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Anthropogenic climate change (ACC) strengthens the global terrestrial water cycle (TWC) through
increases in annual total precipitation (PRCPTOT) over global land. While the increase in the average
global terrestrial PRCPTOT has been attributed to ACC, it is unclear whether this is equally true in dry
and wet regions, given the difference in PRCPTOT changes between the two climatic regions. Here,
we show the increase in PRCPTOT in dry regions is twice as fast as in wet regions of the globe during
1961–2018 in both observations and simulations. This faster increase is projected to grow with future
warming, with an intensified human-induced TWC in the driest regions of the globe. We show this
phenomenon can be explained by the faster warming and precipitation response rates as well as the
stronger moisture transport in dry regions under ACC. Quantitative detection and attribution results
show that the global increase in PRCPTOT can no longer be attributed to ACC if dry regions are
excluded. From 1961–2018, the observed PRCPTOT increased by 5.63%~7.39% (2.44%~2.80%)
over dry (wet) regions, and asmuch as 89% (as little as 5%) can be attributed to ACC. The faster ACC-
inducedTWC indry regions is likely tohavebothbeneficial anddetrimental effects ondry regionsof the
globe, simultaneously alleviating water scarcity while increasing the risk of major flooding.

The terrestrial water cycle (TWC) is an essential component of the climate
system1, and directly impacts water resources, agriculture, and ecosystems
worldwide2–5. Global warming has contributed to strengthening TWC6–8, as
reflected in the increase in global annual total precipitation (PRCPTOT)9–11.
However, temporal trends in terrestrial PRCPTOT exhibit considerable
spatial heterogeneity, with different climatic regions showing dissimilar
trend directions andmagnitudes11–13. Contrary to thewell-knownparadigm
that dry regions are expected to become drier, and wet regions wetter, a
faster and stronger increase of PRCPTOT has been found in dry regions
compared to wet regions of the globe14,15. This increase in PRCPTOT in dry
regions is generally compensated or overcompensated bywarming-induced
increases in evapotranspiration7,8, so it does not always lead to increases in
water availability14, despite a growing risk of short-duration rainfall
extremes16. Understanding the divergent responses of the TWC (e.g.,
PRCPTOT changes) to warming in dry and wet land regions is essential for
infrastructural planning, water resource management, and sustainable
development.

There is growing evidence that anthropogenic climate change (ACC)
intensifies the TWC through atmospheric thermodynamic and dynamic

processes17–19. Warming increases atmospheric humidity and modulates
circulation patterns, leading to regional upward motions with moisture
convergence, which further enhances PRCPTOT7,18,20. Faster warming in
certain regions is likely to createmore favorable conditions for precipitation
generation21, such as a reduction in surface pressure and increase in water
vapor. It is still unclear, however, whether there are differences in warming
and the rates of change in precipitation per unit warming between dry and
wet regions. Different external forcings have opposite effects on warming,
with greenhouse gas emissions (GHG) leading to global warming effects22

while anthropogenic aerosol emissions (AER) lead to regional cooling
effects23,24. Hence, the coupled response of the climate system to various
external forcings25 could explain the divergent changes in PRCPTOT in dry
and wet regions in recent decades26,27. Given that GHG (AER) are projected
to increase (decrease) in the coming decades, it remains unclearwhether the
different changes in PRCPTOT in dry andwet land regionsmight continue
or even be amplified in the future.

The influence of ACC on PRCPTOT has been quantified in different
regions of the globe1,9,28,29. For instance, it is very likely (probability > 90%)
that ACC explains the observed increase in terrestrial PRCPTOT over the
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NorthernHemisphere during 1952–20111. However, considering themuch
greater increase inPRCPTOTover dry regions compared towet regions, it is
necessary to assess whether the ACC signal is equally detectable in both
climates. In other words, is the human-induced intensification of the global
TWC, as detected in previous studies, mainly contributed by the increase in
PRCPTOT over dry regions? Detection and attribution analysis must be
conducted to quantify the contributions of different external forcings to the
observed increase in PRCPTOT in both regions.

In this study,we investigate the changes in normalizedPRCPTOTover
dry and wet land regions using multiple observed datasets (Supplementary
Table 1). We then confirm the difference in PRCPTOT changes obtained
from climate simulations conducted with different historical external for-
cings (Supplementary Table 2) and Shared Socio-economic Pathway (SSP)
projections (Supplementary Table 3) from the Coupled Model Inter-
comparisonProject Phase 6 (CMIP6; SupplementaryTable 4)30.We explain
the different changes based on two aspects: the precipitation ~temperature
relationship and the response of atmospheric moisture to global warming.
Finally, two detection and attribution methods are employed to provide
quantitative evidence for the role of ACC and its contribution to the
observed changes in PRCPTOT in dry and wet regions. All acronyms are
listed in Supplementary Table 5.

Results
Human-induced changes in PRCPTOT in dry and wet land
regions
To demonstrate the strengthening of the TWC, the observed PRCPTOT
changes during 1961–2018 are estimated using three gridded datasets
(HadEX3, CRU, and GPCC; see Methods) based on widespread gauge-
based stations across global land (11800–67298 stations). Data-gap infor-
mation for each global terrestrial grid cell during 1961–2018 is offeredby the
HadEX3 dataset. A total of 1432 grid cells (2.5° × 2.5°; covering 59.2% of
global terrestrial grid cells, excluding Antarctica) with missing values below
10%, are selected as the study area (Supplementary Fig. 1a). Dry (wet)
regions are identified as the grid cells in which the climatological mean
PRCPTOT lies within bottom (top) 30% of the 1432 grid cells14,31. The dry
regions are primarily located in western Australia, and central and north-
easternAsia. Thewet regions are discretely located in southeasternSouthern
America, eastern North America, western and northern Europe, south-
eastern Asia, and western Africa (Supplementary Fig. 1c). These spatial
patterns of dry andwet regions are basically consistentwith previous studies
based ondifferent criteria (e.g., aridity index, Palmer drought severity index,
and other metrics32–35). Furthermore, we test whether our results are sen-
sitive to the selection of 20% and 40% as thresholds for the identification of
dry and wet regions (Supplementary Fig. 1b and d).

All three observed datasets show increasing PRCPTPOT during
1961–2018 over dry and wet regions, at rates of 1.1% per decade (p < 0.05)
and 0.2% per decade (p = 0.18) (Fig. 1a). The increasing rate of observed
PRCPTOT is six times faster in dry regions compared to wet regions. The
CMIP6 simulations under the historical all forcing scenario (ALL) also
reveal increasing rates in dry (1.2% decade−1) and wet (0.2% decade−1)
regions during 1961–2018 (Fig. 1b). The above trends in PRCPTOT over
dry and wet regions were also found in previous studies14,36. However, the
natural forcing simulations (NAT) show no significant changes in
PRCPTOT in either region. In otherwords, the faster increase in dry regions
fails to be captured if anthropogenic forcing (ANT) is removed from ALL
(Fig. 1f). Under ANT, there exist significant (p < 0.01) increases in
PRCPTOT over both dry (2.0% decade−1) and wet (0.2% decade−1) regions,
but the difference in increasing rates between the two regions is substantially
enlarged (i.e., from sixfold under ALL to tenfold under ANT; Fig. 1c).
Consistent and significant increases in PRCPTOT are found in dry regions
(Fig. 1d, e) under both of the main two external forcings (i.e., GHG and
AER) in ANT. However, PRCPTOT exhibits a significant decrease under
AER over wet regions. In the wet regions (mostly located in monsoon
zones), AER inhibits the development of the monsoon and reduces atmo-
spheric humidity through aerosol-cloud interactions37,38. Therefore, the

combined effects of GHG and AER (i.e., approximately ANT) are respon-
sible for the faster increase of PRCPTOT in dry regions compared to wet
regions.

We evaluate the gradient change in PRCPTOT increase in dry andwet
regions (Supplementary Fig. 2). During 1961–2018, both observed and
simulated precipitation show the stronger signal of PRCPTOT increase
when drier regions (from bottom 20%–30% grids to bottom 10% grids) are
selected. In wet regions, although observed PRCPTOT increase is not
associated with the selection of wetter grids, simulated PRCPTOT changes
show the weaker signal of PRCPTOT increase when wetter regions (from
top 20%–30% grids to top 10% grids) are selected. Therefore, there is a
gradient change in dry andwet regions, i.e., a greater (smaller)magnitude of
PRCPTOT increase in drier (wetter) regions.

We then examine projections of PRCPTOT in dry and wet regions
under different SSPs (Supplementary Fig. 3). Under the lowest emission
scenario (SSP126), projected increases in PRCPTOT are weak in both
regions during 2043–2100 (the same length as the historical period
1961–2018), and this weak growth ismore evident in dry regions compared
to wet regions. However, significant increases in PRCPTOT are projected
over bothregions, aswell as a faster increase indry regions, under themiddle
emission scenarios (SSP245 and SSP370). As the emissions increase
(SSP585), both the rates of change and the differences between the two
regions increase. These projections corroborate the results seen in the his-
torical simulations.

Despite the increase in PRCPTOT in both dry and wet regions14,31,36,
the increases in PRCPTOT in observations and simulations are faster in dry
regions compared to wet regions during the historical and future periods.
However, the simulations show that the faster increase in PRCPTOT in dry
regions than in wet regions during the historical period emerges only when
ANT is considered, and during the future period disappears under a low
emission scenario, implying a faster human-induced TWC in the world’s
dry regions comparedwithwet regions. Our findings are not sensitive to the
choice of threshold used to identify dry and wet regions (Supplementary
Figs. 4–7).

PRCPTOT and moisture in response to warming in dry and wet
regions
To understand the processes behind the strengthening of TWC in dry
regions compared to wet regions under climate change, we investigate the
PRCPTOT ~temperature (i.e., near-surface air temperature) relationship
under different external forcings (Fig. 2a–d). During the historical period
(1961–2018) under ALL, the regional warming rate was much faster in dry
regions (0.33 K·decade−1) compared with wet regions (0.23 K·decade−1;
Fig. 2a). However, if ANT is removed fromALL, this difference in warming
rates almost disappears (0.004 K·decade−1 for dry and 0.01 K·decade−1 for
wet under NAT). The faster warming rate in dry regions compared to wet
regions under ACC results from the stronger warming effects in dry regions
under GHG and the stronger cooling effects in wet regions under AER. In a
warmer future (2043–2100), the higher the emissions, the greater the dif-
ference in warming rates that can be expected between dry and wet regions.

Despite the faster warming rate in dry regions, the extent to which
PRCPTOTmay respond to this regional warming also needs to be assessed
within each of the CMIP6 models (Fig. 2b) as well in as large single-model
ensembles39 (Fig. 2c, d). We find that PRCPTOT increases in both regions
with regional warming under ALL, but it increases much faster in dry
regions (3.07% K−1) compared to wet (0.98% K−1) regions (Fig. 2b). Under
NAT, the response of PRCPTOT to regional warming is weakly positive
(0.71%K−1) in dry regions, and is evennegative (–1.30%K−1) inwet regions.
When considering the influence of ACC, on the one hand, we note that the
faster response rate of dry regions compared towet regions under the GHG
scenario is also true underALL.Under AER, however, wet regions also have
a higher sensitivity of PRCPTOT to the cooling effects of aerosols compared
with dry regions. These synergetic effects ofGHGandAER lead to the faster
increase of PRCPTOT per unit warming in dry regions relative to wet
regions. As emissions grow in the future, we find the response of PRCPTOT
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to warming is larger in both regions, with a smaller spread among models,
but this response is more sensitive in dry regions.

To evaluate the plausibility of the difference in PRCPTOT responses to
warming between dry and wet regions found in the CMIP6 models, we
conduct a separate and in-depth analysis using CanESM5 experiments with
50 ensemble members under different external forcings (Fig. 2c, d). The
changes in PRCPTOT (dP) or temperature (dT) in both regions are com-
puted by taking the annual anomalies during 1961–2018 (historical period)
relative to the 1861–1900 (early industrial period) mean. The changes

observed in dry and wet regions, including the regional warming rate and
the PRCPTOT response rate under different external forcings, are con-
sistent between the individual CMIP6 models and the large single-model
ensemble. In both regions under GHG, dP and dT show a positive asso-
ciation some distance away from the coordinate origin, while under NAT,
both dP and dT fluctuate around the climate state of the early industrial
revolution.Our findings indicate that the positive response of PRCPTOT to
warming in wet and dry regions is consistent across multiple models under
ALL and GHG, but it is not robust under NAT.

Fig. 1 | Observed and simulated changes in total precipitation (PRCPTOT) in
global dry andwet regions during 1961–2018.Dry/wet regions are identified as the
grid cells with PRCPTOT values in the bottom/top 30% of all PRCPTOT values
across the global land surface (see Supplementary Fig. 1c). aNormalized PRCPTOT
(unitless) in dry and wet regions in multiple observed datasets. The time series
represent the median of the area-averaged PRCPTOT from the ensemble of
observed datasets; the straight lines represent the linear trend; the ribbons represent
the range (minimum and maximum) within these observed datasets; the slope

indicates the linear trend estimated using Sen’s slope; and the p-value indicates the
trend significance estimated using the Mann-Kendall test. b–f The same as (a) but
for CMIP6 simulations under different historical forcings (see Methods), i.e., ALL
(b), ANT (c), GHG (d), AER (e), and NAT (f). In (b–f) the ribbons indicate the
25–75%uncertainty ranges of all individual CMIP6models under the corresponding
forcings. The figure is done in the software R 4.1.2 (https://cran.r-project.org/bin/
windows/).
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Fig. 2 | PRCPTOT and water vapor changes in dry and wet regions as a function
of warming.Dry/wet regions are identified as the grid cells with PRCPTOT values
in the bottom/top 30% of all PRCPTOT values across the global land surface. a
Boxplots show temporal trends of regionally averaged near-surface air tempera-
ture (hereafter temperature, unit: K/decade) in dry and wet regions during
1961–2018 under different external forcings (i.e., ALL, GHG, AER, and NAT) and
during 2043–2100 under different future scenarios (i.e., SSP126, SSP245, SSP370,
and SSP585) based on 309 realizations of CMIP6 (see Supplementary Table 2 and
3), respectively. b The same as (a) but for temporal trends of regionally averaged
PRCPTOT changes as a function of temporal trends of regionally averaged tem-
perature changes (%/K) in dry andwet regions, respectively. In a, b, the statistics in
the box plots from the upper to lower bound represent the value of
Q3+ 1.5 (Q3–Q1), third quartile (Q3), median (horizontal line), first quartile
(Q1), and Q1–1.5 × (Q3–Q1) successively. c, d PRCPTOT-temperature relations

(ΔP~ΔT, unit: K−1) in dry (c) and wet (d) regions estimated by the CanESM5
experiments with 50 ensemble members. In c, d the dots indicate the regionally
averaged annual anomalies (temperature or precipitation) during 1961–2018
relative to the 1861–1900 mean for the ensemble mean under different external
forcings. e–h Regionally averaged normalized vertically integrated water vapor
(VIWV; e, f) and integrated water vapor transport (IWVT; g, h) changes in dry (e,
g) andwet (f, h) regions as a function of global warming (K−1), respectively. In e–h,
blue (red) dots represent the differences of values between the 2070–2099 mean
under SSP245 (SSP585) and the 1961–1990 mean under ALL for the individual
CMIP6models, using the first ensemblemember (i.e., r1i1p1f1) for eachmodel. In
c–h the solid lines represent the best-fit linear regression through all points of a
scenario; the slope and the p-value as in Fig. 1; the symbol “*” shows the slope is
significant at the 0.01 level. The figure is done in the software R 4.1.2 (https://cran.
r-project.org/bin/windows/).
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Wealso explore the relationshipbetweenmoisture and globalwarming
in dry and wet regions using multiple models under the ALL simulation
(1961–1990) and SSP245/SSP585 (2070–2099; Fig. 2e–h). Both moisture
content (vertically integrated water vapor; see Methods) and moisture
transport (vertically integratedwater vapor transport) showa linear positive
association with global warming in dry and wet regions. Under SSP245/
SSP585, moisture content is projected to increase by 6.2%/8.1% per unit of
global warming in dry regions, and these percentages are very similar with
those in wet regions (6.1%/7.3%). However, the moisture transport is pro-
jected to be much stronger in dry regions (7.7%/11.1% per unit warming)
than in wet regions (3.6%/3.8% per unit warming).

Overall, human-induced warming occurs faster in dry regions com-
pared towet regions, and themagnitude of the increase in PRCPTOT is also
much larger in dry regions. Both faster warming and precipitation response
rates lead to a greater PRCPTOT increase in dry regions than in wet
regions40, which can be explained by the warming-related increases in
moisture content and transport in both regions, and especially the stronger
increases of moisture transport in dry regions. The relationships between
PRCPTOT/moisture and warming are not sensitive to the division into dry
and wet regions (Supplementary Figs. 8–9).

Detection and attribution of PRCPTOT changes in dry and wet
land regions
It hasbeenwidely reported that the effect ofACC isdetectable in the increase
in global TWC1,31,41. However, given the much faster increase in PRCPTOT
in dry regions than in wet regions, we hypothesize that the signal of global
ACC may be absent if dry regions are excluded from the world’s land
surface. To test this hypothesis, we employ two detection and attribution
methods to identify the anthropogenic fingerprint from observed increases
in PRCPTOT over dry and wet regions during 1961–2018.

Using a pattern-based detection and attribution method42–44 (see
Methods), we employ a rotated empirical orthogonal function (REOF)45–47

to extract the leadingEOF(as afingerprint) and the corresponding temporal
principal component (PC) from PRCPTOTunder ALL and SSP585 during
1901–2100 (Supplementary Figs. 10–12). The leading modes (EOF1 and
PC1) explain between 84.6%–92.7% of the total variance of PRCPTOT in
dry, wet, and dry+wet regions, suggesting that they capture most of the
original PRCPTOT signal. The changes in PC1 are highly consistent with
the long-term changes in global mean temperature, indicating that the
fingerprint is a signal of global warming. These positive responses to global
warming are found in ~90% of dry regions and ~70% of wet regions in the
spatial patterns (EOF1).

We then project observed and simulated PRCPTOT onto the model-
based fingerprints in dry and wet regions to quantify the ACC signal and its
significance (Fig. 3 and Supplementary Figs. 13–14). During the period
1961–2018, observations in dry+wet regions exhibit an increasing resem-
blance to the fingerprint, as illustrated by the positive trend (p < 0.01) of
fingerprint projections (Fig. 3e). The signal-to-noise ratio (SNR) analysis
reveals that the ACC signal during 1961–2018 is detectable with 90%
confidence in dry+wet regions (SNR = 1.73; Fig. 3f), consistent with pre-
vious studies1,41,42. In comparison with dry+wet regions, a consistent
increasing resemblance to the fingerprint can be seen in dry regions where
the ACC signal is also detectable (SNR = 1.68; Fig. 3a, b). Despite the pre-
sence of apositive trend in thefingerprint projections, theACCsignal fails to
be detected in wet regions (SNR = 1.31; Fig. 3c, d).

We also estimate the time of emergence based on simulated SNR
under the ALL simulation and SSP585 scenario during 1911–2100,
testing the robustness of the ACC signal in dry regions (Supplementary
Fig. 15). Both dry and wet regions show increasing trends in the SNR
under SSP585, but a faster increase in SNR is found in dry regions
(Supplementary Fig. 15a, c, and e). The ACC signal becomes
significantly detectable in simulated PRCPTOT in dry regions in ~2012
and ~2021 at the 90% and 99% confidence levels, respectively, sup-
porting the presence of a detectable ACC signal in PRCPTOT obser-
vations (Fig. 3a, b). Inwet regions, however, anACC signal only becomes

detectable by the years ~2021 and ~2032. In both regions, the reduction
in noise amplitudewith longer trend-fitting periods (Supplementary Fig.
15b, d, and f) is the main cause of the increase in the SNR48,49. Never-
theless, the noise amplitude and SNR are larger in dry regions than in wet
regions, suggesting that the historical ACC signal is more pronounced in
dry regions.

Finally,we employ theoptimalfingerprintmethod50,51 (seeMethods) to
validate the detection and attribution results from the REOF-basedmethod,
and more importantly to quantify contributions of external forcings to
observed changes in PRCPTOT during 1961–2018 (Fig. 4 and Supple-
mentary Figs. 16–17). In the optimal fingerprint method, observed
PRCPTOT is regressed against historical simulations under one forcing
(one-signal analyses) or two forcings (two-signal analyses), and the scaling
factor (estimated by ordinary least squares (OLS) or total least squares
(TLS)) is used to scale simulated PRCPTOT such that it matches the
observed changes in PRCPTOT. In dry regions, both the OLS- and TLS-
estimated scaling factors of simulated PRCPTOT are significantly above
zero under the ALL, ANT, and GHG simulations based on the one-signal
analyses; however, this is not the case under the NAT or AER simulations
(Fig. 4a, d). Inwet regions, there is no scaling factor significantly greater than
zero. The one-signal analysis results are also supported by two-signal ana-
lyses, which also show that the PRCPTOTresponses for theALL, ANT, and
GHG simulations are distinct from those underNAT in dry regions but not
in wet regions (Fig. 4b, e). It can thus be concluded from the scaling factor
analyses that the simulated responses are detectable (indetectable) in
observed PRCPTOT in dry (wet) regions only if (regardless of whether)
ACC is considered in themodel simulations. This finding is consistent with
the REOF-based assessment, and thus strengthens the evidence that ACC is
responsible for the faster TWC in dry regions compared to wet regions.

To further estimate the contributions of external forcings to observed
changes in PRCPTOT, the linear trends in simulated PRCPTOTunder each
external forcing aremultiplied by the corresponding scaling factors obtained
from the one-signal analyses (Fig. 4c, f). From 1961–2018, observed
PRCPTOT has increased by 5.63%~7.39% (2.44%~2.80%) in dry (wet)
regions based on thresholds of 20–40% to identify the dry/wet regions. The
increases in PRCPTOT in dry (wet) regions attributed to ALL, ANT, and
GHG are 5.22%~5.82% (0.06%~1.67%), 5.02%~6.17% (−0.46%~0.21%),
and 5.68%~8.20% (0.19%~1.18%), respectively, based on the OLS estima-
tion.Theproportions estimated fromTLSare6.25%~7.04%(0.94%~2.08%),
5.89%~7.07% (−0.56%~0.91%), and 6.96%~9.93% (1.18%~2.14%),
respectively. In other words, the increases in PRCPTOT that are detected in
the ALL simulations are comparable to the observed increases found in dry
regions, but exceed the changes found inwet regions. Thesefindings support
the robustness of our attribution results in dry regions. Conversely, the lack
of a robust signal of external forcings in the observed PRCPTOT in wet
regions indicates larger uncertainties. Our detection and attribution results
are not sensitive to the choice of threshold used to identify dry and wet
regions (Supplementary Figs. 11–17).

Discussion
In this study, we find an intensified TWC (i.e., faster PTCPTOT increase) in
dry regions than in wet regions, which can be attributed to ACC. In other
words, there exists a faster rate of warming and a greater increase in
PRCPTOT per unit warming under the influence of ACC (mainly GHG;
Figs. 2 and 4) in dry regions than in wet regions. Generally, with warming-
induced atmospheric thermodynamic effects, the accumulation of surface
and atmospheric energy52 increases evapotranspiration and moisture con-
tent in both dry andwet regions7,20. Our study finds no significant difference
in the rates of increase in moisture content per unit warming between dry
and wet regions, indicating that thermodynamic effects might not be the
main reason for the differences in increasing PRCPTOT rates over the two
climatic regions under ACC.

The difference in the intensification of the TWC between dry and wet
regions is, however, seen in the moisture transport, i.e., through warming-
induced atmospheric dynamic effects. Previous studies have found that
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atmospheric circulation plays an important role in the transport ofmoisture
to dry regions, both from adjacent oceans53–55 and from remote oceans via
teleconnection patterns56–58. The faster warming in dry regions amplifies
dynamic processes, for example, the stronger land-ocean contrast between
dry regions and adjacent oceans59,60 strengthens the landward pressure
gradient and enhances moisture transport from oceans to dry regions54,61.
The faster warming generates an anomalous meridional temperature gra-
dient between dry regions and other contiguous regions26,52. This uneven
warming pattern also alters regional circulation patterns (such as jet streams
and storm tracks62,63) over dry regions, e.g., the African easterly jet, which is
displaced poleward64 and the Asian subtropical jet, which is displaced
southward65. These shifting circulation patterns intensify the long-distance
transport of westerlies, carrying greater moisture to dry regions66, and
supporting the vorticity advection and upward motion for precipitation
generation over dry regions52.

To interpret the increase in moisture transport over dry regions under
global warming, recent studies have also emphasized the importance of
land–atmosphere feedbacks61,67. Under ACC, the faster decrease in soil
moisture in dry regions68 enhances turbulent energy transfer from the

surface to the atmosphere69. This stronger energy exchange increases
atmospheric temperature and latent heat, amplifying the atmospheric
water-holding capacity and moisture content over dry regions70. The faster
atmospheric heat accumulation leads to low-level vertical ascent and
moisture convergence, favoring the generation of precipitation in dry
regions67. In addition, the faster decline in soil moisture also enhances the
land-ocean contrast in dry regions, enhancing moisture transport59,60.
Hence, the TWC is enhanced in dry regions by the combination of ACC-
induced thermodynamic and dynamic effects, and the dynamic effects are
further amplified by land–atmosphere feedbacks.

In contrast, wet regions mainly located at monsoon regions (Supple-
mentary Fig. 1b–d) where the increase in precipitation is inhibited by
warming-induced dynamic effects71–74. Monsoon circulation patterns tend
to be controlled by atmospheric convective overturning75, the intensity and
structure of which affects moisture transport and precipitation generation.
Under GHG-induced warming, the zonal sea surface temperature gradient
is weakened across the equatorial Indo-Pacific76 and the lower troposphere
stratification is enhanced77, both of which tend to reduce the strength of
atmospheric overturning circulation78. The reduction occurs preferentially

Fig. 3 | PRCPTOT in dry and wet regions from projecting observations and
simulations onto the fingerprint. The dry/wet grid regions are identified from the
grid cells with PRCPTOT values in the bottom/top 30%of all values across the global
land surface. a, c, and e Projections of observed PRCPTOT in dry (a) wet (c) and dry
+wet (e) regions during 1961–2018 onto the fingerprint. The “+” symbol indicates
an upward trend; line terminology, shadow, slope, and p-value as in Fig. 1. b, d and
f Signal-to-noise ratios (SNRs) for 1961–2018 trends from observations (dashed

vertical lines), PiControl simulations (purple histograms), and H85 simulations
(ALL+ SSP585, see Methods; orange histograms) in dry (b), wet (d) and dry+wet
(f) regions. In (b) (d) and (f) the symbol “SNR” indicates the SNR value in the
observations and “CI” indicates 5–95% confidence intervals (CIs) for SNR in
H85 simulations; the solid curves indicate the best-fit Gaussian distribution. The
figure is done in the software R 4.1.2 (https://cran.r-project.org/bin/windows/).

https://doi.org/10.1038/s41612-024-00590-9 Article

npj Climate and Atmospheric Science |            (2024) 7:45 6

https://cran.r-project.org/bin/windows/


in the zonally asymmetric componentof the tropical circulation (i.e.,Walker
Cell). A weakenedWalker circulation could decrease the sea level pressure
gradient, inhibiting moisture transport to wet (monsoon) regions79. In
addition, under GHG-induced warming, the Hadley Cell (another com-
ponent of tropical circulation) is weakened and its downward branch is
expected to move toward the poles77,80,81, weakening moisture transport to
wet regions82,83. Therefore, although the TWC is enhanced in wet regions
under GHG-induced warming by thermodynamic effects, these are partly
offset by dynamic effects such as weakened tropical circulation.

Under AER, PRCPTOT in dry/wet regions shows an increasing/
decreasing trend (Fig. 1e). Previous studies show the radiative cooling
resulting from AER generates circumglobally stationary Rossby waves
in themid-latitudes84, which shift the westerly jet stream (e.g., the Asian
subtropical jet) southward85. This shift favors moisture supply from
low-latitudes and moisture convergence over dry regions, resulting in
precipitation generation over dry regions52,86. The reduction in
PRCPTOT in wet regions results from reduced vertical moisture
advection in response to AER over global monsoon regions. Both the
AER-induced thermodynamic (reduction in atmospheric humidity)
and dynamic (weakening land-ocean contrast between monsoon
regions and adjacent oceans) effects cause a reduction in the vertical
moisture advection over wet regions, where the thermodynamic effect
is dominant27. Hence, without considering the effects of GHG, TWC in
dry (wet) regions is enhanced (inhibited) by AER-induced atmospheric
dynamic effect (thermodynamic and dynamic effects).

In the global TWC, other hydro-meteorological fluxes and stores
besides precipitation (e.g., evapotranspiration (ET), runoff, soil moisture,
and snow) are also involved87. ET acts as an important component in global
TWC88,89, due to the net difference betweenwater supply from precipitation
and water demand from ET, which can almost represent the changes in
terrestrial TWC90. We calculate the PME (precipitation from the HadEX3
dataset minus ET from the GLEAM dataset; see Methods) to invalidate
whether PRCPTOT can represent the long-term spatial patterns of aridity
and humidity over land. Consistent with the PRCPTOT-based division
method, PME-based dry (wet) regions are identified as the grid cells in
which the climatological (1981–2010) mean PME lies within bottom (top)
30% of the 1432 grid cells. Our results represent that PME-based global dry
and wet regions show consistent spatial patterns compared to PRCPTOT-
based dry and wet regions, including North Russia and India (Supple-
mentary Figs. 1 and 18). Over the PME-based dry regions, the observed and
simulated PRCPTOT have the same significant increasing trends (OBS and
ALL: 1.1%/decade) during 1961–2018 as PRCPTOT (OBS: 1.1%/decade;
ALL: 1.2%/decade) over the PRCPTOT-based dry regions (Fig. 1 and
Supplementary Fig. 19). Increasing trends of observed and simulated
PRCPTOT in wet regions for two criteria are both 1/6 times of the trends of
PRCPTOT in dry regions. Furthermore, PRCPTOT trends in based-PME
dry and wet regions are not sensitive to the choice of threshold used to
identify dry and wet regions (Supplementary Figs. 20 and 21). Therefore, if
ET, the outward water flux in TWC, is not considered, the bias from the
global trend of aridity and humidity over land remains negligible, implying

Fig. 4 | Scaling factors and attributable PRCPTOT changes in dry and wet land
regions during 1961–2018.Dry/wet regions are the grid cells with PRCPTOT in the
bottom/top 30%of all cells across the global land surface. aOptimized scaling factors
based on the one-signal analysis (dots) and their 5–95% CIs (vertical lines) for
PRCPTOT trends in dry andwet regions for ALL, ANT, GHG,AER, andNAT based
on the OLS method. b The same as (a) but based on the two-signal analysis by

combining individual forcings (i.e., ALL, ANT, GHG, and AER; solid lines) and
NAT (dashed lines). c Observed PRCPTOT changes in dry and wet regions, and
attributable changes to ALL, ANT, GHG, AER, and NAT from the one-signal
analysis. In (c) the error bars indicate the corresponding 5–95%CIs. d–fThe same as
a–c but with the TLSmethod. The figure is done in the software R 4.1.2 (https://cran.
r-project.org/bin/windows/).
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that our results on changes of PRCPTOT in dry and wet regions are not
affected whether ET is considered for dividing dry and wet regions or not.

In addition, although previous studies have found an ACC-induced
intensification in some of these processes91–94, they can be significantly
altered by anthropogenic activities (e.g., dams, reservoirs, impervious sur-
faces, domestic and industrial water demand, and irrigated
agriculture89,95–97). Thus, it is challenging to separate the signal of ACC from
that of anthropogenic activities for each of these fluxes and stores. Con-
sistent with previous studies1,14,98, only PRCPTOT is used as a metric of the
intensifying TWC in this study. As an essential component of the TWC,
PRCPTOT has direct impacts on water resources99, agriculture100,101, and
ecosystems102. Our results highlight that the ACC signal previously detected
in the global increase inPRCPTOTarisesmainly fromdry regions, implying
that any global ACC signals captured in other stores of and fluxes of the
TWC also need to be reassessed. The faster TWC in dry regions may have
both beneficial and detrimental consequences, alleviating water scarcity or
exacerbating regional flood risks103. Considering that dry regions include
about half of the global population33 (depending on how they are defined),
the intensifying TWC is likely to require corresponding adaptation
measures.

Methods
Observation-based datasets
We use three gridded observation-based precipitation products (Sup-
plementary Table 1), namely HadEX3 from the Met Office Hadley
Center, which has a spatial resolution of 1.875° × 1.25° and covers
1901–2018104, CRU from the Climatic Research Unit, with a spatial
resolution of 0.5° × 0.5° over 1901–2020105, and GPCC from the Global
Precipitation Climatology Centre, with a spatial resolution of
0.25° × 0.25° over 1891–2019106. Considering the differences among
these datasets107, annual total precipitation (PRCPTOT) anomalies are
normalized by dividing each the values of each product by its climato-
logical (1981–2010) mean PRCPTOT.

In addition, we use the evapotranspiration (ET) from the state-of-
the-art diagnostic remote sensing-based actual ET products—Global
Land Evaporation Amsterdam Model dataset (GLEAM), with a spatial
resolution of 0.25° × 0.25° over 1981–2020108. By employing PME
(precipitation minus evapotranspiration) in place of PRCPTOT to
divide the dry and wet regions, we validate whether PRCPTOT can
represent the long-term spatial patterns of aridity and humidity over
land. The above datasets are interpolated to a 2.5° × 2.5° spatial reso-
lution by bilinear mapping109.

CMIP6 outputs under historical and future scenarios
We use the historical simulations (1901–2020; Supplementary Table 2)
and future projections (2021–2100; Supplementary Table 3) from the
Coupled Model Intercomparison Project Phase 6 (CMIP6; Supplemen-
tary Table 4). The historical experiments include natural forcing (NAT),
greenhouse-gas forcing (GHG), anthropogenic-aerosol forcing (AER),
and historical climate forcing (ALL, including NAT and anthropogenic
forcing (ANT)). ANT is calculated as ALL–NAT110. The CMIP6 future
scenarios are the combination of the Representative Concentration
Pathways (RCPs) and the Shared Socioeconomic Pathways (SSPs),
including SSP126, SSP245, SSP370, and SSP585, from low to high
emissions. As in previous studies14,43, the ALL simulations were extended
after the year 2014 with the SSP585 projections to generate combined
time series (H85, 1901–2100). The unforced pre-industrial control
(PiControl) experiments are used to estimate the internal climate
variability. In total, the CMIP6 scenarios comprise 61 models with 309
realizations (all the realizations from each model), providing monthly
precipitation (“pr”, kg·m−2·s−1), near-surface air temperature (“tas”, K),
specific humidity (“hus”, kg·kg−1), surface air pressure (“ps”, Pa), mer-
idional winds (“va”, m·s−1), and zonal winds (“ua”, m·s−1). The above
CMIP6 datasets are all interpolated to a 2.5° × 2.5° spatial resolution for
consistency, by using bilinear mapping.

Moisture content and transport
In this study, moisture content and transport are represented by the verti-
cally integrated water vapor (VIWV) and vertically integrated water vapor
transport (IWVT), respectively:

VIWV ¼ 1
ρg

Z ps

pt

q dp ð1Þ

IWVT ¼ 1
ρg

Z ps

pt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uq
� �2 þ vq

� �2q
dp ð2Þ

where ρ is water density (kg·m−3), g is gravitational acceleration (m·s−2), pt is
pressure at the top of the atmosphere (Pa), ps is the near-surface pressure
(Pa), q is specific humidity (kg·kg−1), v is meridional wind (m·s−1), and u is
zonal wind (m·s−1). As with PRCPTOT, VIWV and IWVT are normalized.

Pattern-based detection and attribution method
Different detection and attribution approaches22,32,42,93,111–114 have been
applied to extract the ACC signal from observed hydrological and
meteorological variables. Here, we employ a pattern-based detection and
attributionmethod115–119 to capture the ACC signal in the observed increase
in PRCPTOT over dry and wet regions. This method assumes the presence
of characteristic patterns of climate response in different external forcings
(fingerprints, which are a function of longitude and latitude). First, applying
a rotated empirical orthogonal function (REOF)45–47 decomposition to
PRCPTOT CMIP6 simulations under H85 for dry and wet regions during
1901–2100, we obtain the spatial leading mode (EOF1; see Supplementary
Fig. 10a–c for examples) from the spatio-temporal covariance matrix of
PRCPTOT43. EOF1 is the fingerprint, which describes the response of
PRCPTOT to external forcing in the historical period and in the future
scenario of increasing greenhouse gas emissions.

We then project observed and simulated PRCPTOT PRCP(i,j,t) onto
the model-based fingerprints F(i,j) (i.e. the EOF1) in dry and wet regions to
quantify theACC signal andnoise arising from internal climate variability43.

P tð Þ ¼
P

i2lonS;j2latS F i; j
� �

A i; j
� �

PRCP i; j; t
� �

P
i2lonS;j2latS A i; j

� � ð3Þ

whereP(t) is the projection in year t,A is the gird area over region S (dry/wet
regions), and i/j is the longitude/latitude of a grid cell in the dry/wet regions.
If the fingerprint is becoming increasingly apparent in the PRCPTOT, there
will exist an upward trend, which describes the spatial covariance between
the PRCPTOT and the fingerprint as a function of time. In contrast, a
negative trend indicates that the PRCPTOTand fingerprint are increasingly
dissimilar.We calculate theL-length trend inP(t) as theACCsignal S(L)43,48,
which is a single scalar signal of reduced dimensionality from the spatio-
temporal PRCPTOT in the dry/wet regions. In this study, L is set to 58
(length of the period from 1961–2018).

To assess the significance of the ACC signal, we project the internal
climate variability (PRCPTOT from the CMIP6 PiControl simulations)
onto the fingerprint. For a signal of length L years, the noise N(L) is
represented as the standard deviation of all L-length trends in these pro-
jections under PiControl. Finally, we calculate the dimensionless signal-to-
noise ratio: SNR = S(L)/N(L), which provides a measure of the signal’s sig-
nificance (the likelihood of detecting an ACC signal relative to internal
climate variability). If SNR exceeds 1.64 or 2.57, the forcing signal is con-
sidered detectable at the 90% or 99% confidence level120. SNR is also used to
estimate time of emergence, which is the expected year from which the
forcing signals start to emerge relative to natural climate variability.

Optimal fingerprinting method
In addition to the spatial fingerprint extracted by the REOF method, the
optimal fingerprintingmethod50,51,121 can detect the temporal fingerprint by
regressing the observed changes (Y) against the model simulated changes
(X)93,122. Specifically, the observed changes are assumed as the linear sum of
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responses to external forcings, plus internal climate variability. The single-
signal analyses are computed as follows:

Y ¼ X � αð Þβþ ε ð4Þ

where Y is the observed PRCPTOT, X is the simulated PRCPTOT
under individual external forcing, α is the sampling uncertainty ofX, β
is the scaling factor that scales X to match the long-term changes of Y,
and ε is the climate internal variability estimated from PiControl
simulations.We also use two-signal analyses to separate contributions
from NAT and other external forcings (e.g., GHG and AER) to
observed trends9:

Y ¼ XNAT � αNAT
� �

βNAT þ Xother � αother
� �

βother þ ε ð5Þ

where the subscript other indicates the external forcing excludingNAT (e.g.,
ALL, ANT, GHG, and AER). The regression is resolved by using ordinary
least squares (OLS) and total least squares (TLS)51, respectively. To reduce
noise from interannual variability91, the area-averaged time series of
PRCPTOT in dry and wet regions are averaged over consecutive 3 year
intervals. Theβvalues provide ameasure of the (un)certaintywithwhether a
particular external forcing is detected. If the 90% confidence interval (CI) of
β is above zero, the corresponding external signal is detectable at a
significance level of 5%. The attributable PRCPTOT trends in dry and wet
regions are quantified by multiplying the β with the linear trends of the
simulations under different external forcings. The attributable PRCPTOT
trends and their uncertainties are then compared with the observed
PRCPTOT trend to estimate the contributions of different external forcing
signals to PRCPTOT in dry and wet regions35,110.

Data availability
All datasets used in this study are available online. The HadEx3 dataset is
available at https://www.metoffice.gov.uk/hadobs/hadex3/; theCRUdataset
is available at http://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/; theGPCC
dataset is available at https://opendata.dwd.de/climate_environment/
GPCC/html/download_gate.html; the GLEAM dataset is available at
https://www.gleam.eu/; the CMIP6 model simulations are available at
https://esgf-node.llnl.gov/search/cmip6/.

Code availability
The R (version 4.1.2) codes used in this study are available from the cor-
responding author (X.G.) upon reasonable request.
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