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The sensitivity strength of air temperature (T) to surface soil temperature (sST) (namely β hereafter)
constitutes a significant factor in how global climate models quantify changes in the climate. This
study examines how this sensitivity is represented in the CMIP6 models. Results show regional
differences and even contrasts in the β trends at interannual scales between climate models and two
reanalysis products during 1980–2014. At high latitudes in theNorthernHemisphere (NH), β is stronger
in the CMIP6 models than in the reanalysis data. Additionally, the β trends differ between the CMIP6
and reanalysis data, which may be related to the different precipitation (PR) and soil water availability
(PR-ET) trends between the models. In the regions of increasing β intensity at high latitudes in the NH,
sST is more sensitive to PR and PR-ET. Consequently, increasing PR and PR-ET leads to slower sST
changes, potentially making β intensity stronger in CMIP6 models. However, in the reanalysis data,
decreases in PR and PR-ET accelerate sST changes, leading to a weakening of the β intensity. A
resulting implication is that β, based on high-emission scenarios, shows a stronger trend during
2015–2100, although this trend could potentially be overestimated. The findings contribute to a better
understanding of the sensitivity of T to sST and facilitate the assessment of energy exchange between
the land surface and the atmosphere in climate models.

Thegrowingunderstandingof land-atmosphere interactions is drivenby in-
depth studies into land surface factors such as vegetation, soil moisture,
surface soil temperature (sST), and snow cover (SND)1–7. These studies have
also shown that near-surface air temperature (T) and sST are fundamental
variables that govern energy exchange between the land surface and the
atmosphere and thus are critical in land-atmosphere interactions8,9. On the
one hand, alterations in global temperature and precipitation (PR) patterns
lead to substantial changes in subsurface thermal conditions, subsequently
influencing changes in sST10. On the other hand, changes in land surface
factors could either further intensify or hamper T and PR trends11.

The sensitivity of T to sST (β), described here as the regression slope
between sST and T (simply sST-T coupling), quantifies how quickly T
responds to changes in sST. The sST-T coupling is critical for the heat

balance between the Earth’s land surface and the atmosphere, ecosystem
respiration, and vegetation growth12–15. Land-atmosphere coupling is not
only an important indicator for assessing permafrost mapping and mon-
itoring, agricultural production, ecological equilibrium, and thermo-
dynamic processes within the climate system, but also involves multiple
biophysical and biogeochemical processes16–22. The variations in T directly
reveal climate change trends,while sST represents the state of surface energy
and heat transfer conditions23–25. Through the surface energy balance and
interactions within the climate system, sST influences T changes on both
regional and global scales26–30. Changes in sST can indirectly affect T, con-
founded by environmental factors such as solar radiation, soil thermal
conductivity, and soil moisture content20,31–34. For example, the growth of
vegetation and its transpiration processes regulate sST by releasing
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moisture, thereby influencing the surrounding T35,36. Additionally, higher
sST can increase evapotranspiration (ET), resulting in higher humidity
levels that subsequently impact T11,37. Soil water availability (PR-ET),
including soil moisture, snow sublimation, ice coverage, and surface water,
can also regulate the hydrothermal exchange between the atmosphere and
the land surface20.

Several studies have examined changes in β using temperature dis-
parities, numerical models, and nonparametric methods to assess whether
sST tracks changes in T22,33,38. Evidence from local and regional studies
strongly suggests that the relationship between sST and T is inconsistent
over the long termand shows considerable difference between the two34,39–42.
For example, Fang et al.38 and García-García et al.43 highlight the temporal
difference between sST andT changes. This difference is often influenced by
various environmental changes, such as the retreat of glaciers and snow
cover due to global warming, biomass loss, and worsening drought
conditions11,44–48. These factors can hinder or enhance the sST-T coupling.

Most studies that have assessed β are mainly based on historical
observations, which are limited across space and time33,49. Recent advances
in data assimilation have provided a way to dynamically combine modeled
data and observations,making reanalysis productsmore reliable50.While all
these datasets have been helpful in understanding historical β, some
uncertainties persist concerning the impact of global warming on changes
in β.

The CoupledModel Intercomparison Project (CMIP), initiated by the
World Climate Research Program (WCRP), is currently in its sixth phase
(CMIP6), consistently contributing to comprehensive scientific research on
climate change and its impacts from the past into the future51,52. CMIP6
models focus on earth system processes, and numerous studies have vali-
dated the reliability of model datasets at pixel or regional scales53–56. While
these datasets have demonstrated their relevance in projecting the potential
impacts of global warming, certain uncertainties in the data have also been
noted57,58. Several evaluation studies have assessed the uncertainty of climate
model data in various regions, using observational data, reanalysis data, and
various validated datasets54,59,60. For example, Zhao et al. and Dong et al.59,61

evaluated the uncertainties within the CMIP6 datasets using observational
data, revealing internal inconsistencies within the models, especially with
respect to ET. Such previous climate model assessments have guided the
present study, which focuses on analyzing the impact of sST-T coupling
differenceswithinCMIP6onβ to better understandassociateduncertainties
in the prediction results.

The intensity of β, as a significant factor in quantifying climate change,
primarily involves assessing the interannual relationshipbetween sSTandT.
The strength of βmay be influenced by other environmental variables such
as seasonal SND, vegetation cover, and PR43,46,62. While numerous studies
have analyzed historical variations in β and the impact of environmental
conditions using observational data, our focus is to explore how the CMIP6
datasets quantify this sensitivity and to understand the potential implica-
tions of reported deviations in other variables and climate processes on β.
We first assessed the potential differences in interannual and seasonal dif-
ferences between the climate models (CMIP6) and two reanalysis frame-
works (the second Modern Research and Applications Retrospective
Analysis (MERRA2) and the EuropeanCentre forMedium-RangeWeather
Forecasts (ECMWF) fifth generation reanalysis (ERA5) in the historical
period 1980–2014. By analyzing factors influencing β in the two families of
datasets, including trends and correlations of variables such as PR, PR-ET,
SM, SND, andLAI (see SupplementaryTable 1),we identified variableswith
contrasting trends in climatemodels compared to reanalysis datasets. Then,
we investigated the evolution of β to the end of the 21st century under two
projectedwarming scenarios (SSP1-2.6 andSSP5-8.5).This study aims tofill
the gap inβ research, focusing on sSTat a soil depth of 0–0.05mbeneath the
surface vegetation, and its variations between comparative model simula-
tions and reanalysis data. Throughout the study, we conducted detailed data
analysis to understand the differences between climate models and reana-
lysis datasets, focusing on factors that may influence changes in β intensity.
This contributes to amore comprehensive understandingof the evolutionof

keydrivers of climate change andhelps topredict and interpret future trends
in climate change.

Results
Historical β variations and trends
To understand the spatiotemporal characteristics of historical β in the NH,
we computed the mean and trends of the 16-year running window of 2-m
sST (0–0.05m beneath the surface vegetation) and T in the NH during
1980–2014 forCMIP6,MERRA2, andERA5 (Fig. 1). For amore convenient
analysis of the spatial distributionofβ, wedivided theNH latitudes into low-
latitude (0°–30°N), mid-latitude (30°N-60°N) and high-latitude (above
60°N). The results show that the mean spatial distribution of β from the
three datasets is relatively similar over the NH (Fig. 1a). β increases from
north to south, indicating that long-term changes in T sensitivity to sST
change are lower at high latitudes than atmid- and low latitudes. The lower
sensitivity in theNHmay be related to snow and freeze-thaw, where snow is
an effective insulating layer and thus reduces sST variability63. Due to the
thermal inertia of the soil, moisture has a buffering effect by controlling
thermal inertia32. The freeze-thaw cycle affects the state and distribution of
moisture in the soil, resulting in frozen soil having a lower thermal con-
ductivity than unfrozen soil64,65. As a result, the transfer of heat from the
atmosphere to the surface leads to relatively smaller changes in sST. These
result in discrepancies between sST and T changes in high-latitude regions,
resulting in lower sensitivity compared to low-latitude regions.

Compared with the reanalysis data (ERA5 and MERRA2), CMIP6
shows higher β at high latitudes. The spatial distributions of the sensitivity
trends based on CMIP6,MERRA2, and ERA5 are shown in Fig. 1b for only
statistically significant β (p < 0.05). However, sensitivity trends in the two
reanalysis data show contrasting results at high latitudes in the NH com-
pared to the CMIP6 models. The CMIP6 models show that the β trend
increases from 1980 to 2014 in the northern Eurasian region, while the
reanalysis data show a decreasing sensitivity. Meanwhile, over North
America, we found decreases in the CMIP6 models and increases in the
reanalysis.We note that the results of the reanalysis data are consistent with
previous studies that also found a decreasing trend in β in northern Eurasia
in recent decades based on observations8. However, the results indicate the
contrary in some regions for the CMIP6 models β trends. These results
suggest some discrepancy between the two families of datasets in the region.

Figure 1 represents the ensemble average results of the CMIP6models.
To better analyze the differences in β trends between different models, we
calculated the spatial correlations between the β trends of 17CMIP6models
during the historical period and the reanalysis data, as shown in Supple-
mentary Table 2. The spatial correlations of β trends between the ACCESS-
CM2, EC-Earth3, EC-Earth3-Veg-LR, and IPSL-CM6A-LR models with
MERRA2 and ERA5 are positive, while the spatial correlations of the other
models are negative, indicating a majority disagreement.

Next, we explored the β trends in detail by examining the seasonal
changes. Figure 2 shows the interannual variations by seasons ofβ trends for
the models and reanalysis data from 1980–2014. Here, we also found that
the sensitivity strengthof the three datasets varieswith seasons and latitudes.
In spring (MAM), β trend changes are smaller in CMIP6 than those in the
reanalysis data. Nonetheless, β intensity of all three datasets shows an
increasing trend in the low-latitude region of the NH. In the mid-latitude
region, the reanalysis data show a noticeable decreasing sensitivity intensity
trend, while there is little change in CMIP6. We find some differences in β
trends at high latitudes. The CMIP6 β trends in the high-latitude region,
such as the European region, increase, while the β trends in the reanalysis
data decrease. All three datasets show an increasing trend in mid-latitudes,
while CMIP6 sensitivity increases and MERRA2 and ERA5 sensitivity
decreases in low-latitudes.

In summer (JJA), the difference in sensitivity intensity between datasets
is significantly lower. The sensitivity of the three datasets increases to a lesser
extent in high latitudes, decreases in mid-latitudes, and increases in low
latitudes. Figure 2 shows similarβ trends in autumn (SON)patterns to that in
MAM in the NH high-latitude regions. In autumn, the β trend of CMIP6 is
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weaker compared to the reanalysis data. At high latitudes, especially in the
European region, CMIP6 shows an increasing β trend while that of the
reanalysis datadecreases.The sensitivity trends aremore consistent in the low
and middle latitudes. However, some differences are noticeable in the lower
latitudes towards the tropical regions.We also found some contrasting trends
even between the reanalysis products in SON along the Sahelian region,
which is explored later in this paper. The overall spatial distribution of the
seasonal sensitivity trends during the thawing (spring, MAM) and freezing
period (autumn, SON) is consistent with the annual average.

β of the three datasets at low- and mid-latitudes in the NH shows a
decreasing trend inwinter, andCMIP6 still shows an increasing trend in the
European region at high latitudes. In contrast, a decreasing trend is observed
inMERRA2, while no significant change is noted in the sensitivity strength

of ERA5. The presence or absence of snow significantly affects shallow SST
in areas with seasonal snowfall62. The thickness of snow directly affects the
energy transfer between the near-surface and the atmosphere. Seasonal
snow acts as an effective obstacle that separates shallow soil layers from
immediate localmeteorological conditions66. The early disappearance of the
spring snowpack, the shorter duration of the seasonal snowpack, and the
reduction in snow thickness all lead to a weaker snowpack insulating effect
on sST, resulting in a decreasing sensitivity trend in spring in the high-
latitude snowpack regions.

To further investigate the reasons for the β trends differences, we
intercompared the temporal difference of the spatial average of positive β
trends in CMIP6 with corresponding pixels inMERRA2 and ERA5, as well
as regions of negative trends as shown in Fig. 3. Here, we obtained the
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Fig. 1 | Spatial distribution of sensitivity ofT to sST (β) and trend in theNH fromCMIP6,MERRA2, and ERA5 during 1980–2014. aAnnualmean of β. b β trend with a
16-year sliding window. β trends are significant at p < 0.05. The figure shows only statistically significant pixels, while white pixels indicate no statistical significance.
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temporal variations by computing 16-year running window β variations
from 1980 to 2014. Figure 3a shows that the regions of negative β trends in
CMIP6 are consistent with the reanalysis datasets. The results also
demonstrate that the decreasing trends are mainly determined by the
temporal variationofβ after 2005 inbothmodel families.Ontheotherhand,
the regions (Fig. 3b) of positive β trends inCMIP6appear to be consistent in
the temporal variations before 2005. However, the two model families
contrast in their temporal trends from 2005 to 2014. After 2005, the β of the
two reanalysis data decreases, but the sensitivity intensity ofCMIP6data still
increases. Thus, we deduced here that the differences in sensitivity strengths
mainly occur in regionswith increasingCMIP6 sensitivity strength, i.e., low-
latitude and European regions, as shown in Fig. 1. Considering the sensi-
tivity trends at these time scales, we found that β trend differences are
particularly pronounced in the European region, where previous studies
have shown that the sST-T coupling decreases over time in northern Eur-
asia. This decrease is associatedwith higher temperatures and reduced snow
area during snow-free periods, consistent with the results from the reana-
lysis data8.

Possible mechanisms influencing β trends
Several factors could account for the contrasting trends in the two model
families. Here, we computed the slopes (k) and correlations (R2) of PR, PR-

ET, SM, SND, and LAI (see Supplementary Table 1) to consider the influ-
encing factors of β comprehensively. Comparing these variables shows that
both SM and SND exhibit a decreasing trend across climate models and
reanalysis data, while LAI shows no interannual variation in the reanalysis
data, making it unnecessary for further analysis. However, PR and PR-ET
show divergent trends between CMIP6models and reanalysis data, with an
increasing trend in CMIP6 and a decreasing trend in the reanalysis data.
Given the discrepancy in trends for PR and PR-ET within these model
families, we selected these two variables for further analysis to explore the
different trends of β within the models. Figure 4 shows the interannual
trends in PR and PR-ET in the NH and the temporal variation of CMIP6,
MERRA2, and ERA5 PR and PR-ET in areas where the sensitivity strength
of CMIP6 is increasing. The reanalysis data shows a decreasing β in the
region, contrasting with the increasing β in CMIP6. Factors affecting β
differences between CMIP6 and reanalysis data vary at different spatial and
temporal scales. Here, we analyzed the trends and temporal changes of PR
and PR-ET to infer its potential relation with β trends for the entire period
for the NH (Fig. 4). Figure 4a shows consistently positive PR trends inmost
parts of the NH in the CMIP6models, especially across the Eurasian region
and northern Africa. On the other hand, the reanalysis models show
strongly negative trends in these regions. Similarly, the trend of PR-ET
increases in most of the NH in the CMIP6 models; however, the opposite

 150°W  150°W 

 120°W
 

 120°W
 

  9
0°

W
 

  9
0°

W
 

  6
0

°W
 

  6
0
°W

 
  30°W

 

  30°W
 

   0°  
   0°  

  30°E   30°E 
  6

0°E
 

  6
0°E

 

  9
0°

E
 

  9
0°

E
 

 1
2
0
°E

 
 1

2
0

°E
 

 150°E
 

 150°E
 

 180°  

 180°  

 150°W  150°W 

 120°W
 

 120°W
 

  9
0°

W
 

  9
0°

W
 

  6
0

°W
 

  6
0
°W

 
  30°W

 

  30°W
 

   0°  
   0°  

  30°E   30°E 
  6

0°E
 

  6
0°E

 

  9
0°

E
 

  9
0°

E
 

 1
2
0
°E

 
 1

2
0

°E
 

 150°E
 

 150°E
 

 180°  

 180°  

 150°W  150°W 

 120°W
 

 120°W
 

  9
0°

W
 

  9
0°

W
 

  6
0

°W
 

  6
0
°W

 
  30°W

 

  30°W
 

   0°  
   0°  

  30°E   30°E 
  6

0°E
 

  6
0°E

 

  9
0°

E
 

  9
0°

E
 

 1
2
0
°E

 
 1

2
0

°E
 

 150°E
 

 150°E
 

 180°  

 180°  

 150°W  150°W 

 120°W
 

 120°W
 

  9
0°

W
 

  9
0°

W
 

  6
0

°W
 

  6
0
°W

 
  30°W

 

  30°W
 

   0°  
   0°  

  30°E   30°E 
  6

0°E
 

  6
0°E

 

  9
0°

E
 

  9
0°

E
 

 1
2
0
°E

 
 1

2
0

°E
 

 150°E
 

 150°E
 

 180°  

 180°  

 150°W  150°W 

 120°W
 

 120°W
 

  9
0°

W
 

  9
0°

W
 

  6
0

°W
 

  6
0

°W
 

  30°W
 

  30°W
 

   0°  
   0°  

  30°E   30°E 
  6

0°E
 

  6
0°E

 

  9
0°

E
 

  9
0°

E
 

 1
2
0
°E

 
 1

2
0

°E
 

 150°E
 

 150°E
 

 180°  

 180°  

 150°W  150°W 

 120°W
 

 120°W
 

  9
0°

W
 

  9
0°

W
 

  6
0

°W
 

  6
0
°W

 
  30°W

 

  30°W
 

   0°  
   0°  

  30°E   30°E 
  6

0°E
 

  6
0°E

 

  9
0°

E
 

  9
0°

E
 

 1
2
0
°E

 
 1

2
0

°E
 

 150°E
 

 150°E
 

 180°  

 180°  

 150°W  150°W 

 120°W
 

 120°W
 

  9
0°

W
 

  9
0°

W
 

  6
0

°W
 

  6
0

°W
 

  30°W
 

  30°W
 

   0°  
   0°  

  30°E   30°E 
  6

0°E
 

  6
0°E

 

  9
0°

E
 

  9
0°

E
 

 1
2
0
°E

 
 1

2
0

°E
 

 150°E
 

 150°E
 

 180°  

 180°  

 150°W  150°W 

 120°W
 

 120°W
 

  9
0°

W
 

  9
0°

W
 

  6
0

°W
 

  6
0

°W
 

  30°W
 

  30°W
 

   0°  
   0°  

  30°E   30°E 
  6

0°E
 

  6
0°E

 

  9
0°

E
 

  9
0°

E
 

 1
2
0
°E

 
 1

2
0

°E
 

 150°E
 

 150°E
 

 180°  

 180°  

 150°W  150°W 

 120°W
 

 120°W
 

  9
0°

W
 

  9
0°

W
 

  6
0

°W
 

  6
0
°W

 
  30°W

 

  30°W
 

   0°  
   0°  

  30°E   30°E 
  6

0°E
 

  6
0°E

 

  9
0°

E
 

  9
0°

E
 

 1
2
0
°E

 
 1

2
0

°E
 

 150°E
 

 150°E
 

 180°  

 180°  

 150°W  150°W 

 120°W
 

 120°W
 

  9
0°

W
 

  9
0°

W
 

  6
0

°W
 

  6
0
°W

 
  30°W

 

  30°W
 

   0°  
   0°  

  30°E   30°E 
  6

0°E
 

  6
0°E

 

  9
0°

E
 

  9
0°

E
 

 1
2
0
°E

 
 1

2
0

°E
 

 150°E
 

 150°E
 

 180°  

 180°  

 150°W  150°W 

 120°W
 

 120°W
 

  9
0°

W
 

  9
0°

W
 

  6
0

°W
 

  6
0

°W
 

  30°W
 

  30°W
 

   0°  
   0°  

  30°E   30°E 
  6

0°E
 

  6
0°E

 

  9
0°

E
 

  9
0°

E
 

 1
2
0
°E

 
 1

2
0

°E
 

 150°E
 

 150°E
 

 180°  

 180°  

 150°W  150°W 

 120°W
 

 120°W
 

  9
0°

W
 

  9
0°

W
 

  6
0

°W
 

  6
0
°W

 
  30°W

 

  30°W
 

   0°  
   0°  

  30°E   30°E 
  6

0°E
 

  6
0°E

 

  9
0°

E
 

  9
0°

E
 

 1
2
0
°E

 
 1

2
0

°E
 

 150°E
 

 150°E
 

 180°  

 180°  

MAM JJA SON DJF

CMIP6

MERRA2

ERA5

-0.02 -0.01 0 0.01 0.02

 30°N 

 30°N 
 60°N 

 60°N 

 30°N 

 30°N 
 60°N 

 60°N 

 30°N 

 30°N 
 60°N 

 60°N 

 30°N 

 30°N 
 60°N 

 60°N 

 30°N 

 30°N 
 60°N 

 60°N 

 30°N 

 30°N 
 60°N 

 60°N 

 30°N 

 30°N 
 60°N 

 60°N 

 30°N 

 30°N 
 60°N 

 60°N 

 30°N 

 30°N 
 60°N 

 60°N 

 30°N 

 30°N 
 60°N 

 60°N 

 30°N 

 30°N 
 60°N 

 60°N 

 30°N 

 30°N 
 60°N 

 60°N 

Fig. 2 | β trend of CMIP6, MERRA2, and ERA5 in different seasons from 1980 to 2014. Spring (MAM); summer (JJA); autumn (SON); winter (DJF). The β trends are
significant at p < 0.05. The figure shows only statistically significant pixels, while white pixels indicate no statistical significance.

https://doi.org/10.1038/s41612-024-00588-3 Article

npj Climate and Atmospheric Science | (2024)7:43 4



trend is observed in the reanalysis data (Fig. 4b). It is worth noting that there
is a significant difference between the models and reanalysis data with
opposite PR trends (Fig. 4c) in the areas where β in the CMIP6 models
increases. Furthermore, the temporal variation of PR-ET, although smaller
than that of PR, has the opposite PR-ET trends between models and rea-
nalysis data (Fig. 4d). In the regionwhere theCMIP6 sensitivity is rising, the
CMIP6PR andPR-ET show an increasing trend, while that of the reanalysis
data show a decreasing trend.

To further investigate the keymechanisms affecting the differences inβ
trends between climate models and reanalysis data, we computed the sen-
sitivity of PR to sST andT andPR-ET to sST andT. First, we determined the
sensitivities ofPRandPR-ET tosSTandT, respectively. Figure5a represents
the spatial averaging of the sensitivity of PR and PR-ET to sST in the region
of increasing β trends in CMIP6. At the same time, Fig. 5b shows the spatial
averaging of the sensitivity of PR and PR-ET toT in the region of increasing
β trends in CMIP6. The results show that the sensitivity of both PR and PR-
ET to sSTandT tends to decrease in the region of increasingCMIP6β trend,
especially after 2005 when CMIP6 decreases significantly, while reanalysis
data show no significant change. Then, to compare the sensitivity of PR to
sST and T (PR-sST and PR-T) and PR-ET to sST and T (PR-ET-sST and
PR-ET-T) between the climate models and reanalysis data, we subtracted
PR-T from PR-sST and PR-ET-T from PR-ET-sST and calculated the
spatial average of the regions of increasing β trends in CMIP6 (Fig. 5c). A
positive value indicates a higher sensitivity of PR or PR-ET to sST, while a
negative value indicates a higher sensitivity of PRorPR-ET toT.Combining
Supplementary Fig. 2 and Fig. 3, in the region of increasing CMIP6 β during
2005–2014, PR and PR-ET show increasing sensitivity to sST in the CMIP6
models, while there is a slight weakening trend in the reanalyses. This
suggests that during this period, the influence of PR and PR-ET on β in the
CMIP6 models gradually shifts from controlling T changes to controlling
sST changes. In the CMIP6 models, the increase in PR and PR-ET leads to
the evaporation of SM, which absorbs a considerable amount of heat from
the environment and consequently slows down the sST changes. In the
reanalysis data, however, the decrease in PR and PR-ET leads to soil drying
and reduced evaporation. This directs energy primarily to land surface
heating, accelerating sST changes and weakening β intensity. These trends
help explain the differences in β trends between climate models and rea-
nalysis data from 2005 to 2014, as shown in Fig. 3b. Regions across the

Sahelian belt of Africa also show this pattern even more strongly. These
results are consistentwith thefindings in Fig. 4, where PRandPR-ET trends
are opposite between CMIP6 and the reanalysis models. Thus, we suggest
that the differences in how PR and PR-ET trends are represented in the
models are a potentially viable reason for the contrasting sST-T sensitivity
trends.

Future β trends
Figure 6 shows β trends for two future scenarios in the CMIP6 climate
models (2015–2100): a sustainable world of low emissions (Shared Socio-
economic Pathways, SSP1-2.6) and a fossil fuel-driven world of high
emissions (SSP5-8.5) (Fig. 6). In this section, we also averaged the models
with historically positive spatial correlations (HPSC) and historically
negative spatial correlations (HNSC) with theMERRA2 and ERA5. Firstly,
the results from the average of all the CMIP6models and the average of the
models with HPSC show that the regions and magnitudes of positive β
trends in SSP5-8.5 (Fig. 6d, e) aremorepronounced compared to theβ trend
changes in SSP1-2.6 (Fig. 6a, b). This shows that β trends increase with
increasing emission scenarios, both in the total average and in the HPSC
model average (Fig. 6a, b, d, e). Figure 6b, e shows that in the low-latitude
regions of theNH, β trends show anegative trend, while in themid-to-high-
latitude regions, β trends increase. This pattern is stronger with increasing
emission scenarios as well. To understand the potential bias in the future β
trends of the CMIP6 models, we computed the difference between the
HPSC and HNSC (HPSC-HNSC) as shown in Fig. 6c, f. Here, the HPSC
average is used as a relative baseline since it is assumed to be closer to the
truth. In the SSP1-2.6 scenario (Fig. 6c), the HPSC shows a pronounced
increase inβ trends in themid-to-high-latitude regions of theNH.However,
in the SSP5-8.5 scenario (Fig. 6f), HNSC overestimates the β trends for the
future period. These results show that T becomes more sensitive to sST
under the high-emission scenario. This bias is indicated by a higher increase
in β trends in the HNSC models, which would contribute to increasing T
trends as expected in SSP5-8.5.

Discussion
β distribution appears to bemore consistent at low andmid-latitudes, in the
NH, in all the models within the study period, showing that T is more
strongly coupled with sST in these regions (Supplementary Fig. 1). In
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Fig. 3 | Temporal variation of β in CMIP6, MERRA2, and ERA5 from 1980
to 2014. Spatially averaged temporal variation of β for a regions of negative β trends
in themulti-model mean and b regions of positive β trends in themulti-model mean
using a 16-year running window. The red, green, and blue lines are the CMIP6,

MERRA2, and ERA5 results, respectively. x axis is the time beginning with the last
year of the first 16-year running window (e.g., 2005 indicates the running window
from 1990 to 2005). y axis indicates the sensitivity strength. The red shading indi-
cates the standard deviation interval of the 17 CMIP6 models’ sensitivity.
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general, β is influenced by various environmental factors, and its intensity
varies with latitude. The results show that β and its trends in the NH high
latitudes from 1980–2014 are inconsistent between climate models and
reanalysis data, which are related to the differences in PR and PR-ET trends.

Further seasonal analysis reveals that disparities in sensitivity trends
between climate models and reanalysis data primarily manifest during the
freeze-thawperiod, attributed to the insulating effect of snowand the impact

of permafrost on sST, resulting in nonconformity between sST and T
changes in high-latitude regions7,67. Comparing CMIP6 with the reanalysis
data during the thawing and freezing periods, the results of the sensitivity
trend are also contrasting, indicating that CMIP6 does not better reflect the
changes in β. Due to the seasonal differences in the region, it could be
inferred that the differences in sensitivity may be related to the influence of
seasonal snowfall and freezing on sST in the models. Frozen PR is stored in
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the snowpack from autumn to spring, changing the surface albedo and
affecting the radiationandenergyfluxes at the land-atmosphere interface. In
spring, freshwater released from snowmelt contributes to soil infiltration
and directly regulates surface ET68. The overall spatial distribution is

consistent with the annual average sensitivity trend, with the model sensi-
tivity showing an increasing trend in most areas at high latitudes and a
significant decreasing trend in the reanalysis data. In contrast, a possible
reason for the relatively insignificant differences in sensitivity trends during
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the summer could be the frequent PR, which increases surface humidity,
leading to increased evaporation demand and lower land temperatures and
ultimately contributing to a relatively slower rate of sST change33,40. The
interannual variation of sST with respect to T is greater when there is snow
on the land than when there is no snow in summer, indicating that the
change in sST in winter is not necessarily proportional to the change in T.

Thus, CMIP6, MERRA2, and ERA5 data can show inconsistent changes in
sensitivity strength in high-latitude snow or permafrost regions.

sST is a valuable parameter for monitoring climate change as it inte-
grates most processes occurring at and above the Earth’s surface, including
T, PR, snowfall, and vegetation. This study suggests that investigating
whether changes in sST within the CMIP6 models follow T variations

Fig. 6 | Spatial distribution of β trends from 2015
to 2100. β trends for the a–c SSP1-2.6 and d–f SSP5-
8.5 for CMIP6. a, d Average β trends across 17
models. b, e Average β trends from models with
historically positive spatial correlations with reana-
lysis data. c, f The difference between the average β
trends frommodels with historically positive spatial
correlations with reanalysis data and the average
from models with historically negative spatial cor-
relations. The figure shows only statistically sig-
nificant pixels at p < 0.05, while white pixels indicate
no statistical significance.
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contributes to understanding the potential shifts in future climate. Prior
research has found that some CMIP6 models simulate more intense
warming, leading to overestimating warming trends69. Coupled with
increasing sensitivity trends in climatemodels, this could potentially lead to
an overestimation of sensitivity intensity in future periods.

The sensitivity of T to deep soil temperature is not considered in
this study since only soil depths in the range of 0–0.05 m are used. This
may neglect the time lag between sST and T, which may then affect β.
Also, the least squares regression for calculating the sensitivity only
considers the positive values and does not analyze the areas where the
sensitivity is negative. The physical mechanisms of sST and T and the
changes in the sensitivity trend between sST and T at different depths
need to be further explored in future work. We analyzed the trends and
R2 values related to PR, PR-ET, SM, SND, and LAI (see Supplementary
Table 1). Although we selected PR and PR-ET as the primary variables
influencing the β trend, when evaluating the correlation between these
variables and β, we found that SM and SND also play roles in altering β.
This might be due to our use of monthly data, whichmay not adequately
capture the influence of SM and SND on β trends at lower temporal
resolutions. However, these effects may be more pronounced at higher
temporal scales.

Methods
Datasets
In this study, the β for historical (1980–2014) and future (2015–2100)
periods is obtained from CMIP6 models. We considered two future sce-
narios of economic and human development (SSP1-2.6 and SSP5-8.5).
Other variables that were considered are monthly 2-m T, shallow sST, PR,
and ET. Monthly sST and T data were averaged as annual and seasonal
values, and monthly PR and ET was averaged as annual values. In the
CMIP6 climatemodels, sST from 0–0.05mdepth is selected. In addition, to
ensure model performance, provide scientific reference for climate change,
and facilitate analysis and comparison, the model was unified onto a
0.5° × 0.5° grid, andwe focusedon the sensitivity analysis of themulti-model
averageof the 17CMIP6models considered. SupplementaryTable 3 lists the
CMIP6 GCMs used in the study. All the models used the first variation
member (r1i1p1f1) except for GISS-E2-1-G and UKESM1-0-LL, which use
a forcing index of 2.

This study used two reanalysis datasets to validate the sensitivity
calculated from CMIP6 data during the historical period. The sig-
nificance of reanalysis datasets in climate monitoring applications has
gained widespread recognition, and consequently, these datasets are
extensively employed in climate studies. MERRA2 is a National Aero-
nautics and Space Administration (NASA) atmospheric reanalysis from
1980 with a spatial resolution of 0.5° × 0.625° (lon×lat). Compared to
MERRA1, MERRA2 has reduced some of the spurious trends and dis-
crepancies associated with changes in the observations70. ERA5 is a
dataset generated usingmodels and assimilation of various observations
from around the globe, and has a much higher spatial resolution. Like
MERRA2, it has been shown in previous studies to have a better
representation of the spatial distribution of meteorological elements
and changes in trends, with a spatial resolution of 0.25° × 0.25°
(lon×lat)71. For the comparative analysis of CMIP6 and reanalysis data,
the spatial resolution of the data was standardized to 0.5° × 0.5°
(lon×lat) in this study.

Ordinary least squares regression
Currently, many research efforts used ordinary least squares regression to
quantify the soil-atmosphere thermal coupling8,22. Following Chen et al.8, β
is calculated as the slope of the least squares regression between sST and T,
representing sensitivity intensity19. The sensitivity value is in the rangeof 0 to
1.5, with higher values indicating stronger sensitivity. β quantitatively
represents the responsiveness of T to changes in sST, and its intensity varies
with soil depths26. Our primary focus is to examine the interannual rela-
tionship between variations in these two elements.

Assuming that the equation for fitting a straight line is:

y ¼ β � x þ b ð1Þ

where the slope of the fitted straight line is:

β ¼ xy � �x � �y
x2 � ð�xÞ2 ð2Þ

where x indicates sST and y indicates T. We calculated a 16-year running
window for each grid point during the historical and future periods, using
linear trends in β for the runningwindows (20windows in total) to examine
interannual variation in sensitivity. Thefluctuations in the data are analyzed
by removing the linear trend in each window before computing β, and
removing the variation in the data caused by factors such as seasons.

To investigate theβ change and the factors influencing thedifference in
β trend between the climate models and reanalysis data, we divided the
sensitivity trend of CMIP6 into regions of increasing and decreasing sen-
sitivity trends. We also computed the corresponding trends in the PR and
PR-ET datasets, along with computing the sensitivity to changes in these
variables. Through surface water balance relationships, we approximated
the amount of available water by the difference between PR and ET72. A
positive sensitivity indicates that PR is more sensitive to sST, and a negative
sensitivity indicates that PR ismore sensitive toT. Thus, we compared the β
of theCMIP6modelswith ERA5 andMERRA2, and analyze the reasons for
the differences in sensitivity changes.

Data availability
Climate model data is available from the CMIP6 official website: https://
esgf-node.llnl.gov/projects/cmip6/. MERRA2-Reanalysis data can be
downloaded from the following website: https://disc.gsfc.nasa.gov/datasets?
project=MERRA-2. ERA5-Reanalysis data can be downloaded from the
following website: https://cds.climate.copernicus.eu/cdsapp#!/search?type=
dataset.

Code availability
The codes used in this study can be obtained from the corresponding author
upon request.
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