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Climate change linked to drought in Southern Madagascar
Angela Rigden 1✉, Christopher Golden 2, Duo Chan3 and Peter Huybers 4

Southern Madagascar experienced a prolonged drought over the last five years, but whether these conditions are a manifestation
of global climate change has been unclear. Here, we document trends beginning as early as 1980 towards a later rainy-season onset
across three distinct remotely sensed indicators: precipitation, soil moisture, and vegetation greenness. All three indicators closely
covary, particularly over the last decade when satellite observational resolution and accuracy is greatest. Furthermore, observed soil
moisture trends early in the rainy season agree with the mean from CMIP6 historical and SSP5-8.5 simulations, but are distinct from
pre-industrial control simulations, implicating anthropogenic changes in radiative forcing as the source of the trends. Physically,
these models simulate a poleward migration of the mid-latitude jet that leads to a delay in the seasonal steering of storm tracks
over Southern Madagascar. Soil moisture trends driven by anthropogenic forcing made the recent drought significantly more likely
over 2017–2022 (p < 0.01), and such droughts are expected to become increasingly likely over this century. These results indicate
that, although Madagascar has not substantially contributed to global greenhouse gas emissions, farmers in Southern Madagascar
will need to adapt to drier conditions early in the rainy season as a consequence of global climate change.

npj Climate and Atmospheric Science            (2024) 7:41 ; https://doi.org/10.1038/s41612-024-00583-8

INTRODUCTION
Shortfalls in local food production were caused by a multi-year
drought in Southern Madagascar, an event that was called the first
climate change driven famine1. A subsequent analysis by the
World Weather Attribution (WWA) group, however, led to a
conclusion that climate change played only a limited role in
causing the extremely low rainfall between 2019 and 20212. The
WWA group focused on two-year running average precipitation to
define baseline conditions, in keeping with the prolonged drought
in Madagascar, and relied upon precipitation records from ERA53

and CHIRPS4 to estimate the return period of the observed
drought. Although ERA5 and CHIRPS are state-of-the art with
respect to meteorological reanalyses and precipitation reconstruc-
tions, respectively, these products do not definitively monitor
multi-decadal trends on account of a dearth of in-situ meteor-
ological data available for Southern Madagascar and changes in
observational platforms and coverage5. For example, there are
only three precipitation gauges in Southern Madagascar that are
input to the CHIRPS dataset, and these three stations are
representative of coastal climates and incomplete in their record
(Supplementary Fig. 1).
Furthermore, alterations in the hydrological cycle with conse-

quence for agricultural outcomes can occur in the absence of
annual-average changes, particularly in Southern Madagascar.
Precipitation in Southern Madagascar is strongly seasonal (Fig. 1),
peaking around 200 mm month−1 in January but with climato-
logical values of less than 10 mm month−1 in July and August
(Supplementary Fig. 2). Since water is limited for much of the year,
farming in Southern Madagascar tracks the seasonal cycle of rain6.
Cereals and cassava, along with other vegetables, are grown
during the rainy season, October through February7. Cereals and
most vegetables are harvested as the rains subside between
March and June, whereas cassava is harvested in the dry season,
July through September7. Surveys of Malagasy farmers indicate
that the cycle of rains and attendant cropping calendars are

critical determinants of food production8, in addition to consistent
rain throughout the wet season. A later onset of rains exposes
crops to greater water stress, delays maturation, and lengthens
the lean season7.
Observational data indicates decadal trends in Southern

Madagascar’s seasonal hydrologic cycle. Analyses of precipitation
gauges in the Southern Madagascar cities of Toliary and
Taolagnaro covering 1950–2018 show a trend toward delayed
onset of the rainy season5. A similar pattern is found in
precipitation records in South Africa9 that have been shown to
co-vary with climate in Southern Madagascar10. The shift in
seasonality across the interior and northeastern regions of South
Africa was linked to Hadley cell expansion and the associated
poleward shift of storm tracks9.
In this study, we characterize the role of climate change on

seasonal water availability in Southern Madagascar using climate
model simulations and diverse observational metrics of water
availability. Our analysis is divided into three sections. First, we
characterize the seasonal hydrologic fingerprint expected from
anthropogenic climate change using forced and control climate
simulations. Second, we assess if the seasonal climate change
fingerprint is discernible from well-resolved, remotely sensed
observational data. Finally, we consider the recent drought in
Southern Madagascar in the context of these observational trends
and simulated fingerprints.

RESULTS
Climate change fingerprint of trends from simulations
The question of whether hydrologic trends in Southern Mada-
gascar are related to anthropogenic climate change can be
assessed in the context of simulations that include anthropogenic
forcing relative to control simulations that do not (Fig. 2).
Specifically, we evaluate CMIP6 models that output soil moisture
in simulations representing pre-industrial control, historically
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forced, and future forced conditions, the latter following the SSP5-
8.5 scenario (Supplementary Table 1). Of twelve available models,
nine are selected for further analyses based upon their match with
historical seasonal variations (see Methods).
Trends in simulated soil moisture between 1982 to 2099 from

the forced climate models show a clear seasonal pattern (blue
lines in Fig. 2a), with consistent negative trends in soil moisture
projected during the onset of the rainy season (Sep-Nov) across all
retained models. The average trend across the nine climate
models during the onset of the rainy season is a 2.3% decrease in
soil moisture per decade (model spread: −4.0% to −1.1%). The
sign of the trends across other seasons are model dependent,
though the across-model average trend in soil moisture is
negative for all months. We refer to the across-model average of
monthly trends from the forced climate model simulations as the
“seasonal climate change fingerprint” of trends (represented by
the navy line in Fig. 2a). Note that a similar seasonal climate
change fingerprint emerges from the forced simulations if trends
are estimated from 1982 to 2022 (Supplementary Fig. 7),
overlapping the observational period, though estimates over this
shorter interval are nosier. In contrast, the pre-industrial control
simulations show no significant changes in soil moisture for any
month (orange shading in Fig. 2a), indicating that the trends in the
forced model are a result of anthropogenic climate change.
The underlying dynamics that produce consistent reductions in

soil moisture in Southern Madagascar in response to anthropo-
genic climate change can be understood in the context of a
widening of low-latitude overturning atmospheric circulation, or,
Hadley cell expansion (see reviews by11,12). Hadley cell expansion
leads to Southern Madagascar being subject to the drying
influence of the descending branch of the Hadley cell for a longer
portion of the year. Hadley cell expansion is consistently found in
forced CMIP6 models and can be seen in the poleward shift and
intensification of maximum descent in the Southern Sub-tropics

during July to November (Fig. 3; Supplementary Information).
Precipitation declines over these same months in the forced
climate simulations (Supplementary Fig. 9), as also found in
Southern Africa (e.g.13). We also note that the frequency of land-
falling tropical cyclones can influence peak summertime rainfall
and is expected to decrease as a consequence of global
warming14,15, but this will have greater consequence for Eastern
Madagascar than the Southern regions that are our present focus.

Observed trends
We next turn to assessing whether the seasonal climate change
fingerprint of trends is observed using records of precipitation, soil
moisture, and vegetation greenness (Fig. 1a–c), focusing on the
66% of land area in Southern Madagascar with minimal
deforestation (see Methods). These three indicators are tightly
coupled in Southern Madagascar due to its semi-arid climate, with
precipitation peaking in Austral summer (DJF), near-surface soil
moisture following precipitation by about two weeks, and peak
greenness occurring in March (Fig. 1d). Although annual average
precipitation declines from 1981 to 2022, the onset of the rainy
season from September to November is the only season in which
the trend in precipitation significantly differs from zero (−2.4 mm
month−1 decade−1; 90% CI: −4.5 to −0.6 mm month−1 decade−1;
Fig. 4a–c). This negative trend in water availability during the
onset of the rainy period is also apparent in NDVI and soil
moisture observations during their respective periods of record
(Fig. 4d–f). Furthermore, since the early 2000s, NDVI and soil
moisture significantly decline across all four seasons.
In addition to exhibiting similar trends, precipitation, soil

moisture, and vegetation greenness exhibit strong interannual
correlations. During the interval of common overlap for all our
datasets, 2003 to 2015, the correlation between detrended annual
precipitation and annual-average NDVI is 0.74 and 0.82, respec-
tively, for the MODIS and GIMMS NDVI products (Fig. 4a). Annual
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Fig. 1 Observational data. Maps of annual average (a) precipitation, (b) soil moisture, and (c) vegetation greenness as represented by the
Normalized Difference Vegetation Index (NDVI), as well as (d) the seasonal cycles of precipitation, soil moisture, and NDVI over Southern
Madagascar. Values are averaged over 2003–2015. Note that the two right y-axes do not start at zero, and NDVI is from the GIMMS product. We
define Southern Madagascar as the three most southern political regions, which are labeled in subplot (a): (I) Atsimo-Andrefana, (II) Androy,
and (III) Anosy.
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values are computed from September to August in order to center
them on the rainy season. Slightly higher correlations are obtained
between soil moisture and NDVI, with values of 0.79 and 0.85 for
MODIS and GIMMS. Isolating the rainy-season onset months,
September through November (Fig. 4b), gives only slightly lower
correlation between soil moisture and NDVI of 0.70 and 0.76 for
GIMMS and MODIS, but much lower values for precipitation of
0.29 for both NDVI satellite products. Lower correlations involving
precipitation may reflect uncertainty in precipitation records,
greater variability in seasonal timing, and lags between precipita-
tion and vegetation greenness.
Based on the expectation that soil moisture will determine

greenness in Madagascar16 and the high empirical correlations,
we use NDVI to reconstruct soil moisture from 1982 to 2022, and
leverage these long-term soil moisture estimates in our attribution
analysis. Soil moisture is reconstructed by fitting a lag-linear model
of monthly NDVI to soil moisture observations over their common
period from 2003 to 2022. A best fit between NDVI and soil
moisture is found when NDVI is made to lag by one month
(Supplementary Fig. 14). The model is tested using cross
validation, and we find good performance across Southern
Madagascar (Supplementary Fig. 10). We refer to the trends in
estimated soil moisture over the 41-year period as “proxy soil
moisture” trends, in contrast to those obtained from more direct
observations or simulations.

Attribution of trends and recent drought to anthropogenic
forcing
The seasonal pattern of proxy soil moisture trends resembles the
fingerprint from forced simulations (Fig. 2b), with declines in proxy
soil moisture evident at the end of the dry season and onset of the
rainy season. It is useful to quantitatively evaluate how much more
likely the proxy soil moisture trends are under anthropogenic
forcing relative to pre-industrial variability. Whereas fingerprint
techniques have generally opted for projecting onto a scalar
quantity for distinguishing between forced and internal varia-
bility17, it is also possible to jointly evaluate the seasonal structure
of trends (see Methods and Supplementary Information).
Our approach captures the covariance among seasonal trends

through fitting a multivariate normal distribution to seasonal soil
moisture trends obtained from forced simulations. A second
multivariate normal is fit to seasonal trends from pre-industrial
simulations. Evaluating the likelihood ratio of the seasonal proxy
soil moisture trends (1982 to 2022) conditional on the forced
versus pre-industrial fits indicates that the proxy soil moisture
trend structure is 100 times (90% CI: 5-2683 times) more likely as a
result of anthropogenic forcing. We thus conclude that the proxy
seasonal trends are attributable to anthropogenic climate change.
A complimentary analysis is used to evaluate how much more

likely each year of the recent drought is as a consequence of
anthropogenic forcing. Analogous to our trend attribution, we fit a

Fig. 2 Climate change fingerprint. a Long-term monthly soil moisture trends estimated from forced simulations ("forced''; blue lines
representing individual model runs; navy line representing the across model average, which we refer to as the seasonal climate change
fingerprint) and pre-industrial control simulations ("control''; orange shading representing 90% confidence intervals). Trends are estimated
from 1982 to 2099 for the forced climate model simulations and over an analogous 118-year time interval for the pre-industrial control
simulations. b Trends of 41-year length from pre-industrial control simulations (sampled from year 10 to 500; orange), forced model runs
(sampled from 1982 to 2099; blue), and proxy soil moisture observations (1982 to 2022; red; see Section 1.2 for a description of proxy soil
moisture). Confidence intervals represent the 5th and 95th quantiles of the sampled trends (see Methods), with the median represented by a
circle. Note that the confidence intervals for the climate model simulations (forced and control) represent climate variability, while the
confidence intervals for the observations represent error in the trend estimation. Asterisks indicate that the sampled trend distribution of the
climate model simulations (control or forced) are statistically different from the sampled trend distribution of the observations (p < 0.05, one
sided test with an alternate hypothesis of a drying trend). We find similar results when trends are estimated at the seasonal scale
(Supplementary Fig. 8).
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multivariate normal to seasonal soil moisture anomalies obtained
from a 30-year baseline period, 1970–1999, from forced simula-
tions, as well as a 30-year period centered on the drought years,
2005–2034. Conditional on the CMIP6 simulations, the observed
drought conditions between 2017 and 2022 are 15 times more
likely as a consequence of anthropogenic forcing (90% CI: 8-27
times). It is also possible to compute the likelihood ratio for
individual drought years, in which case 4 out 5 years are
individually found to have significantly higher likelihood (Supple-
mentary Table 3). A slight modification of the analysis involves
using observed trends prior to the drought, rather than simulated
trends, in which case the drought becomes even more likely.
The CMIP6 simulations indicate that the magnitude and

seasonality of droughts observed between 2017 and 2022
become increasingly likely further into the future. Likelihood
ratios calculated for 30-year intervals ranging between 2000 and
2099 show increasingly high values (Fig. 5), with the 2017-2022
droughts > 1000 times more likely to occur in 2070–2099 than
1970–1999. Higher likelihood of the recent droughts when
assessed relative to future simulated conditions under a high-
emissions scenario raises the possibility that climate change has
proceeded more quickly than simulated by the CMIP6 models
with respect to the hydrologic conditions of Southern Madagascar.

DISCUSSION
There are a number of potentially confounding issues associated
with the use of remotely-sensed observations, the influence of
anthropogenic forcing agents in addition to greenhouse gases,

and biases associated with climate model simulations that merit
further consideration.
The proxy soil moisture trends we estimate from 1982 to 2022

are based on NDVI and can, obviously, be affected by changes in
land use. Deforestation is prevalent in Madagascar and can be
correlated with drought conditions because, for example, farmers
may attempt to offset yield losses by expanding their farm size
through burning18. We mitigate the influence of deforestation by
masking out regions with moderate to high rates of deforesta-
tion19 based on forest cover maps from 1973 and 2017. Annual
deforestation maps are unavailable at high accuracy over the
period of record20. This approach may not fully account for the
influence of small-scale vegetation disturbances or seasonal
disturbances, such as seasonal burning that peaks in the late dry
season and early wet season21. The fact that the trends in rainfall,
soil moisture, and NDVI during September to November are
consistent, however, points to atmospheric causes and the spatial
homogeneity of drying points away from local land-use change,
which would be expect to be clustered nearer population centers
(Supplementary Fig. 12).
It is also possible that local and non-local deforestation has

indirectly affected trends in water availability via interactions with
the atmosphere, as deforestation tends to cause warming and
drying via reductions in precipitation22. Studies from the Amazon
reveal that deforestation and the associated decline in transpira-
tion can induce delays in the rainy season onset by altering the
chain of atmospheric processes required for rain initiation23,24. But
transpiration at the end of the dry season in the Amazon is much
larger than that in Southern Madagascar, suggesting that the
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Fig. 3 Projected changes in atmospheric circulation. a Zonally averaged (39.5-59.5°E) monthly vertical velocity at 500 hPa from 46 climate
models (267 total ensembles; Supplementary Table 1) from 2015 to 2099 (future projections; SSP5-8.5). The black dashed lines indicate linear
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details.

A. Rigden et al.

4

npj Climate and Atmospheric Science (2024)    41 Published in partnership with CECCR at King Abdulaziz University



decrease in transpiration associated with deforestation would
have an enhanced role in delaying the onset in the Amazon
relative to this region. Model simulations suggest that a complete
deforestation of a much larger region in Africa—the Guineo-
Congolian region and Eastern Coast of Madagascar—would result
in a shortening of the rainy season in Southern Madagascar by
approximately 1 to 2 weeks25. Deforestation, both local and non-
local, may be compounding emission-driven climate change,
leading to observed trends that are larger in magnitude than the
seasonal climate change fingerprint. Carbon fertilization may also
affect trends in vegetation greenness and soil moisture, though
the observed concurrent decline in vegetation greenness and soil
moisture during the rainy season onset suggests carbon fertiliza-
tion is not a strong driver of trends.

The depletion of the Antarctic ozone hole may also affect trends
in soil moisture26 through Hadley cell expansion in the Southern
Hemisphere that is independent of and in addition to that
associated with greenhouse-gas driven warming27. Our proxy soil
moisture trends, however, are estimated from 1982 to 2022 and
span differing trends in ozone hole area, with the first half of the
time series (1982 to early 2000s) marked by ozone hole expansion
and the second half of the time series (early 2000s to 2022)
marked by ozone hole stabilization and recovery28. Trends in
proxy soil moisture show decreases across both these intervals,
indicating that the ozone hole dynamics are not a major driver.
There are a number of model biases that could influence the

representation of soil moisture trends and attributions to
anthropogenic forcing. Changes in synoptic-scale rainfall systems,

Fig. 4 Trends in observational data. Time series of (a) annual average (from September to August) (b) and rainy season (from September to
November) precipitation, vegetation greenness (NDVI), and soil moisture. c Trends for each variable for annual and rainy-season averages.
Confidence intervals represent the 5th and 95th quantiles of trends via bootstrapping with 1000 samples, while the dots represent the
median (see Methods). Trends are estimated over regions of minimal deforestation.
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such as tropical temperate troughs, substantially contribute to
intraseasonal rainfall variability in arid regions of southern Africa29,
like Southern Madagascar. The climatology of tropical temperate
troughs, including the number, intensity, and positioning, has
been shown to vary widely across the CMIP5 models30, raising
questions whether their changes are adequately captured in
forced simulations. As another example, the seasonal develop-
ment of the Mozambique Channel Trough is relevant for
channeling moisture transport from the Indian Ocean toward
Madagascar31, but whether CMIP-class models sufficiently repre-
sent trough development can be questioned, including on the
basis of needing to account for orographic influences that are only
coarsely resolved. Nevertheless, a wide variety of model simula-
tions show a consistent delay in the rainy season across Southern
Africa in response to anthropogenic forcing. Forced simulations
from CMIP5 consistently show a delay in the rainy season across
Southern Africa, including Southern Madagascar32, in agreement
with our results based upon CMIP6 simulations. Analyses from
downscaled climate model simulations, which better resolve
topography, also indicate a decline in Southern Madagascar
precipitation during the onset of the rainy season33,34. Consistency
across models of different generations and resolutions points to
Hadley cell expansion as a robust underlying mechanism for
causing drying during the onset of Southern Madagascar’s rainy
season.
In summary, multiple indicators of rainfall and soil moisture

indicate long-term trends culminating in recent drought condi-
tions in Southern Madagascar, despite potential biases and
uncertainties. Furthermore, observations show patterns of change
in water availability that are consistent with climate model
simulations, suggesting that anthropogenic climate change is
likely altering the seasonal hydroclimatology of Southern Mada-
gascar. Our results suggest that the long-term trends contribute to
the recent drought in Madagascar, with the magnitude of the
contribution varying depending on details of the calculation. For
example, anthropogenic forcing made the drought from Septem-
ber 2019 to August 2020 1.9 times (90% CI: 1.6-2.2 times) more
likely, as judged using only simulations, or 4.8 times (90% CI: 2.3-
10 times) if simulations are updated using observed trends. It may
be that the observed trends are amplified by changes in land use,
both directly and indirectly via land-atmosphere interactions, and
possibly affected by the formation and recovery of the ozone hole,
though none of these appear a dominant driver. The fact that
foregoing analyses found little indication of anthropogenic

influence on the current drought2 can be understood in that the
climate change fingerprint is muted when averaged annually.
Decreases during the early rainy season tend to offset increases
during the peak rainy season, shortening the period over which
precipitation falls and impacting prospects for agriculture.
Madagascar is estimated to have contributed to global mean

surface temperature rise by < 0.01 °C through emissions, whereas
the United States, China, and the European Union are estimated to
have contributed 0.28 °C, 0.20 °C, and 0.17 °C, respectively35.
Although Madagascar plays a minimal role in driving global
climate change via greenhouse gas emissions, aerosols, and ozone
depletion, we find that anthropogenic forcing, as represented in
the SSP5-8.5 scenario, is very likely driving shifts in the hydrologic
cycle that have major implications for Malagasy agriculture.
Adapting to these shifts in the hydrologic cycle may be feasible,
for example, through improved water management strategies,
innovative farming practices, and public health intervention, but
these adaptations will require resources. It remains legally unclear
who should provide these resources36, but efforts to establish
climate change accountability are ongoing, for example, by the
Climate Vulnerable Forum and the recent COP27 fund for
vulnerable countries.

METHODS
Observational data
Monthly average NDVI observations are from two sources: (1)
NOAA’s Global Inventory Monitoring and Modeling System
(GIMMS) version number 3g.v137–39 and (2) MODIS/Terra
MOD13C2 version 6. The NDVI data from GIMMS data spans from
July 1981 to December 2015, while the NDVI data from MODIS
spans from February 2000 to present. Monthly NDVI from GIMMS
and MODIS are provided globally at 1/12th of a degree and 0.05-
degree spatial resolutions, respectively.
Soil moisture data are from the European Space Agency’s

Climate Change Initiative (ESA CCI) soil moisture product
(v08.1)40,41. This global product combines single-sensor active
and passive microwave observations to estimate 0.25-degree soil
moisture from 1979 to 2022. Remotely sensed soil moisture is
sensitive to moisture in the near-surface, typically thought to be
from 0-5 cm, though recent research has shown that microwave
measurements may actually sense deeper into the root-zone,
especially for grasslands and croplands42. While merging different
instruments facilitates a longer period of record, issues of
temporal homogenization arise. Most notably, different sensor
characteristics have been found to induce temporal shifts that
may lead to false trends43. Furthermore, the frequency of soil
moisture observations at a particular location is inconsistent over
the period of record. For example, the number of soil moisture
observations significantly increases in July 2002 with the
incorporation of passive microwave data from the Advanced
Microwave Scanning Radiometer for EOS (AMSR-E) instrument
aboard Aqua. To minimize errors associated with large observation
gaps, we restrict our analysis to after the incorporation of AMSR-E
(2003-2022).
We characterize deforestation, which is the leading driver of

land cover change in Madagascar, using maps of forest cover19.
The forest cover maps combine estimates of annual global tree
cover loss44 with seven historical national forest cover maps for
years 1953, 1973, 1990, 2000, 2005, 2010, and 2017. The updated
forest cover maps19 specify the presence or absence of forest at a
30-m spatial resolution across Madagascar for each of the seven
years with historical forest cover maps. From 1973 to 2017, the
updated forest cover maps show a 34% decrease in forest cover
over Southern Madagascar. Across all regions in Madagascar,
including the three southern regions in Southern Madagascar, the
dominant driver of tree cover loss is shifting agriculture44. We

Fig. 5 Drought attribution. Likelihood ratios of recently observed
drought conditions in Southern Madagascar for various 30-year
intervals covering the present and future relative to a historical
baseline from 1970--1999. Ratios are given for individual drought
years (colors) and their combination (gray), and shading indicates
the 95% confidence interval. Calculations are made using a seasonal
climate change fingerprint attribution method based on model
simulations only (i.e., not updated using observed trends; See
Methods and Supplementary Information for further details).
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estimate fractional forest cover at analogous 0.25-degree resolu-
tion to the ESA CCI soil moisture observations for years 1973
(Supplementary Fig. 11a) and 2017 (Supplementary Fig. 11b). Grid
boxes with minimal deforestation are defined as those whose
forest fraction decreases by less than 0.15 from 1973 to 2017,
which is approximately 66% of the land area in Southern
Madagascar (Supplementary Fig. 11c–d).

Climate model simulations
We use historical (1850 to 2015) and future (2015 to 2100)
simulations of near-surface (0-10 cm) soil moisture from twelve
different climate model runs in the Coupled Model Intercompar-
ison Project Phase 6 (CMIP6; “mrsos” in the CMIP6 archive; see
Supplementary Table 1 for list of models and ensembles). Models
were selected based on data availability in Google cloud (accessed
March 10, 2023). Simulations of soil moisture are from both the
high emission scenario (SSP5-8.5) and pre-industrial control runs
(piControl). Monthly soil moisture simulations are regridded from
their native spatial resolution to a consistent 0.5-degree resolution.
We assess the seasonal cycle and annual spatial pattern of soil

moisture from twelve CMIP6 runs with pre-industrial control,
historical, and SSP5-8.5 experiments (eleven models, one of which
with two ensemble members; Supplementary Table 1). With
respect to seasonality, all twelve of the forced simulations
(historical and SSP5-8.5) well capture the current (1990–2020)
seasonality of soil moisture (Supplementary Fig. 4a). However,
three of the twelve models (EC-Earth3-Veg, EC-Earth3, MIROC-
ES2L) show unrealistic seasonal cycles in the pre-industrial control
simulations, with soil moisture peaking in September or October
(Supplementary Fig. 4b), so they are excluded from the remaining
analysis. The absolute magnitude of soil moisture varies substan-
tially by model (Supplementary Fig. 4), as expected due to across
model variations in precipitation, parameterization schemes, and
the underlying land surface models45. All of the climate model
simulations show lower annual average soil moisture in the
southern region of Madagascar relative to the central and
northern regions (Supplementary Fig. 5). However, only five of
nine model runs exhibit higher annual average soil moisture along
the length of the eastern coast, despite this region being well
known to receive abundant orographic precipitation. The remain-
ing model runs simulate higher annual average soil moisture in
the central region of the country. Indeed, accurate simulation of
rainfall is often limited by the resolution of simulations, particularly
in areas with complex topography46, among other factors.

Trends
We estimate trends in observations (NDVI, soil moisture, and
precipitation), proxy soil moisture (Eq. (1)), and simulations (soil
moisture) using a linear least-squares regression. Trends are
estimated annually, monthly, and seasonally, including Sep–Nov
(onset of rain), Dec–Feb (peak of rain), Mar–May (end of rain),
Jun–Aug (dry spell). Annual averages are centered on the rainy
season from Sep-Aug.
Confidence intervals for observations and proxy trends are

estimated via bootstrapping, with 90% confidence intervals
representing the 0.05 and 0.95 quantiles of 1000 samples (Fig. 4;
and red bars in Fig. 2b). These confidence intervals represent the
errors associated with the trend estimation, as a distribution of
trends is estimated by sampling the values (from 1982 to 2022)
with replacement. For climate model simulations, samples of
trends are generated by estimating trends every 5-years and the
confidence intervals are the 0.05 and 0.95 quantiles of these
sampled of trends. For example, in Fig. 2a, the confidence intervals
in the pre-industrial control simulations are estimated by estimat-
ing 118-year trends every 5 years from year 10 to year 500 for each
model run. In Fig. 2b, the confidence intervals represent an
analogous procedure, with 41-year trends estimated every 5 years

from 1982 to 2099 for the forced simulations and from years 10 to
500 for the control simulations. Trends are taken every 5 years,
rather than every year, to avoid temporal correlations, and
bootstrapping methods are not used for the climate model
simulations to avoid repeating samples. The confidence intervals
for the climate model simulations represent the variability in
trends– either natural variability (from the pre-industrial control
simulations; orange bars in Fig. 2a–b) or forced+ natural variability
(from the forced simulations; blue bars in Fig. 2b).

Combining NDVI from MODIS and GIMMS
We combine the NDVI from GIMMS (1982 to 2015) and MODIS
(2001 to 2022) to estimate a 41-year record. To combine the
records, we determine the monthly bias over the period of overlap
and adjust the mean in the MODIS data accordingly. Data from
GIMMS is used from 1982 to 2015 and MODIS from 2016 to 2022.
Note that the observed trend pattern in Fig. 2 is similar when
estimated using just GIMMS data from 1982 to 2015. Furthermore,
the variability during the overlap period (2001 to 2015) are similar
between GIMMS and MODIS (Fig. 4), signifying that the products
are capturing similar dynamics in Southern Madagascar.

Inferring soil moisture from NDVI
To estimate soil moisture from NDVI, we first determine the optimal
lag (in months) between SM and NDVI by maximizing the correlation
of NDVI and SM for each 0.25-degree grid box. Optimal lags are
estimated using data from the entire period of overlap between
NDVI (GIMMS + MODIS) and soil moisture, or 2003–2022. Lags
estimated for individual decades are consistent with one another
(Supplementary Fig. 14), and we do not observed systematic trends
in this lag, consistent with an assumption of a constant lead-lag
relationship. We predict monthly soil moisture at time t from NDVI at
time t− lag using non-negative linear least-squares regression,

SMt;I ¼ bþ
XN

i¼1

miNDVIt�lag;i (1)

In Eq. (1), SM at grid box I, which is at a 0.25-degree resolution,
is estimated using 0.05-degree NDVI observations at sub-grid
boxes i whose centers fall within soil moisture grid box edges.
Thus, the fit coefficients (mi) are acting as weights that scale the
NDVI observations within each 0.25 degree grid box assuming one
constant intercept (b). Predicted soil moisture values inferred from
Eq. (1) are similar to those inferred from averaging NDVI over the
0.25-degree grid box, though the latter has less skill given the
more limited number of fit coefficients.
To assess the fit of Eq. (1), we fit the model from 2003 to 2022

using the combined NDVI (GIMMS + MODIS) leaving out four
sequential years of data, and test the model on those four years, e.g.
leave out 2003-2006 in training, and then test the model from 2003
to 2006. We find small increases in mean squared error from the
training to testing subsets (Supplementary Fig. 13), with the mean
squared error average over undisturbed grid boxes in Southern
Madagascar and increasing from 0.0011 cm3 cm−3 in average
training subsets to 0.0012 cm3 cm−3 in average testing subsets.

Climate change fingerprint
To evaluate the likelihood of the observed trends in proxy soil
moisture relative to those from the control and forced climate
model simulations, we apply a climate change fingerprinting
method that builds off of longstanding fingerprint methods
(e.g.,17,47) but also accounts for multiple dimensions, as found in
some more recent papers (e.g.,48). Specifically, we fit a four-
dimensional multivariate normal distribution (MVN) to seasonal
features that represents the mean, variance, and covariance for
the DJF, MAM, JJA, and SON seasons. We apply the fingerprint to
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seasonal trends, rather than monthly trends, to minimize the size
of the covariance matrix used to fit the distributions. Accounting
for the covariance in trends from one season to the next
(Supplementary Fig. 15) is important for purposes of not
overstating the significance of the test.
We perform three fingerprint tests involving one approach for

trends and two approaches for anomalies. For trends, a MVN is fit
to seasonal trends of 41-year length obtained from CMIP6 control
simulations, and a second MVN is fit to seasonal trends between
1982 to 2022 from CMIP6 forced simulations. We evaluate the
likelihood ratio of the seasonal proxy soil moisture trends by
evaluating their likelihood using the forced MVN and dividing by
their likelihood obtained using the control MVN. In order to
quantify the uncertainty, MVN are repeatedly fit using a boot-
strapping approach. For each of 1000 iterations, a linear trend in
proxy soil moisture over 1982–2022 is estimated from a sample of
the years from 1982–2022 with replacement, and MVN fits are
performed for each bootstrapped trend. We report 90% con-
fidence intervals based on the 5th and 95th percentiles of the
sample that represent the uncertainties in the fit trends as well as
fit MVN. Although we report confidence intervals to give an
indication of the full distribution, our hypothesis test is one-sided,
with a null that anthropogenic forcing is not associated with a
trend or anomaly, and an alternate that there is a trend toward
drought or the occurrence of drought. Thus, a trend observed to
be more negative than the 5th percentile is significant at p < 0.05,
whereas a trend above the 95th is insignificant.
Our main approach to estimate the likelihood of the recent

droughts relative to a baseline climate involves fitting MVN to
seasonal soil moisture anomalies over 30-year intervals from a
1970–1999 baseline period and a 2005–2034 recent period. For
each year of the drought, we evaluate the likelihood ratio of the
seasonal anomalies in proxy soil moisture during the drought
conditional on seasonal anomalies during the baseline period
versus the current interval. Multiplying likelihoods across each of
the 5 drought years gives an overall likelihood ratio (see Approach
1 in Supplementary Table 3). In order to assess how the likelihood
of the observed droughts changes as a function of time, we also
compute likelihood ratios using our main approach for 30-year
periods between 2000 and 2099, with 5-year increments (e.g.
2000–2029, 2005–2034, ..., 2070–2099; see Fig. 5).
In a second approach, we modify the input data such that the

multivariate normal distributions for the baseline (1970–1999) and
recent (e.g. 2005–2034) conditions are fit based on the observed
trend in proxy soil moisture. Specifically, we use the covariance from
the main approach but update the mean using the baseline and
drought conditions predicted from a linear regression of proxy soil
moisture from 1982 to 2017. The baseline mean is set to the
predicted 1982 conditions and the future mean is set to the
extrapolation of the trend for each drought year. The multivariate
normal distributions are evaluated at the seasonal proxy soil moisture
observed for each year of the drought, from which likelihood ratios
are computed (Approach 2 in Supplementary Table 3).
We use anomalies in our drought calculations, rather than

absolute magnitudes, because soil moisture magnitudes vary
across CMIP6 models. Anomalies in the forced simulations are
estimated for each model and season by subtracting the seasonal
average of the baseline conditions. On account of our proxy soil
moisture time series not extending back to 1970, we estimate
anomalies for each season by fitting a linear least squares
regression over 1982-2017, or the available years prior to recent
droughts, and predict and subtract the seasonal conditions in
1982 from the observed drought condition during 2018–2022.
For both drought attribution approaches, MVN are repeatedly fit

using a bootstrapping approach, analogous to the trend attribution.
Further information on the trend and drought attribution can

be found in the Supplementary Information (Supplementary Figs.
15–17 and Supplementary Tables 2–3).

DATA AVAILABILITY
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https://climate.esa.int/en/projects/soil-moisture/data/, NDVI from MODIS at https://
modis.gsfc.nasa.gov/data/dataprod/mod13.php, NDVI from GIMMS at https://
iridl.ldeo.columbia.edu, precipitation data at https://www.chc.ucsb.edu/data, defor-
estation data at https://doi.org/10.18167/DVN1/AUBRRC, and CMIP6 simulations from
the Google Cloud.
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