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Uncertainties in measuring precipitation hinders precise
evaluation of loss of diversity in biomes and ecotones

Andrés Navarro

'™ Gyuwon Lee?, Raul Martin (® and Francisco J. Tapiador

Assessing changes in the distribution of biological communities that share a climate (biomes) is essential for estimating their

vulnerability to climate change. We use CMIP6 climate models to calculate biome changes as featuring in classifications such as
Holdridge's Life Zones (climate envelopes). We found that transitional zones between biomes (known as ecotones) are expected to
decline under all climate change scenarios, but also that model consensus remains low. Accurate assessments of diversity loss are
limited to certain areas of the globe, while model consensus is still poor for half of the planet. We identify where there are robust
estimates of changes in biomes and ecotones, and where consensus is lacking. We argue that caution should be exercised in

measuring biodiversity loss in the latter, but that greater confidence can be placed in the former. We find that shortcomings in the
life zone classification are related to inter-model variability, which ultimately depends on a larger problem, namely the accurate
estimation of precipitation compared to CRU. Application of the methodology to other climate classifications confirms the findings.
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INTRODUCTION

Biomes are biological communities sharing a climate. Ecotones are
their transition zones. It is accepted that anthropogenic climate
change has already generated an impact on the global distribu-
tion of biomes, causing disruptions in the ecological functions and
loss of biodiversity. That has resulted in more vulnerable
environments' . Changes in ecotones have been more severe
as these regions are not simple transient zones but have unique
ecological characteristics defined by the interaction of neighbor-
ing biomes*. A particular combination of habitats tends to create
new ecological niches and that has increased biodiversity through
evolution.

Biomes and ecotones are also considered areas of primary
interest for climate change studies. They are especially sensitive to
fluctuations, thus acting as an early warning about impacts of
anthropogenic climate change’°. The process can be explained in
purely mechanistic terms since biomes and ecotones account for
the fluxes of matter and energy that affect the biota (e.g., through
nutrient cycling). The impact of climate change is particularly
acute in ecotones, where species are pushed to their limits in a
context of unstable equilibrium?®.

The climate is the main factor that shapes the distribution of
biomes'®. Soil, latitude, anthropic pressure and existing flora are
secondary factors'''3, There is agreement in that biomes can be
characterized by a few abiotic factors such as temperature and
rainfal’'® and that these ecological units are a robust
dimensional reduction for complex plant-specific physiological
thresholds of heat and water demand'’'°. In particular,
Holdridge's scheme (HLZ) provides a comprehensive classification
system to describe both life zones and ecotones from those
environmental factors. The latter feature is not present in the
original formulation of the method but an enhancement through
a minor adaptation?®?' (Fig. 1a).

Biome classification using Holdridge’s system, can be carried
out through climate model outputs. Current Earth System Models

(ESMs) have evolved beyond Global Climate Models (GCMs) and
now include the main physical and biogeochemical processes of
the Earth?2, Such enhancements build confidence in these models
having a superior ability to account for biological factors, and in
particular the distribution of life on Earth. The combination of ESM
climate outputs with classifications such as the HLZ scheme define
climate envelopments in an objective way.

The ability of any method to characterize biomes and ecotones
can be evaluated by comparing a present-climate classification
from ESM outputs with an actual classification using measure-
ments (ground observations or satellite data). This is a necessary
(but no sufficient) condition to gauge ESM capabilities, and also a
means to identify those areas where most models agree and
where models strongly disagree. But perhaps more importantly,
such validation helps identify potential shortcomings in the
modeling, thus informing on the limitations and uncertainties in
the predicted changes in biomes and ecotones. Indeed, guidance
on the error source is also beneficial not only for climate modelers
but also for life scientists, who make use of model output for their
own research interests. Thus, a comprehensive understanding of
errors helps to develop a more meaningful analysis of the
consequences of climate change®.

RESULTS

Biome distribution in present climate

We first assess how well Coupled Model Intercomparison Project
phase 6 (CMIP6) models characterize current biomes. Thus we
compared the model-derived classification with the observations
from the Climate Research Unit (CRU) Time Series (TS) dataset
(CRU, Fig. 1b). For the present climate, an overall moderate
consensus appears (0.4 < k < 0.7). Regarding precipitation, we
found that a good performance in the representation of the field
(R*=0.7) is essential to obtain acceptable kappa coefficients,
although there are exceptions, namely CESM2, MIROC6 and
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Fig. 1 Holdridge life zones classification scheme and class agreement

the location of each life zone according to biotemperature, potential eva

1. ACCESS-CM2 2. ACCESS-ESM1-5 3, AWI-CM-1-1-MR 4, AWI-ESM-1-1-LR 5. BCC-CSM2-MR 6. BCC-ESM1 7. CAMS-CSM1-0
8. CanESM5 9. CanESM5-CanOE 10. CAS-ESM2-0 11. CESM2 12. CESM2-FV2 13, CESM2-WACCM 14. CESM2-WACCM-FV2
15. CIESM 16. CMCC-CM2-SRS 17. CNRM-CM6-1 18 CNRM-CM6-1-HR 19, CNRM-ESM2-1 20, E35M-1-0 21, E35M-1-1 22,
E3SM-1-1-ECA 23. EC-Earth3 24, EC-Earth3-Veg 25. EC-Earth3-Veg-LR 26. FGOALS-f3-L 27. FGOALS-g3 28. FIO-ESM-2-0
29. GFDL-ESM4 30. GISS-E2-1-G 31. GISS-E2-1-G-CC 32. GISS-E2-1-H 33. HadGEM3-GC31-LL34. HadGEM-GC31-MM 35.
INM-CM4-8 36, INM-CMS5-0 37. IPSL-CMGA-LR 38. KACE-1-0-G 39, MCM-UA-1-0 40. MIROC6 41. MIROC-ES2L 42.
MPI-ESM-1-2-HAM 43. MPI-ESM1-2-HR 44. MPI-ESM1-2-LR 45. MRI-ESM2-0 46. NESM3 47. NorCPM1 48. NorESM2-LM 49.
NorESM2-MM 50. SAMO-UNICON 51. TaiESM1 52. UKESM1-0-LL 53. CRU 54, ENSEMBLE 55. ENSEMBLE T05 56. ENSEMBLE
T1057. ENSEMBLE T15 58. ENSEMBLE T25 59. ENSEMBLE T40

for CMIP6 models and reference dataset. a The HLZ system shows
potranspiration ratio, and annual precipitation; the original 38 zones

were aggregated into 13 core zones and 27 ecotones (TLZs) following Monserud & Leemans®, b Class agreement chart, the upper-left triangle
shows the Kappa coefficient matrix (k; 1 perfect agreement; 0 no agreement) and the bottom-right displays the correlation ellipsoids between
classes. The bars on the top of the figure are k and R? coefficients of each model when compared with reference dataset (CRU).

CIESM. In these, good scores for precipitation estimates are not
translated into better representation of HLZs. Only three models—
HadGEM-GC31-MM, EC-Earth-Veg and UKESM1-0-LL—achieved
the best scores in both R? and kappa, but the six ensembles do
agree. Models reproduce the spatial distribution of major biomes
(Fig. 2a—c) but discrepancies are indeed found around the limits of
life zones where large inter-model variability is observed, i.e., the
ecotones (see supplementary material for a panel plot of
individual models, Supplementary Fig. 1).

Dissent is found in areas with complex orography such as the
Rocky Mountains, the Andes, and the Himalayas. There, models
have difficulties in reproducing the heterogeneous distribution of
biomes. The ‘Cold Parklands’ category is misclassified in most
models confirming the limitation ESMs have to classify climate
types when extreme values are involved®*. Almost no model can
properly characterize the extremely humid tropical rainforest in
the Amazonia and the same for the extremely hot desert in central
Australia.

Most of the model-observations biases are found in regions
with moderate-to-large inter-model variability, as depicted by
Fig. 2d (stripes). The lack of consensus over these areas means that
some key processes are not well modeled yet. We point below to
those related to the water cycle modeling, Fig. 2e, f (See Table 1
for a description of the methods).

In spite of biases, consensus between the top-10 models and
the reference data is above 51% of the total area (=80% models
agree). The consensus area covers a wide range of habitats;
including hot deserts, such as the Sahara and the Arabian deserts,
rainforests of South-east Asia, and cool and temperate forests of
western Europe and eastern US.

Ecotones in present climate

As transition areas, ecotones are more challenging than biomes. A
precise characterization of ecotones for the present climate is
however essential to use model outputs as a guide for future
climate shifts, especially when the projected changes are
expected to be more pronounced in transitional areas®>=%’.

We compared the models with CRU data and found that the
individual models identify the major ecotones. However, they
cannot capture the transition zones of some of them, such as Cold
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Parklands (TLZs 3,4,5,7 and 8). The problem could be identified in
the CP-FT-BF (TLZ 5) where the ecotone is absent in most models
(see Supplementary Fig. 3 for individual models). This is a
consequence of wet bias that is amplified by the log-scaling,
where minor changes in the lower bounds produce large impacts.
The southward displacement of the TLZs 21 and 23 is another
important error source, as illustrated in Fig. 2(g, h). This pattern is
observed in southern Africa where the wet bias causes the
misrepresentation of the transition between tropical dry forest,
savanna, and the Afromontane forest.

Regarding the dry bias over land, this is a known shortcoming
of models?®-3°, The causes are a matter of discussion®'—3 but the
feature is not controversial and is accounted for when model data
are used in the biological realm343>, Here, we found that the dry
bias features in the HLZ classification in several places, such as an
increase in the eastward expansion of tropical semiarid-tropical
dry ecotone in India (TLZ 22).

We have found that models overestimate the global extension
of ecotones by 2%. The main cause is the artificial expansion of
the transitional zone of tropical rainforest and tropical dry forest
(TLZ 24). An example of this process can be seen in the Amazonia.
In that region, the ensemble mean underestimates annual
precipitation, causing a dry bias that expands the tropical rain-
dry ecotone. The effect is palliated in the top-10 ensemble (a
subset of the ensemble) thanks to their better estimation of
precipitation, as shown in Supplementary Fig. 5.

Indeed, models with better precipitation estimates produce
more credible biomes and ecotones. Model ensembles benefit
greatly from these good models but cannot completely compen-
sate those with unrealistic precipitation estimates. Overall, the
multi-model ensemble (MME, 52 members) correctly features the
continuous bands of forest tundra-taiga transition (TLZ 6) as well
as steppe-cool forest-boreal forest ecotones (TLZs 16 and 11) but
barely captures the extension and the precise location of these
TLZs. The MME estimates colder temperatures in northern Eurasia
and shifts TLZ 6 and TLZ 11 to the south while the wet bias
increases the forest-steppe ecotone in central US (TLZ 16). The
top-10 ensemble reduces some of those biases but location
problems remain, meaning that the problem is shared by most
models. This is more clearly seen in the accuracy in rainfall
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Fig. 2 Global distribution of life zones, ecotones, and consensus map for present climate (1980-2014). Global maps of life zones for CRU
dataset (@), multi-model ensemble mean of fifty-two members (b), and ensemble mean of top ten rated climate models (c). d Consensus map
of life zones based on top ten CMIP6 models (T10). Blues are regions where most models agree with reference dataset (> 80%), yellows are
regions with moderate consensus (21-79%), and reds are regions with low consensus (<20%). Stripes are regions with large inter-model
variability (half of the fifty-two models disagree in the type of life zone). The treemap shows the percentage of the area covered by each
category. The barplot show the percentage of the total area with large inter-model variability. e, f Deconstruction of errors in the multi-model
ensemble mean and T10 ensemble mean. Yellow, light yellow and dark yellow are drier, colder and drier, and warmer & drier conditions than
reference data. Blue, dark blue and light blue are wetter, warmer and wetter, and colder and wetter conditions. The agreement between
modeled and observed life zones is colorized in gray (100% agreement). Double donut plots distribute the proportion of global agreement/
disagreement. g, h Global distribution maps of ecotones for multi-model ensemble mean (g) and T10 ensemble mean (h). The stippling shows
the distribution of ecotones as depicted by CRU. Inset steam plots compare observed (black) and modeled (red) area that is covered by each
one of the twenty-seven ecotones (TLZs). Bar plots show the percentage of the total area covered by ecotones.

estimates in the Maritime Continent, which yields a better
characterization of the temperate and rain forests ecotone (TLZ
25). This contrasts to the wet bias observed in central Australia
which harms the representation of transitional areas between hot
desert, tropical semiarid and the Kwongan, a chaparral-like
ecoregion (TLZs 19 and 21).

Deconstructing biases

Because Holdridge’s classes are calculated from monthly climatol-
ogies of temperature and precipitation, we can decompose the
specific biases that are responsible for errors in the representation
of biomes and ecotones (Fig. 2e, f). We found that both ensembles
have similar results, but the top-10 ensemble obtains slightly
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better scores thanks to bias reduction in the Amazonia and central
Australia. The advantage is only apparent because an ensemble
with few members minimizes the inter-model variability, a crucial
problem in those regions3%-38, Moreover, the top-10 ensemble
intensifies the bias in key transient zones for future climate, such
as steppe-cool forest (TLZ 10) and temperate forest-tropical dry
forest ecotones (TLZ 23).

As argued above, most of the error can be explained by
deficiencies in modeled rainfall. One exception is the southward
propagation of boreal forest over Eurasia where models predict
colder conditions than reference data (see Supplementary Fig. 2
for individual maps of model bias and Supplementary Fig. 4 for
MAB). Precipitation plays the main role in the dry bias observed in
the Caribbean, which is a common feature in all models®94°. Wet

npj Climate and Atmospheric Science (2024) 35
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Table 1. Criteria for deconstructing model errors in Holdridge’s Life Zones scheme.
Model bias Annual precipitation Biotemperature PET ratio Cause
Colder-drier Obs > Mod Obs > Mod Obs > Mod Temp. & Prec.
Drier Obs > Mod Obs = Mod Obs < Mod Precipitation
Warmer-drier Obs = Mod Obs < Mod Obs < Mod Temperature
Warmer-wetter Obs < Mod Obs < Mod Obs < Mod Prec. & Temp.
Wetter Obs < Mod Obs = Mod Obs > Mod Precipitation
Colder-wetter Obs = Mod Obs > Mod Obs > Mod Temperature
(@) SSP1-2.6 (b) SSP5-8.5
TRF 2.8% m B TRF 3.6% TRF 2.8% M B TRF 4%
TF 5.2%] LI TF 4.7% TF 5.2%] [ TF 4.4%
0, [
TOF 8.3% | ITDF 10.5% TDF 8.3% ] f TDF 13.2%
TS 7.5%] 7s 7.2% TS 7.5%
CH 6.7%| | UcH72%  CH 6.7%| | : DTS 8.7%
. . cHe%
HD 12.7% HHD 13% HD 12.7%
0,
cr 8.4% ] — gcpos%  creaxf HHD 12.9%
cp CI8 %g//o: CF 10% cp Clcj) %S/A’E =CD 0.2%
ST3ny N W ST2.8% r3Rg ICF 11%
CP <0.1% ST 2.2%
& - g CP <0.1%
TLZ" 26.89 TLZ" 26.8Y
6.8% TLZ" 25.5% 6.8%
TLZ" 23%
BF 9.5%' ’ BF103%  BF 9-5%I BF 9.4%
FT6.1% mET 2.9% FT6.1% Ber1.6%
T2%0 OT1.7% T2%0 ST1.3%
1980 2015 1980 2015
2014 2100 2014 2100

Fig. 3 Life zone area changes from present climate (1980-2014) to future climate (2015-2100). Flow diagrams for the low-emission
scenario SSP1-2.6 (a) and high-emission scenario SSP5-8.5 (b). The twenty-seven ecotones were aggregated into one category (TLZ*) for a

better visualization.

bias in west US is also a shared problem caused by a
misrepresentation of the precipitation field*'. Modeling the
seasonal displacement of the Intertropical Convergence Zone
(ITCZ) is yet another problem. It results in a wet bias in
northeastern Brazil and southern Africa in boreal winter and in
the East Asian summer monsoon*>%3,

Sources of error in modeled precipitation can be attributable to
microphysics, convection, boundary layer and radiation parame-
terizations. The coarse resolution of CMIP6 models is also
important for small-scale precipitation, which is usually para-
meterized. Models have also known problems to simulate the
orographic effects over major mountain chains because the
complex interactions between dynamics, thermodynamics, and
microphysics**. The problem is highlighted in areas near arid
regions where minor changes in precipitation produce large
differences between life zones.

Better precipitation estimates—not better temperature esti-
mates, or more spatial resolution—translates into a better
classification of biomes and ecotones in Holdridge system.
However, it is worth noting that a good precipitation score does
not directly translate to a more precise class in the biome or in the
ecotone classification so the previous observation is not as
obvious as it may seem. Classes in Holdridge system stem from a
series of thresholds, cut-offs and intervals and there is not a
univocal relationship between both ranks.

npj Climate and Atmospheric Science (2024) 35

Future climate

Uncertainties are inherently greater in climate projections as these
include scenarios that model economic and social behavior. The
future unknowns involved are addressed in the community by
introducing Shared Socio-Economic Pathways (SSPs)** or
scenarios.

We used the seven standard SSPs in our calculations. Regarding
ecotones, both the so-called optimistic and worst-case scenarios
(see Supplementary Fig. 29 for other SSP) show the same pattern
for the direction of the changes (Fig. 3a, b). Flow diagrams for
these extreme cases depict an important reduction of tundra and
forest tundra life zones, a global decrease in the extent of the
ecotones, and an increase of warm and tropical life zones. The
major difference between scenarios is found in the intensity of
these changes. Thus, for example, the MME predicts a much more
intense decline of TLZs in SSP5-8.5 (3.8% of total area) than in
SSP1-2.6 (1.3%).

The spatial representation of the flows (Fig. 4a, b) provides
further insight into what could be expected in future climates.
Thus, the severe reduction of subtropical forests (TF) in Africa
clearly features in maps but is hidden in the flow diagrams due to
the small change over total area and non-directional character of
the flux diagrams. Maps also highlight the depletion of forest
tundra in the Tibetan Plateau as well as the poleward expansion of

Published in partnership with CECCR at King Abdulaziz University
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Fig.4 Changes in the distribution of life zones and ecotones under two future climate scenarios. Global distribution of future life zones for
SSP1-2.6 (a) and SSP5-8.5 (b) scenarios. ¢, d maps showing the direction of the changes in HLZ for the low-emission (c) and high-emission (d)
scenarios. Yellows are shifts to drier zones (yellow: drier; light yellow: colder & drier; dark yellow: warmer & drier), blues are shifts to wetter
zones (blue: wetter; light blue: colder & wetter; dark blue: warmer & wetter), and grays stand no changes. Stripes are regions with large inter-
model variability. Double donut plots illustrate the proportion of each change type. e, f are maps of the distribution of ecotones under SSP1-
2.6 (e) and SSP5-8.5 (f) scenarios. The stippling shows the distribution of ecotones for present climate. Inset stem plots show the change in the
area covered by each TLZ. Bar plots are the percentage of the total area covered by TLZs for present (black) and future scenarios (red). The size

of the ensemble is n =36 for SSP1-2.6 and n = 37 for SSP5-8.5.

dry climates. The northward propagation of the chaparral in
Europe is another process that features in all the SSPs.

The spatial consistency of the estimates changes builds
confidence in the modeling. Moreover, the maps of differences
show consensus between scenarios in the identification and the
location of future shifts. These changes, however, differ in their
extent (Fig. 4c, d). Shifts toward warmer and drier life zones were
the most frequent type of change (14%-22%) while unchanging
life zones range from 81%-69%, according to each SSP. In these
areas, the expected variations in temperature and precipitation do
not exceed the critical threshold for biome shift.

The location and extent of changes in the ecotones depend on
the scenario (Fig. 4e, f). In some cases, the projections are
disparate. SSP1-2.6 and SSP5-8.5 give opposite results in the
transition zone between temperate and tropical forests (TLZs 24
and 25). The disagreement between the simulated changes in
both scenarios is most apparent in the Amazonia and in the
Maritime Continent where SSP5-8.5 reduces the extension of TLZs
24-25 in favor of tropical dry and tropical rain life zones.

Like biome shifts, most differences between scenarios appears
in terms of signal strength, not in the direction of the change.
Thus, the contraction of tundra-forest tundra-boreal forest
ecotones (TLZs 2 and 6) is observed in all SSPs but with different
magnitudes. Other shared pattern is the conversion of transitional
areas between chaparral, temperate forest and tropical dry forest
(TLZ 17 and 23) into new Holdridge’s life zones. Past TLZ 17 is now
identified as chaparral while the ecotone lies further north (e.g., in
the eastern US and southern Europe). The case of TLZ 23 in central
and eastern Africa is paradigmatic: the transition from subtropical
temperate forest to tropical dry forest in the Angolan Highlands
and the Afromontane forests will be completed by 2100 and,
consequently, the total area covered by the ecotone will be
reduced more than 33%. TLZ 10 will also decrease, but the impact
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will be higher in low-emission scenarios (SSP1-1.9 and SSP1-2.6).
Future projections include the expansion of few transient zones,
such as the thorn woodland and desert scrub ecotone (TLZ 19).
The increase is better observed in the ‘optimistic’ scenarios, as
with TLZ 10.

DISCUSSION

The extent and intensity of biome and ecotone shifts—defined
here by changes in climatic variables—have a wide impact on
several Earth’s cycles. For example, the expected reduction of
forest-based biomes (—4.5%, excluding tropical dry forest) and the
expansion of grasslands-shrublands (+9.3%) are transformations
that will certainly affect biogeophysical processes (through albedo
and evapotranspiration)*6, biogeochemical cycles (through the
nutrient cycling)”’, and biogeographical processes*®. Changes in
albedo are a well-known example of how biome disruptions can
have a global impact.

The reduction of forest tundra and its ecotone (TLZ 2) also
modifies the albedo and increases the cooling effect of the
surface, altering the global energy flux*. Similarly, the conversion
of transitional zones between cool and temperate forests (TLZ 17)
into chaparral modifies soil properties, diminishing its carbon
storage capacity and nutrients®®°', Nutrient deficiencies such as
nitrogen and phosphorous minimizes the chances of recovering
the system to the initial state creating a feedback loop.

Another interesting example of how biome disruptions are
widespread is found in Africa. The increase of temperature
accelerates water stress that reduces transient areas between
subtropical moist forest and tropical dry forest (TLZ 23) and
promotes the replacement of tall, multi-stratal closed canopies by
open canopies and woodlands of drought-tolerant species®2. The
consequences in terms of the carbon and the nitrogen cycles are
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well known>3-5> (Fig. 5) and include lower carbon and nitrogen

use efficiency, as well as less storage capacity.

In general, the transition to drier and warmer environments that
we found reduces the ability of certain biomes to act as carbon
sinks due to limited photosynthetic activity. As shown in Fig. 5,
there is an inverse relationship between nutrient availability and
the PET ratio (PET/precipitation), but the behavior of nitrogen is
complex and more sensitive to small changes in temperature and
precipitation, especially in colder environments (e.g. TLZ 6).

The cool deserts category is also affected by global warming.
We expect a reduction that ranges from 40% to 80% of the total
area according to each scenario. This biome shifts toward
transitional zones between hot and cool deserts (TLZs 12 and
13) and, to a lesser degree, toward chaparral and hot desert life
zones. It is obvious that increased temperatures enhance
evaporation, accelerate soil water consumption, and reduce
subsurface water storage, which intensifies dryness. But it is less
obvious without making the actual calculations to which extent
the new warmer and drier conditions increase the exposure to
wildfires and favor biological invasions, compromising the survival
of native species®®. The changes featured in the maps are
consistent with a process in which the expansion of the desert
decimates the biological communities at their fringes. Ecotones
act then as a transient refuge for many species in harsh conditions.
The system can go into non-recovery state if it is severely
impacted.

Future changes also affect steppe (—26.6%) and cool forest
(+23.6%) areas. For steppe, shifts are towards thorn steppe and
dry forest ecotones (TLZs 14-16) and its neighboring life zones
(chaparral and cool forest). Cool forest expands at the expense of
boreal forest and the ecotones between deciduous forest, taiga,
and steppe (TLZs 10 and 11). The consequences of these shifts are
different although the major driver of change is the same: rising
temperature. In the first case, shifts toward chaparral reinforce the
main problems of moisture-limited biomes: soil degradation;
water scarcity; and more pressure on resources. Those limitations
are crucial for wildlife there, as species compete for pastures and
freshwater. On the contrary, in temperature-limited biomes—such
as boreal forest—an increase in temperature may translate into
higher net primary production, more nutrients, and more
biodiversity. The impact of climate change on these biomes is
complex because the benefits may be minimized by the loss of
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moisture through increased evapotranspiration. These findings are
important by themselves, but it should be stressed that
confidence in the previous results is contingent to model ability
to correctly depict boundaries between climates. Climate models
are powerful tools for environmental applications but have
limitations and known uncertainties that should be taken into
account in any discussion on those potential biome shifts.
Counterintuitively, we found that uncertainties derived from
socio-economic scenarios are not critical for changes in biome
distribution. Trends are similar for all SSPs but they differ in the
intensity and the extent of the climate shifts. On the other hand,
model uncertainties play a key role in future estimates, especially
over regions with large inter-model variability. The lack of
consensus for present climate affects the reliability of future
projections of biomes and, consequently, the projected shifts
should be carefully scrutinized, always having in mind that they
are contingent upon how well the model represents precipitation
in the first place. For ecotones, scenario and model uncertainties
are equally important. Many climate shifts appear over regions
with large model uncertainties. The western US, the Andes, the
African Great Lakes, the Gobi Desert and the Tibetan Plateau are
some but a few examples. The increase of spatial resolution can
partially solve some problems—e.g. the wet bias in the Tibetan
Plateau and Tropical Andes—but many errors inherent to the
modeling are still present®”-*8, Model limitations are often hidden
to the environmental sciences community. Thus, for example,
future biomes maps show a severe reduction of the Afromontane
Forest. If true, an adaptation plan would be urgent to minimize the
potential loss of biodiversity>®>. However, we know that those
expected changes are subject to large uncertainties due to
limitations in the modeling of precipitation. Discrepancies are
clear in the consensus map but are buried in the MME mean.
Similarly, inter-model variability impacts the future distribution of
prairies in North America®. The differences in precipitation
percolate to biome classification and precludes a clear answer to
expected changes. Forest tundra in the Tibetan Plateau is another
climate hotspot that could lead to biome extinction if we trust the
MME projections. We already know that the region is currently
under high ecological risk due to rising temperatures®' but there
is a lack of model consensus about how much territory will be
affected because not only precipitation but also temperature
uncertainties. Practitioners should put special focus on these
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hidden errors in order to avoid potential pitfalls; otherwise that
could lead to inappropriate policy decisions.

Some biases are intrinsically linked to the classification system.
In Holdridge's scheme, life zones delineations have a logarithmic
scale, which means that lower climate extremes (e.g. cold deserts)
are more sensitive to small deviations in climate parameters. The
incorrect classification of the Patagonian Desert by most models
serves as a perfect example. The logarithmic scale can also affect
higher climate extremes in a different way. Annual precipitation in
tropical rainforest in Africa is between 1600 and 2000 mm yr~',
slightly below the lower limit of this biome according to
Holdridge's classification scheme. For that reason, CRU and
models fail to correctly represent rainforests in Africa but they
do in other rainier regions such as South America and the
Maritime Continent (above >2000 mm yr~', on average). Although
relevant, these types of errors are the easiest to be controlled
through sensitivity analysis.

A potential source of uncertainty in biome and ecotone shifts is
the way classification systems tackle potential evapotranspiration
(PET). Holdridge's scheme is based on biotemperature, but other
classifications include different variables such as wind speed,
radiation and relative humidity2. Resulting differences in PET
estimates are propagated to moisture conditions that define the
boundaries of each life zone (PET ratio), introducing more
uncertainty into predicted biome and ecotone shifts. A simple
way to ensure predictions using PET are consistent with those not
using it is to compare the outputs. Thus, if the models suffer from
the same biases under different classifications, we can conclude
that the uncertainties are unlikely to be due to PET misrepresenta-
tion. Similarly, if a region experiences a biome change under one
type of classification, but not under the other, we can conclude
that PET modeling may be playing a role%3,

In order to ascertain such potential uncertainty, we performed a
comparison of Holdridge classification with Whittaker's biomes
and Koppen'’s climate types. We found no significant difference.
The affected areas by the shifts and their drivers (changes in
precipitation) were similar for the three classification schemes, as
are the regions affected by future biome shifts. This lends
confidence to Holdridge’ system ability to gauge biome and
ecotone shifts in spite of not directly considering PET.

Future projections of terrestrial biomes are also affected by
mismatches in source data. Fields with clear-cut gradients, such as
precipitation, are difficult to measure even at highly aggregated
levels. A major problem of gauge-based observations is that they
have low spatial coverage and are generally undersampled in
areas with complex orography. The montane forest between
Mexican Sierras (Madre Oriental and Occidental) is the canonical
example. We observed that CRU underestimates total annual
precipitation and thus induces Holdridge to define the area as
chaparral while most models classify it as a temperate forest,
which is in agreement with in-situ observations of the green cover.
This type of problem becomes critical when models are ‘tuned’
towards biased observations during the development stage,
masking and propagating errors through the climate projections.
Indeed, over-tunning may impact other variables than those
tuned given the high non-linearity of the system5%6>,

Scale is another aspect that deserves attention. Model outputs
are often combined with ecological and vegetation models for
vulnerability assessments at a small spatial scale®®. However,
precipitation estimates can only be adequately used using
aggregated quantities and large domains, given the patchy
nature and the large spatial variability of the field. Even at large
temporal and spatial aggregations, errors exceeding 100% are
common in precipitation estimates even for state-of-the-art
climate models®’. The inherent uncertainty in the estimation of
the input data is an important limitation for vulnerability models
because downscaling amplifies the cascade of uncertainties in
downstream models®®®°, Some biases in GCMs and ESMs are due
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to known limitations in the parameterizations but many others are
related to the still imperfect knowledge of the interactions
between components of the climate system”%”'—so the ‘inherent’
label above. A standard way to cope with errors is by using bias
correction methods, which are developed under the assumption
that biases are constant over time. However, such statistical
stationarity is a strong assumption not supported by empirical
analyses. The suitability of that approach is even more unclear for
future projections and several authors argued that its performance
is highly dependent on the variable of interest, the area of study
and the methodology’?74,

Consensus maps of indicators such as biome and ecotone
classes—e.g. Figure 2d—can be used to qualitatively pinpoint
systematic errors in GCMs and ESMs. Another application of these
maps is their use for monitoring biodiversity hotspots and its
probability of risk, which is derived from the model consensus. An
important assumption of our approach is that processes will
operate in the same way in future climate giving that the physics
will be the same—the rosy scenario—but that is strong assump-
tion in the case of biogeographical variables. So far, and from the
results shown here, we can only conclude that confident areas
include: east North America and the Brazilian Cerrado; Most
regions in Europe, including Fennoscandia; the Congo basin, and
hot deserts in Africa and the Middle East; northern Russia and
eastern China in Asia; the Maritime Continent and central northern
regions of Australia.

In some other areas, however, and attending to a purely
quantitative analysis (CRU, ground truth data for precipitation)
there is less confidence in the use of GCMs and ESMs to gauge
biodiversity shifts. Those include the west North America,
Mesoamerica and the Caribbean South America, Tropical and
Chilean Andes, and the Gran Chaco in America; eastern
Afromontane Forest in Africa; the Irano-Anatolian region, moun-
tains of central Asia, and mountains of southwest China in Asia;
and most of transitional zones. A major problem facing the
community is that most of those areas are terrestrial hotspots of
biodiversity.

In conclusion, despite the advances in recent years, climate
models are far from being perfect and modeling water cycle
remains the Achilles’ heel of ESMs. The precise measurement of
precipitation in the present climate is still challenging and affects
biodiversity studies. In the case of future, estimates of precipita-
tion are even more uncertain. An inadequate use of precipitation
data in environmental models, one beyond the known limitations
of precipitation measurement and modeling, may affect the
conclusions of vulnerability assessment studies’®. Even the sign
and amplitude of the error are uncertain: it could be either an
overestimation or an underestimation of the impacts on biota and
human life.

It is worth noting that Holdridge’s approach, like any other
classification method, is just an indirect way of defining biome
distribution, one based on the mean state of key climate variables.
We assume that the boundaries defining the classes remain
constant over time and we use them to predict future biome
shifts. The real world, however, is much more complex and field
studies are the ultimate standard to inform policy decisions”®.

Here we have focused on the model side in order to identify
whose areas are beyond confidence given our state of the art in
precipitation science and those where our current knowledge
grants us robust conclusions. Indeed, that does not mean that
impacts in areas lacking consensus are to be dismissed or model
results questioned there. On the contrary, notwithstanding the
many caveats that may apply, global climate models are essential
for a better understanding of how Earth’s system works. Their
outputs provide an accurate estimation of the changes in future
climate, but a more solid conceptual and process understanding
of climate model biases is required to be used in climate change
vulnerability assessments. The point of evaluating climate models
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is not to criticize them or imply that they are unsuitable for
environmental applications, but rather to identify areas that need
improvement and direct resources to fulfill those gaps.

METHODS

We used data from the climate models participating in phase six
of the Coupled Intercomparison Project (CMIP6). We applied a
modified version of Holdridge's life zones system’” (HLZ) to
evaluate model and multi-model ensembles for present climate
and future scenarios. Models were ranked using Cohen’s kappa
coefficient (a qualitative evaluation of classes) and the agreement
with observed precipitation (a quantitative estimate). Specifically,
we used the following materials and methods.

Data

We used fifty-two Global Climate Models (GCMs) from the
Coupled Intercomparison Project Phase 6 (CMIP6, see supplemen-
tary table 1 for a list)’”® to generate Holdridge’s life zones
classification system for present (1980-2014) and future climates
(2015-2100). Additionally, we included a multi-model ensemble
mean of fifty-two members (MME) and five ensembles of top-
ranked models (T05, T10, T15, T25 and T40, see supplementary
table 1 for a complete list of models). The reference dataset was
Climate Research Unit Time Series version 4.04 (CRU)’°. Future life
zones and ecotones were evaluated under seven scenarios (SSP1-
1.9, SSP1-2.6, SSP4-3.4, SSP2-4.5, SSP3-7.0, SSP4-6.0, SSP5-8.5).
Both the GCMs and observational datasets were interpolated to a
horizontal resolution of 1.0 x 1.0 using a bilinear remapping
method. The analysis was for land-only, excluding Antarctica. Data
from CMIP6 models were downloaded from the ESGF. Reference
data was obtained from the CEDA website. Soil carbon stocks and
nitrogen were computed for each HLZ using the SoilGrids 2.0
dataset®®.

Holdridge life zones

HLZs are defined by three climatic measurements: annual
precipitation (mm year~'), biotemperature (°C) and PET ratio.
Annual precipitation (APR) was calculated from monthly precipita-
tion data. Mean annual biotemperature (MAB) was derived from
monthly average temperature. Those months with mean tem-
perature over 30.00 °C and below 0.00 °C were omitted, as in the
original method. PET ratio (PER) was defined as the mean annual
biotemperature multiplied by a constant value (58.93) and divided
by annual precipitation®'. We assigned a class to each grid cell by
computing the minimum Euclidean distance between each pixel
and the geometric centroids of life zones as defined in Sisneros®?
(see Supplementary Table 2 for details). The resulting 33 classes
were aggregated into 13 major biomes following Monserud &
Leemans®3. Maps of HLZs for individual models can be found in
supplementary figures (Present: 1; Future: 8-14). Maps of MAB
(Present: 4; Future: 30-36), APR (Present: 5; Future: 37-43), and PER
(Present: 6; Future: 44-50) for present and future climates are also
included in supplementary figures.

Transitional life zones (Ecotones)

Holdridge's classification system is a set of 36 hexagons in a
triangular frame. Biotemperature, precipitation and PET ratio mark
out six separated triangles in each hexagon which represent the
ecotones (Fig.1a). Each triangle connects 3 adjacent core zones
(inner hexagons). For example, the three lines of precipitation
(250 mm), biotemperature (3°C) and PET ratio (1.0) intersect to
form triangle 5 (CP-FT-BF ecotone). As did for HLZs, we
aggregated the initial 216 transitional life zones into 27 different
classes. Supplementary table 3 includes a complete list of
ecotones and their defining criteria. Maps and stem plots for
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individual models can be found in Supplementary Figures
(Present: 3, 51; Future: 22-28, 52-58).

Whittaker’'s biomes and Koppen's climate types

We complemented the analysis with two other classification
schemes to ensure that the results were not linked to the chosen
classification system. We used the modified version of Whittaker’s
biomes described in Ricklefs®*, which divides the Earth into nine
biomes. Classification was performed using the R package
BIOMEplot. For the Koppen scheme, we employed the standard
algorithm as used in Navarro et al.?°. It classifies ecoregions into
five distinct climate types, including one hydrologic type (B) and
four thermal types (A, C, D, E). The algorithm also includes three
subtypes (f, s, w) to capture the annual precipitation cycle.

Model rank

We used Cohen'’s kappa coefficient® to quantify the ability of
individual models to reproduce Holdridge's life zones as depicted
by CRU for the historical period (1980-2014). The kappa
coefficient (k) is defined as: k = £=7¢, Where Py is the proportion
of units with the agreement and P, is the hypothetical probability
of chance agreement. Grid boxes were weighted by area. The
kappa statistic ranges from 0 (no agreement) to 1 (perfect
agreement). Models are also ranked in terms of agreement with
precipitation observations. The metric used was the coefficient of
determination R%. We used Python packages sklearn v0.24.1 and
scipy v1.6.1 to perform the statistical analysis. Individual scatter
plots of annual precipitation can be found in Supplementary
Fig. 7.

Qualitative methods for deconstructing errors and future
changes in HLZs

We made a pixel-by-pixel comparison of modeled and observed
life zones. If they were coincident, we codified those areas as
“agreement”. For mismatching areas, we computed the difference
between the nearest geometric centroid for reference and
modeled datasets for PET ratio, biotemperature and annual
precipitation. Positive values indicate that reference data has
higher values than model while negative values are otherwise.
Zero means both are equal. Then, we applied the following
algorithm:

The same procedure was done for future changes but
comparing modeled life zones for present and future climate
scenarios. Maps and donut plots of differences (changes) for
individual models can be found in Supplementary Figures
(Present: 2, 59; Future: 15-21, 60-66).

Mapping consensus

We compared the distribution of HLZs from top ten models (see
Fig1b for ranking models). Consensus was obtained when, at least,
eight models agreed with reference data in the type of life zone.
Dissent was defined when less than three models agreed with
reference data. We classified as N/C those cases where models
have moderate consensus (3-7 models). All computations are
based on pixel-by-pixel comparison. The same procedure was
performed for Whittaker's and Koppen’s climate schemes.

Carbon and nitrogen stocks in the topsoil

We used SoilGrids 2.0 dataset to compute carbon and nitrogen in
the topsoil (30 cm) for each pixel. Finally, we grouped all pixels
that fall into each hexagon of Holdridge's scheme and then
computed the average to obtain the resulting values for each
hexagon.
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