. Nonetheless, it is rea-
sonable to assume that a large portion of CSWA winter precipitation is
inherently less predictable in dynamical models since at least 25% of the
variability comes from less prevalent internal atmospheric variability or
atmospheric noise.

We have identified two key modes of natural variability that explain
three-fourths of area-averaged winter precipitation variability in the CSWA
region. The dominant teleconnection comes from the dipole of atmospheric
diabatic heating anomalies in the Indian Ocean as an indirect ENSO
influence. ENSO-induced changes in theWalker circulation cause opposite
precipitation anomalies in the western and eastern Indian oceans. These
anomalies constitute the first EOF pattern of precipitation variability in the
tropical Indian Ocean and explain ~38% of the variance. Together, these

Fig. 8 | Predictability measures in SEAS5 and SPEAR. a Potential predictability in
(left) SPEAR and (right) SEAS5. b Prediction skill calculated as anomaly correlation
between the SEAS5 and SPEAR ensemble mean and ERA5. Stippling indicates

statistical significance at the 95% confidence level. c The ratio of (b divided by a). In
all panels, areas where the ERA5 mean precipitation is less than 0.2 mm day−1 are
masked.
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anomalies induce a Rossby wave response in higher latitudes, providing a
mechanism to influence precipitation variability in extratropical
regions9,18,46. Over the CSWA region, the teleconnection is widespread,
significantly positive, and accounts for ~50% of the area-averaged pre-
cipitation variability in winter on a seasonal scale.

The second forcing influencing winter precipitation variability in the
CSWA region is a large-scale climate mode primarily arising from internal
atmospheric variability in the northern hemisphere. The CSWA-relevant
atmospheric mode is depicted in the second EOF pattern of upper-
atmosphere geopotential in ERA5 and MERRA2 reanalysis data over a
broad region covering the East Atlantic toCentral Pacific between20°N and
70°N. At the seasonal scale, this pattern predominantly represents the
negative phase of EAM but also resembles positive EAWR and POL/EUR
patterns. It shows a trough zonally spanning throughCSWA, facilitating the

movement of extratropical systems in the region. This EOFmode in upper-
atmosphere geopotential height fields persists after ENSO forcing removal
and should be considered an independent mechanism related to internal
atmospheric variability in the northern hemisphere. Its influence on area-
averaged CSWA winter precipitation accounts for ~50% of the remaining
unexplained variance.

ENSO-driven tropical forcing is well represented in seasonal fore-
casting systems, SEAS5 and SPEAR. The models not only produce the
modes of SST variability in the equatorial Pacific (direct ENSO forcing) and
precipitation variability in the Indian Ocean (indirect ENSO forcing) but
also exhibit exceptional skill in representing their interannual variability.
Both positively influence CSWA precipitation, consistent with reanalyses.
On the other hand, CSWA-relevant extratropical forcing requires
improvement. Its spatial pattern is represented reasonably well in both

a)a)

b)b)

Fig. 9 | CSWA precipitation in SEAS5 and SPEAR. a Time series of area-average
CSWA winter precipitation in reanalysis (ERA5, MERRA2), observations (CRU,
CPC), reanalyses-based regression model, and models’ ensemble mean (SEAS5,
SPEAR, model mean). Each ensemble member in SEAS5 and SPEAR is shown as a

hollow circle. Models’ correlations with reanalyses and observations are shown.
b Correlation histogram of 1000 instances of randomly chosen 15 of 25 ensemble
members from SEAS5 with observations and reanalyses. Lines are made using a
Gaussian KDE. Vertical lines indicate the correlation in SPEAR.

https://doi.org/10.1038/s41612-024-00594-5 Article

npj Climate and Atmospheric Science |            (2024) 7:80 10



modelling systems. However, while SEAS5 accurately represents its inter-
annual variability and teleconnection over theCSWAregion, SPEAR fails to
do so.Given that theCSWA-relevant extratropicalmode represents internal
atmospheric variability or atmospheric noise, its year-to-year evolution at a
seasonal scale may be inherently limited. Further investigation using other
seasonal forecasting systems is necessary to understand these limitations
related to the predictability of internal atmospheric variability.

Methods
Data
This study uses two reanalysis datasets: the ECMWF fifth-generation rea-
nalysis (ERA5)47 and NASA’s Modern-Era Retrospective Analysis for
Research and Applications Version 2 (MERRA2)48. The use of multiple
datasets helps ensure the robustness of key findings. Each dataset provides
sea surface temperature (SST), 200-hPa geopotential height, and pre-
cipitation variables. Moreover, we use precipitation observations from
Climate Research Unit (CRU) version 4.0749 and the Climate Prediction
Center Global Unified Gauge-Based Analysis of Daily Precipita-
tion (CPC)50.

Hindcast data from two seasonal forecasting systems, the ECMWF
fifth-generation seasonal forecast system (SEAS5)33 and the GFDL’s
Seamless System for Prediction and Earth Systems Research (SPEAR)32, are
analyzed for their skillfulness over theCSWAregion.Weuse data fromone-
month lead simulations, initialized in October each year, and evaluate the
mean of SST, 200-hPa geopotential height, and precipitation for the winter
months (November to February). SPEAR data includes a 15-member
ensemble from 1991 to 2019 and a 30-member ensemble from 2020
onwards. However, for consistency, we use the first 15 members. Similarly,
SEAS5 data includes a 25-member ensemble for the period before 2017 and
a 51-member ensemble from 2017 onwards, but for consistency, we restrict
our analyses to the first 25 members.

The analyses cover November through February from 1991 to 2022.
This is the only period when all reanalyses, observations, and seasonal
forecasting systems have overlapping data. Note that a mid-1980s shift in
tropical forcing teleconnectionover theCSWAregionwas reported in recent
studies15,51. Therefore, using a period after the reported shift also ensures that
conclusions are less sensitive to the choice of the analysis period. All datasets
are remapped to 1° × 1° grid spacing using bilinear interpolation. All ana-
lyses are carried out after removing the linear trend from each data and each
ensemble member. Detrending removes large data trends, such as those
driven by increasing global temperatures, that may obscure other factors
contributing to precipitation variability and changing cyclical patterns.

Indexes
The CSWA region is defined as the land area between 22°N to 40°N and
30°E to 70°E. We apply a land/sea mask using the North American Space
Administration’s (NASA) integrated multi-satellite retrieval for the GPM
dataset52 and define land as any grid cell under 25% water. An area average
over this region defines the CSWA precipitation index.

To define tropical and extratropical forcing that influence CSWA
precipitation, we use Empirical Orthogonal Function (EOF) analysis. Tro-
pical forcing includes indexes representing SST variability in the equatorial
Pacific and precipitation variability in the tropical Indian Ocean. ENSO
diversity impacts its teleconnection with remote regions. Therefore, instead
of selecting one of the four Niño indexes, we define the ENSO index as the
principal component (PC) of the first EOF of SSTs in the Pacific covering
160°E to 80°W and 10°S to 10°N. The first EOF explains 82.7% (MERRA2:
81.5%) of the SST variability in the selected area in the Pacific Ocean and
closely relates to all four Niño indexes of ENSO (Fig. 1, Supplementary Fig.
2). Precipitation variability in the tropical Indian Ocean during winter is
closely associated with ENSO variability in the Pacific Ocean. It exhibits a
dipole pattern in the western and eastern Indian Oceans. In earlier
studies9,18, the Indian Ocean winter precipitation variability index was cal-
culated using two rectangle boxes in the western and eastern Indian
oceans18. In this study, we define this index as the PC of the first EOF of

precipitation from 40°E to 140°E and 10°S to 10°N. The EOF-based index
over a broad region avoids sensitivity to area choice for rectangle boxes. The
EOF-based precipitation index closely relates to the index used in earlier
studies9,18 (Fig. 1c, Supplementary Fig. 1).

The extratropical forcing is identified by EOF analyses of 200-hPa
geopotential height, covering 20°Wto150°E and20°N to70°N, after linearly
removing tropical forcings (ENSO and IOPD) and correlating PCs to
CSWAprecipitation index to find themost relevantmode.We find that the
second EOF (EOF2) represents the CSWA-relevant extratropical forcing in
reanalyses, and therefore, its PC represents the extratropical forcing index.

The selected domain for EOF analyses generally covers the CSWA and
surrounding regions, where atmospheric variability is expected to have the
strongest influence on the CSWA precipitation distribution in winter.
However, it is important to remember that domain choice may influence
how the EOF analysis turns out. Therefore, in addition to our preferred
choice of domain for EOF analyses, we also conduct these analyses using a
domain that covers the entire NorthernHemisphere, a domain smaller than
the selected region, and a domain larger than the selected region to test for
sensitivity of theEOFs to thedomain choice.Aclose resemblance is observed
between the temporal variability of thePCs corresponding toEOF2across all
domains (Supplementary Fig. 17), indicating that the identified extratropical
variability pattern is not sensitive to the domain choice.

There is also the possibility that only removingENSOand IOPDcannot
fully eliminate the tropical influence on atmospheric variability since these
factors do not include variations in SSTs in the Atlantic and Indian Oceans,
whichmay also influence atmospheric variability in the region of interest.We
therefore investigate this issue following Hu et al.53 (hereafter H22), which
defines tropical forcing as the first six EOFs of tropical SSTs. Due to the weak
coupling between IOPD and SSTs in the Indian Ocean in winter, we also
remove IOPD from 200-hPa geopotential height after linearly removing
tropical forcing defined by H22. The comparison of EOFs obtained after
removing tropical forcing from the geopotential height using the original
methodology (ENSO and IOPD), H22 alone, and H22 and IOPD combined
suggests a negligible effect of Atlantic and Indian SST variability on the
atmospheric modes of variability in this region (Supplementary Fig. 18). A
correlation of 0.87 exists between the PCs of EOF2 in the original approach
and the one followingH22,which increases to 0.94when the IOPD influence
is removed afterH22. EOF1PC in revised approaches also compares strongly
with the original method (0.88 and 0.86, respectively).

Based on the above findings, we only consider ENSO and IOPD
influenceswhen performing EOFanalyses on simulated geopotential height
data from SEAS5 and SPEAR. In the case of SEAS5 and SPEAR, EOF
analyses are performedon the concatenateddata, resulting in 465 (775) time
steps in SPEAR (SEAS5). The CSWA-relevant extratropical forcing is
represented by the third EOF (EOF3) in both models.

Analyses
We compare the EOF2 pattern in reanalyses with the northern hemisphere
atmospheric modes defined by the Climate Prediction Center36 (https://ftp.
cpc.ncep.noaa.gov/wd52dg/data/indices/tele_index.nh). For this purpose,
we regress 200-hPa geopotential height anomalies onto the CPC indexes
after linearly removing tropical forcings from both, then calculate the cor-
relation between EOF2 and the regressed patterns. Pattern correlation
between reanalyses-based EOF2 and models-based EOFs identifies the
comparableEOFpattern inSPEARandSEAS5.To compare the interannual
variability of extratropical mode between reanalyses andmodels, PC values
corresponding to individual ensemble members are used to calculate the
ensemble average for a given year.

We investigate the influences of tropical and extratropical forcings by
performing linear and multiple linear regression of CSWA precipitation
onto their indexes. For SPEAR and SEAS5 analyses, these regressions are
performedusing the ensemblemean and concatenated ensemble. All results
are tested for significance at 95% confidence using a two-sided Student t-
test. Additionally, the F-test determines the importance of each explanatory
variable in the regression model.
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Wedetermine the potential predictability as the square root of the ratio
of signal variance (the year-to-year variance of ensemblemean precipitation
at any given point) divided by the sum of signal variance and noise variance
(the variance of each ensemble member over the full timeframe of the
model)45,54. This provides an estimate of the limit of predictability of the
model basedon thenoise providedby the ensemblemembers.Wedefine the
prediction skill as the anomaly correlation between the ensemble mean of
precipitation at any given point and our reanalysis data. A higher (lower)
prediction skill than the potential predictability indicates an underconfident
(overconfident) model44,45.

SEAS5 and SPEAR have unequal ensemble sizes (25 and 15, respec-
tively) that may influence their ensemble mean correlations with CSWA
precipitation. We investigate this sensitivity by randomly selecting 15
members from SEAS5 and using their ensemble mean in correlation ana-
lyses. The process is repeated 1000 times and results are presented in a
histogram smoothed with a Gaussian kernel.

Data availability
All datasets used in this analysis are publicly available. The ERA5 reanalysis
and SEAS5 model data are available from the Copernicus Climate Change
Service (C3S) Climate Date Store (https://cds.climate.copernicus.eu/).
MERRA2 reanalysis data are available from NASA Data and Information
Services System (https://disc.gsfc.nasa.gov/datasets?project=MERRA-2).
SPEAR data is available from the North American Multi-model Ensemble
archive (http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/.
GFDL-SPEAR/). CPC Data is available from NOAA’s Physical Sciences
Laboratory (https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html).
CRUData is available from the climactic research unit (https://crudata.uea.
ac.uk/cru/data/hrg/).
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