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Near-term projection of Amazon rainfall
dominated by phase transition of the
Interdecadal Pacific Oscillation
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The Amazon basin experienced a prolonged drought condition during the 2010s, leading to a large-
scale forest degradation destructive to ecosystems and human society. Elusive are issues as to
whether the decadal drought is driven by external forcing or internal variability, and whether the
drought will continue or recover soon. Using large ensemble simulations from a state-of-the-art
climate model, here we find a negative-to-positive phase transition of the Interdecadal Pacific
Oscillation (IPO) explains ~45% (~40–49%) of the observed decadal drought of Amazon rainfall since
2010, much greater than the role of external forcing (~12%). Constraining future IPO phase transition
reduces the uncertainty by ~38% from a range of −0.73 to+ 0.31mm day−1 decade−1 to a range of
−0.42 to+ 0.23mm day−1 decade−1, of the near-term Amazon rainfall projection before 2040 under a
mid-intensity emission scenario. Thus, the IPO plays a crucial role in the post-2010 drying and the
near-term rainfall projection.

The Amazon basin accounts for less than 0.05% of the global land area but
hosts ~40% of the global tropical rainforests1–3 and ~15% of the freshwater
input to the world oceans4,5, and is therefore one of the most important
components of theEarth’s climate system.A robust seasonality is seen in the
Amazon climate, alternating between wet and dry periods6: The rainy sea-
son, influenced by the South American monsoon7,8, runs from austral
summer to autumn9, which provides the major water source for the
hydrological cycle, agricultural irrigation, and billions of animals and
residents10,11. Extreme rainfall change in the Amazon basin reduces the
stability and diversity of local ecosystems and causes substantial life and
economic losses12,13. Assessing Amazon rainfall is therefore of great
importance in projecting changes in regional climate and biological
environment.

Rainfall over the Amazon rainforest decreased rapidly in the past
decade. In 2005, 2010, and 2015, prolonged and widespread droughts
occurred, causing large-scale bushfires, forest degradation, biomass decline,
species death, and dramatic socioeconomic loss14–19. The frequent occur-
rences of severe droughts have raised interest in the causes. Several lines of
evidence suggest that sea surface temperature (SST) variations, including El
Niño-Southern Oscillation (ENSO) and north tropical Atlantic warming,
are responsible for unusually decreased rainfall on the interannual

timescale20–22. During an El Niño event, anomalous SST warming develops
in the central-eastern tropical Pacific, weakening the west-minus-east SST
gradient in the tropical Pacific and the Walker circulation, suppressing the
descending branch in the central-eastern equatorial Pacific and ascending
branch in the tropical South America and Atlantic. The suppressed
ascending branch reduces Amazon rainfall through weakening the deep
convectionover the landandblockingmoisture transport fromtheocean. In
addition, anomalous SST warming in the north tropical Atlantic causes a
northward displacement of the Intertropical Convergence Zone (ITCZ),
reducing the Amazon rainfall.

Beyond the interannual anomalies, the Amazon rainfall can be influ-
enced by decadal-to-multidecadal internal variability. For example, a
positive phase of the Interdecadal Pacific Oscillation (IPO) weakens the
Walker circulation and leads to more frequent and intense El Niño events,
leading to a prolonged drying of the Amazon basin23. A strong correlation
(r =−0.70; p < 0.01) between the time series of the IPOandAmazon rainfall
during the period of 1950–2019 indicates a substantial IPO modulation on
the decadal variation of Amazon rainfall (Supplementary Fig. 1). The
Atlantic Multidecadal Oscillation (AMO) also plays a role, with its positive
phase driving a northward shift of Atlantic ITCZ, decreasing the Amazon
rainfall24–26. However, there is no agreement yet on the mechanism of the
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prolonged reduction of rainfall in the past decade. Specifically, whether
external forcing or internal variability dominates in driving the decadal
drought, and their relative contribution remains debatable23,27.

Changing the hydrology of Amazonia in a warmer climate is another
issue of concern. Climate models agree in projecting a drier Amazon with
increasing frequency of droughts, as driven by the Pacific and Atlantic SST
change on the long-term scale28–30. However, internal variability affects the
near-term projection, but whether the effect of internal variability will
overwhelm the near-term change induced by anthropogenic forcing is
unknown.Amore reliable projection ofAmazon rainfall can be obtainedby
predicting the evolution of internal decadal variability.

Previous studies assessed Amazon rainfall changemostly based on the
multi-model but single-member projections28–31. Under this approach, it is
difficult to separate the role of internal variability from external forcing.
Recent advances in the large ensemble project from individual models
facilitate anassessment of contributions by internal variability underclimate
change32. In particular, employing a single-model initial-condition large
ensemble simulation proves valuable for discerning the relative role of
internal variability in near-term projections33–35. Here, we use a set of 100-
member simulations from the latest Community Earth SystemModel Large
Ensemble Project (CESM2-LENS)36, to investigate whether and to what
extent the recentAmazondrought is attributed to internal variability, and to
assess its constraint on projected change before 2040. We find that the
Interdecadal Pacific Oscillation (IPO) has dominated the decreasing
Amazon rainfall in the past decades, and will constrain the near-term
change.

Results
Internal variability rather than external forcing drives recent
Amazon drought
Whether the recent drought condition in the Amazon basin is driven by
external forcing or internal variability is an important issue but remains
elusive. The 100-member CESM2-LENS experiments are used to address
this issue, which are under the same external forcing of historical
anthropogenic and natural forcing (1850–2014) and future greenhouse
gas forcing (2015–2100) but different oceanic and atmospheric initial
states36. We take the ensemble mean of all members as the external
forcing signal and the inter-member differences as the internal variability
signal. We examine the change of Amazon wet-season (December-April,
DJFMA) rainfall during 2010–2019 in observation and CESM2-LENS.
Observed rainfall change features a significant decrease in much of the
Amazon basin, with an averaged reduction of −0.80mm day−1 decade−1

which is statistically significant above the 95% confidence level (Fig. 1a,
b). The externally-forced rainfall change represented by the ensemble
mean is however weak and insignificant over the Amazon basin, with a
slight reduction of −0.098mm day−1 decade−1, which only explains
~12% of the observed drought (Fig. 1a, c). Rainfall change from internal
variability, represented by the differences of individual members, exhibits
a wide range from−0.97 to+0.63mm day−1 decade−1 encompassing the
observed drought rate (Fig. 1a).

We focus on two sub-ensembles with 10 members of the largest
negative and positive rainfall changes, respectively (hereafter “dry10” and
“wet10”). The dry10members produce a significant decrease in rainfall over
theAmazonbasin,with a sub-ensemblemean reductionof−0.69mmday−1

decade−1 comparable to the observation (Fig. 1a, d). The wet10 members
show an opposite situation with significantly wetting over the basin and a
sub-ensemble mean increase of+0.51mm day−1 decade−1 (Fig. 1a, e). Such
contrasting changes again highlight the role of internal variability in mod-
ulating the rainfall change in the Amazon basin. Therefore, the observed
reduction of Amazon rainfall in the past decade, which is in part driven by
external forcing, can be masked by internal variability.

Dominant influence of the IPO
To identify which internal variability dominates theAmazon drought in the
recent decade, we examine the SST change during the same period of

2010–2019 in both observation and CESM2-LENS. The CESM2-LENS
simulate a realistic mean state of Amazon rainfall compared with obser-
vation (Supplementary Fig. 2), and a reasonable connection between the
IPO and Amazon rainfall, with an ensemble mean correlation coefficient of
−0.48 during the period of 1950–2019 (Supplementary Fig. 3). The
observed SST change is characterized by a positive-IPO-like pattern in the
Pacific (Fig. 2a), while the ensemble mean SST change shows no well-
defined spatial pattern but nearly homogeneous warming (Fig. 2b). By
contrast, the dry10members exhibit an SST warming in the central-eastern
tropical Pacific, reminiscent of a positive IPO in the tropical region (Fig. 2c).
We calculate the SST change difference of sub-ensemble mean between the
dry10 and wet10 members, which resembles the positive-IPO-like pattern
with a strong pattern correlation (r = 0.72; p < 0.01 based on the Cross-
Correlation Function test) with the observation (Fig. 2d). We also find a
significant negative correlation (r =−0.56; p < 0.01 based on the Cross-
Correlation Function test) between changes of the IPO andAmazon rainfall
among 100members (Supplementary Fig. 4a). Such a coherent relationship
can be seen in the 2000-year pre-industrial control run of CESM2 (Sup-
plementary Fig. 5). In contrast, other internal variability such as the AMO,
does not show a significant correlation (Supplementary Fig. 4b). These lines
of evidence support a dominant influence of the IPO on the decreasing
Amazon rainfall in the recent decades.

We use CESM2-LENS to quantify the contribution of the IPO on the
recent Amazon drought, by adjusting the phase transition of the IPO in each
member according to the observed phase transition of the IPO trend during
2010–2019. First, we remove the member-simulated IPO-related Amazon
rainfall change; then, we add the observed IPO-related Amazon rainfall
change by compensating the difference from the observed IPO phase tran-
sition to the simulated IPO phase transition in each member. As such, the
random evolution of IPO in each member is replaced by the observed IPO
phase transition.We conduct a linear regression ofAmazon rainfall variation
onto the IPO over the period of 2010–2019. The adjusted Amazon rainfall
change can be considered due to both external forcing and the observed IPO
phase transition during 2010–2019. The ensemble mean of the adjusted
Amazon rainfall reduction is −0.45 (−0.50 to −0.40) mm day−1 decade−1,
accounting for ~56% (~50–62%) of the observed change (red bar of “IPO” in
Fig. 2e); the ensemble mean of IPO-induced Amazon rainfall reduction is
−0.36 (−0.39 to −0.32) mm day−1 decade−1, accounting for ~45%
(~40–49%) of the observed change, which is much greater than contribution
from external forcing and the AMO (blue bar of “IPO” in Fig. 2e).Moreover,
the Amazon rainfall reduction is significantly enhanced and distinguishable
from zero after the IPO adjustment (Fig. 2f), highlighting the crucial role of
the observed IPO phase transition in driving the recent drought.

IPO-induced uncertainty in projected Amazon rainfall
Since the IPO greatlymodulates observed Amazon rainfall change, we assess
the extent to which the phase transition of the IPO might influence the
projectionofAmazon rainfall. The ensemblemeanofCESM2-LENSdisplays
a sustained decrease of Amazon rainfall under greenhouse warming in the
21st century, which is consistent with previous studies22,28,29; however, large
uncertainty from internal variability exists across different members, espe-
cially for the near-term evolution of Amazon rainfall (Fig. 3a). We similarly
take the sub-ensembles of tenmemberswith driest andwettest rainfall trends
over the period of 2020–2039. Despite a slight negative trend of −0.13mm
day−1 decade−1 in the ensemblemean, the dry10 andwet10 show an opposite
trend of −0.47 and +0.16mm day−1 decade−1, respectively (Fig. 3a). The
difference of rainfall trends between dry10 andwet10 is significant andmuch
greater than externally-forced trend (Fig. 3b, c). Hence, it is important to
reduce the uncertainty in the near-term projection of Amazon rainfall.

To illustrate some uncertainty of near-term projection comes from the
IPO, we show the spatial pattern of SST trend during 2020–2039. The
ensemble mean SST trend depicts a well-defined El Niño-like warming
pattern in the equatorial Pacific but homogeneous warming in other basins
(Fig. 3d). The difference of SST trends between dry10 and wet10, however,
resembles a positive-IPO-like pattern with warming in the central-eastern
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equatorial Pacific but cooling in the northwestern and southwestern Pacific
(Fig. 3e).We regress the projected grid-point rainfall and SST trends against
projected Amazon rainfall trend during 2020–2039 for the inter-members.
There is a prominent negative rainfall anomaly center over the Amazon
basin, in association with the positive IPO-like pattern in the Pacific (Sup-
plementary Fig. 6). Thus, the influence of the IPO is the largest uncertainty
source of near-term projection of Amazon rainfall.

Near-term projection of Amazon rainfall constrained by the IPO
Because a phase transition of the IPO leads to large uncertainty in the near-
term projection of Amazon rainfall, we can narrow the projection uncer-
tainty by removing the IPO’s influence. To quantify how much the

uncertainty of theprojectedAmazon rainfall trend is contributedby the IPO
phase transition, we removed the IPO’s influence by taking out the linear
regression of Amazon rainfall variation onto the IPO from the original
Amazon rainfall trend during 2020–2039 in eachmember, so that the rest of
rainfall trend is contributed by external forcing and other internal varia-
bility. The probability distribution of Amazon rainfall trends narrows after
excluding the IPO’s influence, with the spread reduced by ~38% from a
range of −0.73 to +0.31mm day−1 decade−1 to a range of −0.42 to
+0.23mm day−1 decade−1, translating to a reduction of 31% in the inter-
member SD from 0.182 to 0.126, or a reduction of 22% in the spread
between the 5th and 95th percentile values from 0.58 to 0.45mm day−1

decade−1 (Fig. 4a).
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Fig. 1 | Observed and model-simulated trends of Amazon rainfall during
2010–2019. a Time series of 9-year running mean DJFMA Amazon rainfall
anomalies (averaged over 12°S-2°N, 75°W-48°W) from observation (black line),
ensemble mean of CESM2-LENS (gray line), sub-ensemble mean of 10 members
with the wettest trends (“wet10”, green line) and driest trends (“dry10”, brown line)
during the period of 2010–2019. Shading shows the SD of inter-member spread,
indicating the effect of internal variability. b Spatial pattern of observed DJFMA

rainfall trends during the period of 2010–2019. Stipples denote the trend is statis-
tically significant at the 95% confidence level by the Mann–Kendall nonparametric
method. c Same as b, but for CESM2-LENS ensemble mean. Stipples denote the
trend is statistically significant by whether at least 80 of 100 members agree with the
sign of ensemble mean. d, e Same as b, but for d dry10 and e wet10 sub-ensemble
mean. Stipples denote the trend is statistically significant at the 95% confidence level
by the Student’s t-test.
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To depict the effect of the IPO on the projected Amazon rainfall trend,
we assume a near-term phase transition of the IPO could be precisely pre-
dicted. Here we used a phase transition of the IPO from−0.5 °C to+0.5 °C
(or vice versa) over 2020–2039. We add the impact of such a negative-to-
positive (or positive-to-negative) IPO phase transition to the IPO-removed
Amazon rainfall trend, by using the linear regression as mentioned above.
Given a typical negative-to-positive IPO phase transition of +1 °C over the
20-year period, the100members showanensemblemeanofAmazon rainfall
trend of −0.35mm day−1 decade−1, much greater than externally-forced
ensemble mean of −0.13mm day−1 decade−1 without such an IPO phase
transition. A positive-to-negative IPO phase transition of−1 °C results in an
ensemble mean of +0.12mm day−1 decade−1, which is in the opposite sign
with the externally-forced trend. There is a 14% increase of probability (from
80 to 94%) with a decreasing Amazon rainfall trend in response to a+1 °C
phase transition of the IPO, but adropof 53% inprobability (from80 to27%)
for a−1 °C phase transition of the IPO (Fig. 4b).

Discussion
A 100-member large ensemble from CESM2 reveals that an IPO transition
from negative-to-positive phase contributes to ~45% (~40–49%) of the
observed decadal drought of Amazon rainfall since 2010, much greater than

the role of external forcing (~12%). Further, the IPO evolution substantially
affects the near-term projection of Amazon rainfall, introducing large
uncertainty to the near-term projection. Such uncertainty reduces by ~38%
after removing the IPO’s influence. Thus, predicting the near-term phase
transitionof the IPOwouldgreatly improve theprojectionofAmazonrainfall
change in the coming decades. A reliable projection of Amazon rainfall
change is essential for assessing regional climate change, evaluating the
impacts, and managing the associated risks. In anticipation of the growing
number of large ensemble simulations in the future, it becomes imperative to
assessmulti-model projectionof near-termAmazon rainfall changes in order
to reduce uncertainty from the single-model large ensemble approach.

Methods
Observational and model data
Monthly gridded rainfall observation is fromClimaticResearchUnit (CRU)
v4.06, covering the period of 1950–2019 with a 0.5° horizontal resolution37.
Monthly gridded SSTdata is from theHadleyCentre Sea Ice andSea Surface
Temperature dataset (HadISST) v1.1, covering the period of 1950–2019
with a 1° horizontal resolution38. Monthly anomalies of rainfall and SST
referenced to the whole period are constructed by removing the monthly
climatology.

Fig. 2 | Contributions of the IPO to observed Amazon rainfall change during
2010–2019. a Spatial pattern of observed DJFMA SST trends during the period of
2010–2019. Stipples denote the trend is statistically significant at the 95% confidence
level by the Mann–Kendall nonparametric method. b Same as a, but for CESM2-
LENS ensemblemean. Stipples denote the trend is statistically significant bywhether
at least 80 of 100 members agree with the sign of ensemble mean. c, d Same as a, but
for c dry10 and d difference between dry10 and wet10. Stipples denote the trend is
statistically significant at the 95% confidence level by the Student’s t-test. e From left
to right are the observed (black bar), externally-forced (yellow bar), IPO-

contributed, and AMO-contributed Amazon rainfall trends during the period of
2010–2019. The IPO/AMO-contributed trends are further divided into original
IPO/AMO-related trends (blue bars) and total trends after IPO/AMO adjustment
(red bars). Error bars show the 5th and 95th percentile of bootstrapped ensemble
mean trends. f Histograms (bars) and fitted distribution (lines) of Amazon rainfall
trend before (blue) and after the IPO adjustment. Dashed lines show the ensemble
mean of the two distributions. The difference between the distribution before and
after adjustment is statistically significant at the 95% confidence level by the
Kolmogorov–Smirnov nonparametric test.
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To assess the relative contributions of external forcing and
internal variability, we use outputs from the large ensemble of
Community Earth System Model 2 (CESM2-LENS), containing 100
members forced under historical anthropogenic and natural forcings
up to 2014, and thereafter future greenhouse gas forcing under the
Shared Socioeconomic Pathway (SSP) 3–7.0 emission scenario till
2100. Different mean states between 100 members are initialized to
enable an assessment of oceanic and atmospheric contributions to
ensemble spread36. The period of 2010–2019 focused in our study is
connected by the period of 2010–2014 from historical simulations
and 2015–2019 from SSP3–7.0 simulations. In addition, a 2000-year
output from the pre-industrial control simulation of CESM2 is used
to verify the decadal modulation of IPO on Amazon rainfall.

Separation of external forcing and internal variability
A 9-year running mean is applied to raw data in the observations and
CESM2-LENS to extract decadal signals. Because allmembers rununder the
same external forcing, the ensemble mean of all members can be treated as
the response to external forcing, and the inter-member difference can be
regarded as arising from internal variability. For a climate variable X, the
separation of external forcing and internal variability in member i can be
described as:

XðiÞ ¼ Xexternal þ XinternalðiÞ; i ¼ 1; 2; :::; 100 ð1Þ

whereXexternal is the ensemble mean of 100members, taken as the response
to external forcing.Xinternal(i) is the residual of originalX(i)minus externally-

Fig. 3 | Projected Amazon rainfall change and associated SST trend in the near
future. a Time series of 9-year running mean DJFMA Amazon rainfall anomalies
from CRU (black line, 1950–2019) and CESM2-LENS ensemble mean under his-
torical period (gray line, 1950–2019) and future SSP3–7.0 scenario (red line,
2020–2100). Green and brown lines denote the sub-ensemble mean of 10 members
with the wettest trends (wet10) and driest trends (dry10) during the period of

2020–2039, respectively. Shading of each line shows the SD of inter-member spread
indicating the effect of internal variability. b, c Spatial pattern of b ensemble mean of
rainfall trend and c trend difference between dry10 and wet10 during 2020–2039.
d, e Spatial pattern of d ensemble mean of SST trend and e trend difference between
dry10 and wet10 during the period of 2020–2039. Stipples denote the trend that is
statistically significant.

https://doi.org/10.1038/s41612-024-00587-4 Article

npj Climate and Atmospheric Science |            (2024) 7:46 5



forced signal Xexternal, taken as the deviations in each member arising from
internal variability.

Definition of climate indices
The Amazon rainfall index is calculated by the 9-year running mean
of wet-season (December-April, DJFMA) rainfall anomaly averaged
over the region of 12°S-2°N, 75°W-48°W (ref. 22). We define the IPO
as the 9-year running mean of the Triple Pacific Index, which is the
difference between the DJFMA SST anomaly averaged over the
central-eastern equatorial Pacific (10°S-10°N, 170°E-90°W) and the
average of the DJFMA SST anomaly in the northwestern (25°N-45°N,
140°E-145°W) and southwestern Pacific (50°S-15°S, 150°E-160°W)39.
For observations, the IPO index is constructed using detrended SST
anomaly; for each member i in CESM2-LENS, the IPO index is
constructed using SSTinternal(i). We define the AMO as the 9-year
running mean of DJFMA SST anomaly averaged over the North
Atlantic Ocean (0°−65°N, 80°W-0°) with the global mean (80°S-
80°N, 180°W-180°E) removal40.

Quantifying IPO contribution to Amazon rainfall change
Here we utilize a well-documented approach based on the single-model
initial-condition large ensemble simulation to quantify the contribution of
IPOonAmazon rainfall change33–35. To evaluate the contribution of the IPO
phase transition to the recently observed decadal drought of Amazon
rainfall during 2010–2019, we adjust the IPO phase in differentmembers to
the observation during the same period. The adjusted Amazon rainfall

change
∂ARadjðiÞ

∂t is given by

∂ARadjðiÞ
∂t

¼ ∂ARexternal

∂t
þ ∂ARinternal�adjðiÞ

∂t
; i ¼ 1; 2; :::; 100 ð2Þ

where ∂ARexternal
∂t is the externally-forced Amazon rainfall change during

2010–2019.
∂ARinternal�adjðiÞ

∂t is the internally driven Amazon rainfall change
after the adjustment of the IPOphase transition during 2010–2019, which is
calculated by

∂ARinternal�adjðiÞ
∂t ¼ ∂ARinternalðiÞ

∂t þ rAR;IPOðiÞ � ∂IPOobs
∂t � ∂IPOðiÞ

∂t

� �

rAR;IPOðiÞ ¼ ∂ARðiÞ
∂IPOðiÞ

ð3Þ

where ∂ARinternalðiÞ
∂t is the internally driven Amazon rainfall change before the

adjustment of the IPO phase transition in member i during the period of
2010–2019, rAR;IPOðiÞ is the regression coefficient of Amazon rainfall index

onto IPO index in member i during the period of 2010–2019. ∂IPOobs
∂t is the

observed change of IPO index during the period of 2010–2019, ∂IPOðiÞ∂t is the
simulated changeof IPO index inmember iduring theperiodof 2010–2019.
The relative contribution of IPO on observed decadal drought of Amazon
rainfall is therefore taken as the percentage of the ensemble mean of
∂ARinternal�adjðiÞ

∂t to the observed change. Similar processes are applied to cal-
culate the contribution of AMO.

Fig. 4 | Projected Amazon rainfall trend adjusted
by an IPO phase transition. a Histograms (bars)
and fitted distribution (curves) of Amazon rainfall
trend from 100 members during the period of
2020–2039. Gray bars and black curves denote the
occurrences of the original Amazon rainfall trend;
pink bars and red curves denote Amazon rainfall
trends after removing the IPO’s influence by linear
regression. Black and red dots represent the
ensemble mean of “original” and “IPO-removal”
rainfall trend, respectively, together with horizontal
lines showing the ranges of the 5th and 95th per-
centile in the two distributions. b Gray bars and
black curve are the same as a, while the yellow and
blue bars/curves denote Amazon rainfall trends
adjusted by a common negative-to-positive IPO
phase transition of +1 °C (yellow), and a common
positive-to-negative IPO phase transition of −1 °C
(blue), during 2020–2039. Black, yellow, and blue
dots represent the ensemble mean of each distribu-
tion. These three distributions are significantly dif-
ferent from each other at the 95% confidence level by
the Kolmogorov–Smirnov nonparametric test.
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To determine how much the IPO phase transition helps to constrain
the uncertainty of Amazon rainfall trend in the near future, we extract and
remove the Amazon rainfall trend induced by IPO phase transition by

∂ARnon�IPOðiÞ
∂t ¼ ∂ARðiÞ

∂t � ∂ARIPOðiÞ
∂t

∂ARIPOðiÞ
∂t ¼ rAR;IPOðiÞ � ∂IPOðiÞ∂t ; i ¼ 1; 2; :::; 100

ð4Þ

where ∂ARnon�IPOðiÞ
∂t is the Amazon rainfall trend without IPO’s influence in

member i during the period of 2020–2039, ∂ARIPOðiÞ
∂t is the IPO-contributed

Amazon rainfall trend inmember iduring the period of 2020–2039, ∂IPOðiÞ∂t is
the trend of IPO index in member i during the period of 2020–2039, and
rAR;IPOðiÞ is the regression coefficient of Amazon rainfall index onto IPO
index in member i during the period of 2020–2039.

Data availability
Data related to the paper can be downloaded from the following: CRUv4.06
at https://crudata.uea.ac.uk/cru/data/hrg/; HadISST v1.1 at https://www.
metoffice.gov.uk/hadobs/hadisst/; CESM2-LENS at https://www.
earthsystemgrid.org/dataset/ucar.cgd.cesm2le.output.html;

Code availability
Codes for this study are available upon reasonable requests from the cor-
responding author.
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