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The phase change in the annual cycle of
sea surface temperature
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In recent decades, many research efforts focused on global climate change, multidecadal, decadal,
interannual variability, and the increasing extreme events of sea surface temperature. In contrast, the
continuous evolution of the reference frame, the annual cycle of SST used to quantify the
aforementioned variability and changes, has long been overlooked, resulting in difficulties in
understanding the underlying physical mechanisms responsible for these variability and changes. In
this study,we strive tobridge this gapon thephasechanges inSSTannual cycle. Bydevising a running
correlation-basedmethod, we can now quantify the non-sinusoidal shape of the evolving SST annual
cycle, such as the advancing or delaying of summer and winter peaking times. It is revealed that the
varying phases of summer or winter are more closely linked to multidecadal SST variability than to
long-term climate change. Both the systematic shift of the phase and alterations in the annual cycle
shape contribute to the phase changes, which explain 0.4~1.0 °C of monthly SST anomaly with
respect to the climatological annual cycle in a multidecadal timescale. Furthermore, it is evident that
the SST phases in historical simulations are better captured in winter than in summer and exhibit
stronger variation compared with observation.

The Earth’s climate system is highly nonlinear. When subjected to the
annually periodic solar radiative forcing, the surface temperature typically
exhibits a quasi-annually periodic evolution. This observed characteristic of
such evolution has been documented in previous studies spanning
decades1–9. Moreover, it has been demonstrated that considering the
amplitude-frequency modulated annual cycle (MAC) can significantly
impact the physical interpretations of various phenomena depending on
deseasonalization methods10, such as the changes in the frequency of El
Niño-Southern Oscillation (ENSO) and its phase-locking to the annual
cycle11–13, the re-emergence of sea surface anomalies in the North Atlantic
Ocean12, and the reconciliation of differences in decadal variability between
summer and winter climates12.

Another area where the consideration of MAC can enhance our
understanding of physical mechanisms is the study of highly damaging
weather and climate extremes. Recent reports have highlighted an increase
in the frequency of extreme weather and climate events14–17. Among these,
marine heatwaves (MHW) have attracted significant research attention18–20,
owing to their potential impact on communities and ecosystems21–25. It has
been argued that changes in mean sea surface temperature (SST), rather
than its variance, are the dominant drivers ofMHWchanges19. If the climate
shifts toward warmer conditions, the probability of extremely hot

temperature occurrence may increase due to the narrower distribution of
SST anomalies26. In most of the aforementioned studies, quantification of
extremes utilized weather and climate anomalies with respect to the repe-
titive climatological annual cycle, without accounting for amplitude and
phase variations in individual year’s annual cycles. While this approach
provides a consistent reference framework and is convenient, it hinders our
understanding of the diverse physical mechanisms underlying extreme
events.

This issue is illustrated in Fig. 1, which plots the 31-day runningmeans
of SST in a mid-latitude region for three selected years and their corre-
sponding anomalies with respect to the climatological annual cycle and the
individual year running means, respectively. (Hereafter, the anomaly with
respect to the climatological annual cycle is referred to as traditional
anomaly.) There are several key features of this figure:
(1) The low-passed SST, primarily dominated by SST annual cycle

components, exhibits summer and winter peaking times at signifi-
cantly different temporal locations. For example, the difference in
summer peaking days between 2007 and 2009 exceeds 30 days.

(2) The SST annual cycle can be highly non-sinusoidal, with the warming
season lasting approximately 150 days and the cooling season
extending for around 215 days in 2009.
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(3) Traditional anomalies (defined using SST data from 1940 to 2020) are
close throughout day 60 to day 240 for the years 2009 and 2020, but
anomalieswith respect to individual runningmeans displayminor and
highly random fluctuations.
When defining extremes using the absolute threshold values of SST

(e.g., SSTvalues larger than30 °C in thewesternTropical PacificOcean), the
identification of extremes is irrelevant to the definition of anomaly and
remains unaffected. However, estimating the probability of extreme
occurrence in this case becomes challenging due to reduced randomness
and a lack of independent samples. On the other hand, if extremes are
defined using anomalies with respect to running themean annual cycle, the
smallness of these anomalies contributes less to quantifying extremes,
consistent with the findings of Frölicher & Laufkötter26 and Oliver19.
Therefore, understanding SST extremes hinges not on synoptic SST varia-
bility but rather on the varying annual cycle and longer timescale SST
variability.

The annual cycle stands out as the dominant quasi-periodic compo-
nent of SST, and its amplitude is almost an order larger than the sum of all
SST interannual and longer timescale variability and change. Previous
studies also reported systematic shifts of annual cycle both on land and
oceans in past decades5,6,10,13. Surprisingly, despite its significance, climate
scientists have historically understood other timescales of SST variability
and change better than this predominant component. A recent study sys-
tematically investigated the physical mechanisms shaping the SST annual
cycle27. In their research, the authors developed a simple energy budget
model that incorporated the seasonally varying heat capacity of the oceanic
mixed layer, successfully reproducing both the phase and amplitude of the
SST annual cycle inmid-latitude oceans and the SouthernOcean. However,
the study of Yang&Wudid not extend their focus to howSST annual cycles
have evolved alongside ongoing global climate change.

The primary objective of this study is to address this information gap
by analyzing widely recognized SST reanalysis data. The focus will be
directed toward the variability and changes in the shape of the SST annual
cycle over the mid-latitude North Pacific Ocean and North Atlantic Ocean.
To achieve this objective, we have devised a methodology to bypass the
simultaneous change in the phases of summer andwinter, a drawback often
tied to Fourier-based annual cycle fitting.

Results
Our analysis focuses on the variability and changes of SST annual cycle
phases inmid-latitude oceans. Previous studies used only one trigonometric
component with a 365-day period tofit the data year by year. They obtained

annual cycles and then analyzed the phase of this trigonometric component.
However, the annual cycles, as shown in Fig. 1a, exhibit high asymmetry,
including differences in the duration of warming and cooling seasons (also
see Supplementary Fig. 1). The trigonometric fitting method ignores this
asymmetry and cannot accurately resolve the phase shift of either summer
or winter.

In this study, we have developed amethod to separately determine the
peaking timing of summer and winter for individual annual cycles, effec-
tively addressing the limitations of prior research.The asynchronous change
in the summer and winter phases represents the asymmetry of SST annual
cycle. Please note that the phase and the peaking time (or date) are the same
in this study but differ from the timing of absolutemaximum orminimum.
The datasets under analysis comprise reanalysis data, specificallyHadISST28

and ERA5 SST29, along with model data from CMIP6 historical
simulations30. Our devised method, when employed to ascertain the phase
variability of the SST annual cycle, exhibits robustness and is not sensitive to
synoptic variability. For a more comprehensive understanding of our
approach and the data employed, please refer to Methods.

Summer and winter phases variability and change
Figure 2 presents the linear trends of ERA5 SSTphase from1940 to 2021 for
individual grids with a size of 5° × 5°. Similar spatial patterns of phase shift
trends are observed in the correspondingHadISST linear trends, as depicted
in Supplementary Fig. 2, suggesting the adaptability of ourmethod. In terms
of annual averages, our method’s results and the traditional trigonometric
function fitting2,6 yield consistent findings (Fig. 2a and b). Both methods
show that the interiors of the mid-latitude North Pacific Ocean and North
AtlanticOcean are experiencing delayed seasons while surrounding regions
are advancing.Over thepast decades, thephase changehas reachedup to1.0
days per decade.

Notably, there are differences between the patterns of summer and
winter phase trends, as shown inFig. 2c andd.The change inwinter peaking
time is more pronounced than that in summer. Additionally, the spatial
patterns of summer andwinter trends differ significantly, particularly in the
North Atlantic Ocean. The pattern correlation between the summer and
winter patterns is approximately 0.67, suggesting that one pattern can only
explain 45% of the variance in the other. This implies that traditional tri-
gonometric function fitting can account for less than half of the phase
change in the SST annual cycle, with the remaining larger portion of the
trend being associated with the enhancement of annual cycle asymmetry,
i.e., a longer or shorter SST increasing (or decreasing) season.

In addition to the long-term trends, the SST phases exhibit more
pronouncedmultidecadal variations, as illustrated inFig. 3. These variations
reach magnitudes exceeding 3.0 day per decade, which is thrice as large as
the long-term trends. Furthermore, the multidecadal variability displays
significant spatial differences: while the mid-latitude North Pacific Ocean
experiences an advancing peaking time of a season, the mid-latitude North
Atlantic Ocean shows a delay, indicating a strong contrast between the two
ocean basins. This contrast is supported by a correlation value of −0.56
between the low-passed variability (represented by the blue and red curves
in Fig. 3a) in the most prominent phase shift regions with statistically
significant marks. This feature is most pronounced from 1960 to 1990 (see
more details for other decades in Supplementary Figs. 3 and 4). During this
period, the SST annual cycle shifted towards later seasons in the eastern
North Pacific Ocean and toward earlier seasons in the western North
Atlantic Ocean. Interestingly, the spatial patterns of summer and winter
variability appear to closely resemble each other while the summer phase
trend is strongest in the North Pacific Ocean and the winter phase trend is
strongest in the North Atlantic Ocean, again suggesting the change in
annual cycle asymmetry.

Phases and anomalies
To illustrate how phase shift and shape change in SST annual cycle impact
traditional anomaly values, we first make an estimation based on a zig-zag-
shaped annual cycle of 360 days. In this annual cycle, both the warming and

Fig. 1 | Examples of SST annual cycles and corresponding anomalies. a 31-day
running mean annual cycle (blue for 2007, red for 2009, yellow for 2020, and black
for climatology) and b anomalies with respect to climatology (solid lines) and to
running mean annual cycle (dashed lines) in a region of the eastern North Pacific
Ocean (150–140°W, 30–40°N).
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cooling seasons last for 180 days, with a minimum-maximum temperature
difference of 10 °C, a typical value for the amplitude of themid-latitude SST
annual cycle. The corresponding warming and cooling rates have a mag-
nitude of about 0.06 °C per day. If this annual cycle is systematically delayed
or advanced by 10 days, it results in almost a half-year SST change of ~
± 0.6 °C. The change in the shape of the annual cycle can also result in a
similar anomaly. Suppose the winter peaking time unchanged, when the
warming season is shortened by 10 days and the cooling season is prolonged
by 10 days, a ± 0.6 °C anomaly is introduced before and after summer
peaking time. Additionally, if we replace the straight-line warming and
cooling seasons with a more realistic mode, such as sinusoidal function, the
temperature anomaly can be up to 0.86 °C because the temperature change
rates in spring and autumn are larger than the linear rates in the zig-zag
shaped mode.

It is important to note that this simple estimation does not encompass
the influence of interannual SST variation because 10-day phase shift is a
typical value of regional averaged phase change in two or three decades
suggested in Fig. 3. If we also consider the year-to-year variability in the
annual cycle, the traditional anomaly attributed to annual cycle variability
and changes can reach up to 2 °C (see the temperature difference during
autumn and winter between year 2009 and 2020 in Fig. 1a).

These arguments are applicable to real-world scenarios. In Fig. 4, we
illustrate the regression of phase delay to the traditional anomaly of SST
observed in different months. This regression reflects the systematic
alteration of traditional anomaly associated with changes in summer or
winter peaking time. Even though the calculations are conducted for indi-
vidual 5° × 5° grids, the regressions consistently exhibit one-signed values
over thewholemid-latitude oceans, indicating a systematic link between the
change in the shape of the annual cycle and the traditional anomaly.

This result is comprehensible: the delay in summer peaking time
reflects a laggingwarming/coolingof SSTcompared to the climatologyprior
to/post the summer peak time, contributing to a negative traditional
anomaly in June and July (Fig. 4a) and a positive traditional anomaly in
October and November (Fig. 4b). Similarly, the delay in the winter phase
contributes to a positive traditional anomaly inDecember and January (Fig.
4c) and a negative traditional anomaly in March and April (Fig. 4d). These
regressions suggest that a 10-day delay or advance in the summer peaking
time can result in an absolute value of 0.4~1.2 °C in traditional anomaly in
neighboring months, which is consistent with the above estimates. In the
Supplementary, we also present the correlation maps between the delay of
summer or winter peaking time and the traditional anomaly. The absolute
correlation coefficients fall in the rangeof 0.2~0.7 (seeSupplementaryFigs. 5

Fig. 2 | The trends of SST phase during 1940–2021 for ERA5.The phases are obtained by a Fourier transform and c,d running correlation. b represents the averaged phases
of summer and winter from c and d. Markers “+" and “•" represent a significance judged using 95% and 99% confidence intervals, respectively.
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and6), suggesting that the annual cycledelay/advance can explainup to40%
of the traditional anomaly.

Annual cycle phases in CMIP6 historical simulations
Currently, climate studies heavily rely on climate system models. In this
study, we also examine whether summer and winter phases in CMIP6
historical simulations are consistent with those in reanalysis data. We
analyze a total of 13 climatemodels, each containing 10 historical runs. For
each individual ensemble members, we determine the summer and winter
peaking times using the same method described in the Methods section.
Similar to those shown in Fig. 3a for ERA5 SST, oncewe obtain the summer
and winter peaking times, we separate them into two components: the low-
frequency part, obtained by the 11-year running mean, and the high-
frequency part, the remained anomaly from the running mean.

The results are presented in Fig. 5. Most of these historical simulations
capture the climatological peaking time, with the peaking dates deviating
from those of ERA5 SST by less than 15 days (Fig. 5a, b). The majority of
models with their ensemble runs exhibit larger variability in peaking times
for both summer and winter when compared to observation on decadal to
multidecadal timescale (Fig. 5c). Further analysis of the ratio between low-
frequencyandhigh-frequencyvariability inboth seasons indicates thatmost
ensemble members have smaller ratios than ERA5 SST. This suggests that,
in CMIP6models, the systematic shift or change in phases (reflected by the
low-frequencypart of peaking timevariability) is oftenovershadowedby the
substantial high-frequency variability or, in some cases, underestimated. In

Supplementary, we also demonstrate that the low-frequency phases of
individual ensemble members can vary significantly in intra-model corre-
lations (see Supplementary Fig. 8), and disagree with the results of ERA5
SST (see Supplementary Fig. 7).

Discussion
In this study, we analyze the variability and changes in the summer and
winter phases.Wedemonstrate that the SSTannual cycle inmany regions of
thenorthernmid-latitudeoceansnotonly exhibits systematic phase delay or
advance but also experiences a change in its shape associating with asym-
metry. Both the systematic shift of the phase and alteration in the annual
cycle shape contribute to the phase changes calculated by running corre-
lation.Thewinterpeaking timeshave advancedduring the recent 80years in
the ocean regions adjacent to land, while the mid-latitude interior oceans,
particularly theNorthPacificOcean, exhibit an opposite trend. The changes
of peaking time aremore pronounced inmultidecadal timescale than in the
long-term trend, and are asynchronous in summer and winter implying a
change in the shape of SST annual cycle in addition to the systematic phase
shift. Furthermore, it is evident that most CMIP6 models project a bias
within 15 days in the climatological SST phase compared with observation.
However, the impact of the temporal resolution of data on our results needs
further investigation.

These results have significant implications for climate studies. Most
research on climate variability and change typically begins with anomalies
relative to a presupposed repetitive climatological annual cycle. However,

Fig. 3 | Multidecadal variation of SST phase from ERA5. a The time series of
regional averaged summer phase in the North Pacific Ocean (red) and winter phase
in the North Atlantic Ocean (blue), and the SST phase trends in b summer and

cwinter during 1960–1990. Dots and curves represent the phases of individual years
and 5-year runningmeans, respectively. Two domains are denoted by black boxes in
b and c. Significance is denoted by markers, as in Fig. 2.
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when the annual cycle changes significantly over time, the drawbacks of
using a traditional repetitive annual cycle as the reference frame to define
anomaly emerge for climate variability and change studies8,31,32. This is
particularly relevant given that up to 1 °C of the traditional anomaly can be
attributed to phase changes of annual cycle inmultidecadal timescale. Since
the dynamical origin of the annual cycle, as revealed byYang&Wu27, differs
from widely known explanations for major climate modes in terms of
traditional anomaly, understanding the variability and changes in the
annual cycle may offer a viable means of comprehending climate change.

Analysis of CMIP6 simulations also provides insights into model
development. There has been a wide debate in previous studies regarding
whether global climate models lack the sensitivity to accurately reproduce
observed climate variability33–37. The strength of interannual variability in
CMIP6SSTphases is comparablewith or slightly larger than in observation,
but their variability of decadal to multidecadal timescale is much weaker.
This result suggests that most models are sensitive enough to potential
forcing in the SST annual cycle. However, they may lack adequate coupling
between ocean and atmosphere or between regional and global climate to

accurately simulate decadal to long-term changes. While the simulated
temperature ofmanymodels alignswith observations in terms of global and
annual averages, the failure to model its annual evolution may result in a
deficiency in interactions between regions.

As mentioned earlier, many studies employ the probability density
function of weather/climate anomalies to quantify extreme weather/cli-
mate events. Due to the slow progression of the annual cycle relative to
weather variability, such obtained anomalies often contain a component
related to the time-varying annual cycle, especially in oceans. This results
in prolonged periods of anomalies dominated by positive or negative
values, rendering the traditional anomaly highly non-random. In such
cases, the use of probability density functions becomes less effective, and it
becomes challenging to establish a clear physical connection between the
probability density function and the underlying mechanisms responsible
for weather/climate extremes. If the portion of the anomaly associated
with changes in the annual cycle can be isolated or extracted, the prob-
ability density function approach may be founded on a more robust
statistical basis.

Fig. 4 | Regression of SST traditional anomaly on phases during 1940–2020 in
ERA5dataset. a, b Summer phases and SST before (June and July) and after summer
peaking time (October and November). c, d Winter phases and SST before

(December and January) and after winter peaking time (April and May). Sig-
nificance is denoted by markers, as in Fig. 2.
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Methods
Data
The SST reanalysis data utilized in this study is from the Hadley Centre Sea
Ice and Sea Surface Temperature dataset (HadISST)28 and the 5th genera-
tion of European Centre for Medium-RangeWeather Forecasts (ECMWF)
Reanalysis (ERA5)29. HadISST provides monthly data on 1° × 1° grids,
which we linearly interpolate to generate daily data. On the other hand,
ERA5 SST offers daily data on 1° × 1° grids, and we employ a 31-day run-
ning mean to filter out synoptic scale variability. Both datasets are further
averaged within 5° × 5° boxes to attain smoother annual cycles. Addition-
ally, in leap years, the 60th day is omitted, resulting in each year containing
365 days.

This study incorporates 130 historical simulations from 13models (10
ensemble members from each model) in the Coupled Model Inter-
comparison Project Phase 6 (CMIP6) to explore the internal variability of
model climate (seeSupplementaryTable 1 formoredetails). Pleasenote that
manymodels donot contain complete ensemblememberswith r1–r10.The
participating models encompass ACCESS-CM2, ACCESS-ESM1-5,
CESM2, CanESM5-1, E3SM-1-0, GISS-E2-1-G, GISS-E2-1-H, MIROC-
ES2L, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, and
NorCPM1. Themonthly SSTdata from these simulations are processed in a
manner consistent with the approach used for HadISST to determine the
phase of the annual cycle.

The original temporal range of HadISST is 1870 to date, ERA5 SST
1940 to date, and CMIP6 1850 to 2014 (two ensembles of E3SM-1-0 end in
2011 and 2013, respectively). When considering results from observations,
we utilized data between 1940 and 2021. In the comparison of phases from
observations and simulations, we selected the common temporal domain of

1940 to 2010.As illustrated in Supplementary Figs. 7 and8, themultidecadal
variability in CMIP6 historical simulations is contributed more by internal
variability in different ensembles. We verified that the main conclusions
related to this comparison are not sensitive to the selections of the com-
parison period as long as they are a few decades or longer. The linear trend
utilized in this study is the least-squares fit, a common method to fit a
straight line through the data. The 95% and 99% statistically significant
testing is assessed by a one-sample t test.

Phases
Two methods are applied to compute phase of annual cycle in this study.
The traditional phase of the annual cycle is computed by Fourier transform
as in ref. 6:

a ¼ 1
365

P365

n¼1
e2πin=365X0ðnÞ

YðnÞ ¼ 2Reðae�2πin=365Þ
; ð1Þ

wheren is thedate in ayear (1 ≤ n ≤ 365),X0ðnÞ SSTofoneyear (it is a part of
the original time series of SST, X(t)), Y(n) the annual harmonic in Fourier
transform, and a the Fourier coefficient. The phase is defined as the timing
of the maximum in Y(n).

The Fourier-based traditional method is quite rigid, e.g., having a tri-
gonometric function of 365 days and an equal temporal spanning warming
and cooling seasons. This rigidity cannot resolve the asymmetric of the
seasonal cycle. For this reason, we devise here amethod that is based on the
running correlation for the purpose of determining the timings of summer
peak and winter trough separately. This method is similar to traditional

Fig. 5 | Comparison between modeled and ERA5 SST phases. a, b Difference of
averaged phase in three regions: western North Pacific Ocean (blue), eastern North
Pacific Ocean (red), and North Atlantic Ocean (yellow). The 10 circles for each
model and each region represent results from 10 ensembles separately. Positive
values represent lagging with respect to observation. cVariability of high-frequency
and low-frequency components of phases. Two components are separated by 11-

year running mean. Markers open circle and star denote results from simulations
and ERA5 SST, respectively. Solid lines represent the averaged standard deviation
ratio of high-frequency and low-frequency components in ensembles, and dashed
lines represent the departure of double inter-ensemble standard deviation (95%
confidence interval) from the solid lines. Red color for the summer phase and blue
for winter.
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wavelet transform except we use summer/winter characteristic function to
replace the mother wavelet. By sliding the window, we obtain the largest
correlationpoint anddesignate that point as either a summer peak orwinter
trough. The details of themethod are as follows: First, a long-termmean (or
climatological) annual cycle, X0, is obtained at each grid:

X0ðnÞ ¼
1
K

XK�1

k¼0

Xðnþ 365kÞ; ð2Þ

where K is the number of years in SST time series. Then, the seasonal
characteristic function is defined from X0. For example, if the summer
maximum temperature occurs at day 240 and the length, L, of the char-
acteristic function is selected as 181 days, X0(n) (150≤ n ≤ 330) is the
characteristic function of summer (see Supplementary Fig. 9a). Once the
characteristic function is selected, correlation coefficient can be computed
between the function and each piece of X:

ZðtÞ ¼ CORRðX0ðnÞ;XðlÞÞ; ð3Þ

where t is the day in decades, L = 181, 150 ≤ n ≤ 330, and t− (L− 1)/
2 ≤ l ≤ t+ (L− 1)/2. Thus, in Z(t), the timing of the maximum in each
year is defined as the phase of summer (Supplementary Fig. 9b). Please
note that two criteria are applied to determine whether this timing is
effective: (1) the correlation coefficient corresponding to this timingmust
be larger than 0.9 and (2) the departure of this timing to the date of
maximum in climatological annual cycle is less than 45 days. Grids with a
number of ineffective phases over 30% of the whole period are masked.
Similarly, if the winter minimum is at day 60 and L = 181, the winter
characteristic function is X0(n) (−30 ≤ n ≤ 150) (there is negative n
because X0 is considered as a periodic function). The phase of winter is
defined from the correlation coefficient between the winter characteristic
function and each piece of X(t).

In the analysis of SST annual cycle, the focus on phase arises from the
interest in understandingwhether seasons shift to earlier or later times. This
leads to the fundamental question of how seasons are defined. In the context
of annually evolving SST, the most prominent feature is the high tem-
perature in summer and low temperature inwinter,with spring and autumn
serving as transition seasons. With an implicit assumption that the SST
annual cycle does not dramatically change its shape, the climatological
annual cycle can still be considered a reasonable reference shape of the SST
annual cycle. If we take the wavelet analysis as analog, this shape is an
adaptive mother wavelet of the annual cycle determined by SST data
themselves. Since the running correlation method is used only for the
determination of the timings of the annual cycle peak and bottom, the
selection of the window length is a compromise between avoiding the effect
of the asymmetry of the annual cycle and reducing the sensitivity caused by
the residue sub-seasonal variability. We tested various widths of this run-
ning correlation window and the optimal window size of this is about one-
half year. Since our data has a daily resolution, we maximize the resolution
by selecting a running step of 1 day in the determination of the peak and
bottom timings in running correlation.

The purpose of applying 31-day runningmean, as well as a 5° × 5° box
average, is to reduce the effect of fast-fluctuating synoptic scale variability,
which is often considered weather noise, and to correct the potential large
contrast of the effect of the reminder synoptic variability of neighboring
grids in the determination of the annual cycle. This spatiotemporal
smoothing can lead to the phase of the SST annual cycle being unique. As
illustrated in Supplementary Fig. 9c, the results from the selections of dif-
ferent widths of the running mean window only contain negligible differ-
ences if thewindowwidth is greater than 7 days and less than 60 days for the
regions that our study focuses on, suggesting that the results from running
correlation are robust. However, when we study the land surface tem-
perature, which will be reported elsewhere, the sensitivity of the phase
determination to a small temporal running mean window (e.g., <2 weeks)

increases. A selection of 31-day would put us in a uniform methodological
framework when we analyze the surface temperature annual cycle over the
whole globe.

Analyzing the timing ofmaximumorminimum temperature provides
a logically clear definition that works well for climatological annual cycles9.
However, the reason we determine the timing of peaking using the running
correlationmethod rather thandirectly diagnosing fromthe31-day running
mean is that the 31-day running mean may contain a portion of high-
frequencyvariability,which even featuresmultiple localmaximumswithin a
short period in summer, for example. If themaximumof the31-day running
mean is used to determine the peaking phase of the annual cycle, the peak
timing does not reflect the relatively slower evolution of the annual cycle
phase. SupplementaryFig. 9c exhibits theunrealistic phasefluctuationwhen
it is diagnosed from the 31-day runningmeanusing the absolutemaximum-
minimum method.

Data availability
In this study, we usedERA5,HadISST, andCMIP6historical data. They can
be accessed from (1) https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels, (2) https://www.metoffice.gov.uk/hadobs/
hadisst/, and (3) https://pcmdi.llnl.gov/CMIP6/, respectively. Derived data
supporting the findings of this study are available from https://github.com/
fcyang58/Changing_Annual_Cycle and the corresponding author upon
reasonable request.

Code availability
The source codes for the analysis of this study are available from https://
github.com/fcyang58/Changing_Annual_Cycle and the corresponding
author upon reasonable request.
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