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Global increase in future compound heat stress-heavy
precipitation hazards and associated socio-ecosystem risks
Zhiling Zhou 1, Liping Zhang 1,2✉, Qin Zhang 3, Chen Hu 1,2✉, Gangsheng Wang1,2, Dunxian She1,2 and Jie Chen1,2

Compound extremes of lethal heat stress-heavy precipitation events (CHPEs) seriously threaten social and ecological sustainability,
while their evolution and effects at the global scale under climate warming remain unclear. Here we develop the global picture of
projected changes in CHPEs under various scenarios and investigate their socioeconomic and ecosystem risks combining hazard,
exposure, and vulnerability through the composite indicator approach. We find a high percentage of heat stress is followed by
heavy precipitation, probably driven by atmospheric conditions. Global average frequency and intensity of CHPEs are projected to
increase in the future under high-emission scenarios. Joint return periods of CHPEs are projected to decrease globally,
predominantly driven by changes in heat stress extremes. In the long-term future, over half of the population, gross domestic
product, and gross primary productivity may face high risk in most regions, with developed regions facing the highest risks under
SSP5-8.5 and developing regions facing the highest risks under SSP3-7.0.
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INTRODUCTION
Heat stress (HS) and heavy precipitation (PR) are two of the most
hazardous climate extremes, posing serious threats to human
health, sustainable development, and ecological security1–3. The
increasing sensible heat and moisture in the low atmosphere
during HS may set the stage for PR4, leading to the occurrence of
compound heat stress and heavy precipitation events (CHPEs). It is
well-established that compound climate extreme events can have
even more devastating consequences compared to individual
extremes5–8. For example, an HS event closely followed by heavy
rainfall caused the deaths of more than 500,000 livestock and over
$1.2 billion in economic losses in Queensland, Australia, in
February 20194. Recent research efforts have been devoted
towards investigating the occurrence of regional compound
heatwave and precipitation events. You and Wang9 observed
that 22% of land areas experienced statistically significant
consecutive heatwave and heavy rainfall events within 7 days in
China during the 1981–2005 period. Ning et al.10 reported that
approximately one-quarter of summer precipitation extremes in
China, particularly in western regions, were preceded by extreme
heat events. In the central United States, a significant percentage
of floods were also found to be preceded by heat stress events4.
Nevertheless, it remains a continued challenge to adequately
describe CHPEs, particularly in terms of establishing a compre-
hensive and universally applicable index. Moreover, these studies
only focus on historical periods and specific regions. The global
hotspots of CHPEs and their evolutions remain unclear.
Global warming has substantially altered the frequency and

intensity of HWs and PRs at regional and global scales5,6.
Furthermore, the dependence between temperature and pre-
cipitation is projected to increase, particularly in the Northern
Hemisphere11, possibly leading to an increase in the probability of
CHPEs. To facilitate adaptation and mitigation strategies, it is
important to project the future evolution of CHPE characteristics,
hazards, and further risks in a warming climate. Recently, Ren

et al.7 projected the spatiotemporal variations of compound
heatwave and heavy precipitation (CHWHP) events in Guangdong,
China under two SSPs. However, the intensity of CHWHPs in their
study was solely based on temperature, without considering the
precipitation during the compound events. At the global scale,
although no previous study has explored the CHPEs, we notice
that Gu et al.8 investigated the compound flood-hot (CFH)
extremes in catchments over the globe under the combined
scenarios of Representative Concentration Pathways (RCPs) and
Shared Socioeconomic Pathways (SSPs), and found the joint return
periods (JRPs) of CFHs are projected to decrease globally.
Nevertheless, there is no sequential relationship between flood
and heatwave events in their study, and the physical connection
between high temperature and flood is weaker than that between
heat stress and heavy rainfall. Moreover, the heatwaves in these
two studies are simply defined using the daily maximum
temperature, whereas the lethality of heatwave events depends
not only on high temperature but also on air humidity12. Hot and
humid environments can reduce the effectiveness of evaporation,
which is the primary way of expelling excess heat from the human
body, leading to impossible thermoregulation and heat stress/
stroke13. Numerous indices have been employed to quantify heat
stress in previous studies, including apparent temperature14, US
National Oceanic and Atmospheric Administration (NOAA) heat
index15, humidex16, and wet bulb temperature (TWB)17. Among
them, the TWB, which is a weighted mean of the dry bulb, wet
bulb, and mean radiant (globe) temperatures, has been widely
used in climate impact studies4,18,19. Based on the concept of TWB,
Wouters et al.20 defined the lethal heat stress temperature index
(Th) that could better incorporate the relation between heat stress
and mortality than TWB when preserving its physical bases.
In addition to investigating the evolution of extreme events,

assessing and projecting the risk they pose to society is an
important topic in the study of climate impacts and adaptation to
climate change. Risk refers to the potential for significant negative
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shifts resulting from the interaction between hazardous climate
events and vulnerable social conditions, ultimately leading to
widespread adverse impacts within a community or system21.
Previous studies have projected the future social risk of single
climate events22–25, while the future risk for compound events has
been barely explored. According to the risk frame proposed by the
Intergovernmental Panel on Climate Change (IPCC), risk can be
assessed by combining three determinants: hazard, exposure, and
vulnerability21. The composite indicator approach (CIA) is widely
utilized since it can establish standardized evaluation guidelines
for impact reduction at both regional and global scales26. Hazard
refers to the physical natural events and is always quantified by
characteristics of the climate extremes. Exposure is the presence
of objects that can be adversely affected, which is normally
described by population and gross domestic product (GDP).
Vulnerability encompasses the system’s propensity to be adversely
affected by climate hazards and its ability to withstand and
recover from disasters. We choose the cropland and built-up land
area and GDP per capita to reflect socioeconomic vulnerability.
Moreover, besides calculating the socioeconomic risk of CHPEs, we
apply the IPCC risk frame to assess and project the ecological risk
in this study as the ecosystem can also be adversely impacted by
HS and PR27,28. The gross primary productivity (GPP) is used to
reflect ecological exposure here27, and the fragile plant area (i.e.,
scrub, grass, wetlands, and cropland)29 is used to describe
ecological vulnerability.
In this study, we aim to investigate the characteristics and

bivariate hazards of CHPEs, as well as their socioeconomic and
ecological risk at grid, regional, and global scales, and disentangle
how CHPEs and associated risks changed in the past and are likely
to change in the future. We utilize both the reanalysis dataset and
model simulations from six global climate models (GCMs) in the
latest sixth Coupled Model Inter-comparison Project (CMIP6). The
CHPEs are defined as the occurrence of HS events followed by PR
events within three days. We check the probability of CHPE
occurrence using a fraction indicator and assess the physical
mechanism behind CHPEs by measuring the responses of large-
scale atmospheric dynamics during CHPEs. We define a composite
intensity indicator considering both the characteristics of HS and
PR events to quantify the spatiotemporal variations of CHPEs. To
provide a potential range of future CHPE evolution under varying
socioeconomic and emissions scenarios, we then project the
CHPEs under four combined SSP-RCP scenarios from CMIP6 (i.e.,
SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5)30,31. We further
disentangle the future changes in bivariate hazards of CHPEs
using JRPs under the ‘and’ hazard scenario and attribute the JRP
changes to single HS, PR events, and their dependence by
conducting controlled experiments. We introduce a contribution
fraction indicator to quantify the proportional impact of the three
primary drivers on JRP changes. Moreover, we assess future shifts
in the socioeconomic and ecological risks of CHPEs under different
scenarios using socioeconomic data, land cover data, and GPP
datasets. We finally quantified the exposed population, GDP, and
GPP under high risk in 23 IPCC climate regions.

RESULTS
Observed CHPE and atmospheric conditions
Observed daily Th and precipitation series are positively correlated
in most regions around the world during the warm season
(Supplementary Fig. 1) except western North America, northern
South America, the Mediterranean region, and central Africa
(Fig. 1l), probably due to the increasing sensible heat flux and
moisture convergence under extreme heat stress6,32. We identify
global HS, PR, and CHPE events using reanalysis products for the
historical period (1979–2014). To assess the probability of CHPEs
occurring either following or preceding individual HS or PR events,

we define the fraction indicator Fr_HS (Fr_PR) as the total count of
CHPEs divided by the total count of single HS (PR) events within a
specific year. Global average Fr_HS (Fr_PR) ranges from 20% to
35% (5% to 20%) during the 1979–2014 period, showing a
significantly increasing trend of 0.13% (0.15%) per year (Fig. 1m).
In specific regions such as the Arctic, eastern Canada, southern
South America, eastern Russia, western and northeastern China,
and Southeast Asia, Fr_HS exceeds 30% each year (Fig. 1a, b),
indicating that a large portion of HS events in these areas are
followed by precipitation events within three days. Regions with
relatively high Fr_PR are located in eastern America, northern and
eastern Africa, the Middle East, Mongolia, northern China, and
Australia, where more than 10% of PR events in these areas are
preceded by HS events. The rising Fr_HS and Fr_PR indicate that
the interdependence between HSs and PRs is growing under
climate warming.
During the period from 1979 to 2014, the observed CHPEs show

a high frequency in the Arctic region, Canada, central United
States, southern South America, northern Europe, eastern Russia,
and western and northern China, occurring more than once per
year (Fig. 1c). The spatial distribution of CHPE duration exhibits
similarity with its frequency (Fig. 1d). Moreover, the spatial
distributions of CHPE intensity and magnitude also share the
same similarity, with high values observed in the Arctic region,
central United States, southern South America, northern Europe,
eastern and southern Africa, central Russia, western and northern
China, northern India, Pakistan, and Australia (Fig. 1e, f).
Furthermore, the frequency, duration, intensity, and magnitude
of CHPEs all show a significant increasing trend from 1979 to 2014,
with a trend of 0.01, 0.04 days, 0.31, and 0.05 per year, respectively
(Fig. 1n–q). The phenomenon of Arctic amplification is obvious
across all CHPE characteristics.
To disentangle the physical processes of CHPEs, we diagnose

the large-scale atmosphere conditions prior to the PR events to
support the link between HS and following PRs. Considering both
the thermal and dynamical drivers of PR, we select convective
available potential energy (CAPE), specific humidity (SH), surface
sensible heat flux (SSHF) vertically integrated moisture conver-
gence (VIMC), and total column water vapor (TCWV) and employ
composite analysis to diagnose their anomalies. Since the
differences in composite anomalies for the large-scale environ-
mental conditions are not sensitive to the selection of 1, 2, or
3 days prior to the PR events4, we calculated the mean anomalies
of the atmospheric variables 1 day before the occurrence of PR
events in the identified CHPEs. When a HS event occurs, the
temperature and humidity are high and the sensible heat
increases, leading to an increase in atmospheric instability and
consequently high CAPE, which can bridge the HS and PR
events32,33. In our study, high CAPE accompanied by high SH and
SSHF is found in the Arctic region, southeastern South America,
northern Europe, and eastern Asia, which may enhance a high
moist convection potential (Fig. 1g–i and Supplementary Fig. 2).
Besides the dynamical forces, moisture convergence and atmo-
spheric moisture also play a critical role in modulating precipita-
tion patterns based on the moisture budget. In this study, positive
anomalies of VIMC and TCWV are found in almost the entire global
land surface except Mediterranean and northern South America,
suggesting intensified atmospheric moisture transport, which
provides favorable conditions for extreme PRs.

Future spatiotemporal variations in CHPE characteristics
We employ historical CHPE simulations from GCMs for the
1979–2013 period as the reference for future projections
(2015–2099). The exclusion of the years 2014 and 2100 is due to
the fact that the warm season in the southern hemisphere extends
into the following year. On a global average of future Fr_HS, the
disparities among the four future scenarios exhibit a substantial
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magnification from 2030 onwards, with higher-emission scenarios
exhibiting a greater fraction and larger growth rate. Specifically,
the global average Fr_HS maintains a robust increasing trend
under SSP2-4.5, SSP3-7.0, and SSP5-8.5 throughout the entire
future period, while increasing until 2050 and then stabilizes
under SSP1-2.6 (Fig. 2i). To clarify the variations of CHPE during
different time periods, we divided the future time period into
three sub-periods, i.e., near-term (2015–2040), mid-term

(2041–2070), and long-term (2071–2099). The spatial distributions
of Fr_HS and Fr_PR under various scenarios for the three sub-
periods are displayed in Fig. 2 and Supplementary Figs. 3 and 4. In
the long-term, the global average Fr_HS projections reach over
50% under SSP3-7.0 and SSP5-8.5, with more than half of the land
areas exceeding 70%, which suggests a substantial portion of HS
events is closely followed by PR events. Regarding spatial
distribution, there are notable differences in Fr_HS across different

Fig. 1 Observed CHPE characteristics and anomalies of the atmospheric conditions for the historical period (1979–2014). a, b Fraction of
CHPE in HS (a) and PR (b) events. c–f Observed multi-year average of frequency (c), duration (d), intensity (e), and magnitude (f) of CHPE.
g–k Anomalies of CAPE (g), SH (h), sensible heat flux (i), VIMC (j), and TCWV (k) during CHPE. l Kendall’s correlation coefficient (r) between daily
Th and precipitation. m–q Temporal changes in the fraction of CHPE in HS and PR (m), frequency (n), duration (o), intensity (p), and magnitude
(q) of CHPE. The trends are estimated by the simple linear regression based on the least squares method, and the significance is evaluated at a
0.05 confidence level by the nonparametric Mann–Kendall trend test.
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scenarios for most regions apart from the Mediterranean, the
Middle East, and Australia. The Arctic region, central and eastern
parts of the United States, northern and eastern regions of South
America, the southwestern region of Africa, Qinghai-Tibet Plateau,
eastern parts of Asia, and Southeast Asia exhibit larger Fr_HS
values compared to other regions (Fig. 2a–d), indicating heavy
precipitation disaster preventions need to be prepared after
experiencing extreme HS conditions. In terms of Fr_PR, the annual
global average series initially undergoes an increase and then
keeps stable across all four scenarios, while the turning point is
around 2050 and 2070 under SSP1-2.6 and SSP5-8.5, respectively,
and after 2080 under SSP2-4.5 and SSP3-7.0. In the long-term, the
global average Fr_PR projections surpass 35% under SSP2-4.5,
SSP3-7.0, and SSP5-8.5 (Fig. 2j). In southern North America, central
South America, central and southern Africa, northern India,
southern and northern China, Mongolia, and northern Australia,
humid and hot climatic conditions often precede PR events. Fr_PR
remains low in the Southeastern Mediterranean under all four
scenarios (Fig. 2e–h).
Future changes in CHPE characteristics relative to the historical

period (1979–2013) are evaluated in terms of their frequency,
duration, intensity, and magnitude for the three future sub-
periods under four scenarios (Fig. 3 and Supplementary Figs.
5–12). On a global average, the CHPE characteristics are generally
projected to increase until the late twenty-first century under
SSP2-4.5, SSP3-7.0, SSP5-8.5, and stabilize at around 2050 under
SSP1-2.6 (Fig. 3b–e). As the scenarios transition from low-emission
scenarios (i.e., SSP1-2.6) to high-emission scenarios (i.e., SSP5-8.5),
the global average CHPE characteristics gradually increase, but the
differences in characteristics between different scenarios decrease
(Fig. 3b–i). This may be because, under higher-emission scenarios,

countries and regions may adopt more emission reduction
measures and policies to address the needs of climate change
and environmental protection.
CMIP6 multi-model ensemble (MME) projections exhibit an

increasing trend in various CHPE characteristics over most land
areas, while these increases are much stronger for drought
frequency and intensity compared to drought duration and
magnitude. The frequency and intensity of CHPE are projected to
increase fourfold over half of the global landmasses (Fig. 3a) under
high greenhouse gas emission scenarios (i.e., SSP3-7.0 and SSP5-
8.5). The largest intensification of CHPE intensity, duration, and
magnitude is projected in western and southern North America,
northern South America, Mediterranean, central and western
Africa, central Asia, southwestern India, Southeast Asia, and
northern Australia, while a slightly declining pattern is found in
northern Africa in the near-term and under SSP1-2.6. Besides these
regions above, the CHPE frequency is projected to increase
intensely in southern China. Comparing different scenarios, the
differences in the change of CHPE characteristics are more
pronounced in the mid-term and long-term periods than in the
near-term. These findings suggest that the global land areas will
be subject to an escalating risk of CHPE in the medium to long-
term future without more aggressive adaptation and mitigation
strategies.

Projected changes and drivers in CHPE hazards
We examine changes in the JRP of historical 30-year CHPE within a
bivariate framework. In a warming future, we observe a decrease
in the JRP of compound extremes across most global regions
under all four SSPs, with the decrease becoming more significant

Fig. 2 Projected fraction of CHPE in single extreme events. a–d Multi-year average of the fraction of CHPE in HS events in the long-term
period (2071–2099) under four scenarios. e–h Same as a–d but for the fraction of CHPE in PR events. i Time series of the fraction of CHPE in HS
events for the historical and future periods. j Same as i but for the fraction of CHPE in PR events.
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from the near-term to the long-term period (Fig. 4a, b). These
overall decreases in the JRP occur irrespective of the level of
warming but are more pronounced under higher-emission
scenarios (i.e., SSP3-7.0 and SSP5-8.5). Furthermore, the disparity
among the four scenarios is projected to intensify over time. In
particular, the historical 30-year CHPEs are projected to occur
more frequently than 10-year over 75 percent of the global land
by the long-term under SSP5-8.5. These changes suggest a severe
exacerbation of CHPE hazards under global warming. We found
high inter-model agreement in the long-term, indicating a highly
credible increase in the occurrence of CHPE extremes by the end
of this century (Fig. 4b and Supplementary Fig. 13). We also
calculate the average future JRP for the 23 regions (Fig. 4c, d).
Except for SAU, CAS, MED, and NEU, the average JRPs are

projected to be less than 10 years for other regions in the long-
term under SSP5-8.5, and the smallest JRP (around 5 ~ 6 years) are
found in NEB, EAS, and SEA. The imminent concern is that the
occurrence of CHPE extremes for NEB is expected to double in the
near-term future.
Changes in the CHPE JRPs can, in principle, be attributed to

changes in the marginal distributions of HSs and PRs, as well as
the interplay between both hazards8,33. Overall, contributions
from HS extremes are the most significant and dominant changes
in the JRP of CHPE hazards, followed by contributions from PRs,
and the dependence is projected to slightly increase the JRP for
most regions (Fig. 5). Specifically, if only the HSs (PRs) changes, the
global average JRP is supposed to be ~10 (~25) years
(Supplementary Figs. 14–19). In contrast, JRP is projected to

Fig. 3 Future spatiotemporal variations in CHPE characteristics. a Spatial features of CHPE characteristics change under diverse future
scenarios for the long-term period (2071–2099). b–e Annual time series of global average characteristics CHPE events for the historical period
(1979–2013) and future period (2015–2099) under four scenarios. The shaded areas denote the interquartile range calculated across the six
GCMs. f–i Probability density function (PDF) of global annual average drought characteristics for the historical and future period.
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increase over half of the landmass if only the dependence is
changed, with a very small disparity among different terms and
scenarios. Moreover, we define contribution fraction indicators
(i.e., CFHS, CFPR, and CFC) to quantify the relative contributions of
the three drivers (see Methods). We calculate the contribution

fractions separately under four scenarios over the 23 regions
(Fig. 5b). Single HS changes account for more than 50 percent of
the JRP change across all 23 regions. Single PR changes result in a
decrease in all regions except ENA, CAM, NAU under SSP1-2.6, and
SAU under both SSP1-2.6 and SSP2-4.5 scenarios. The dependence
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change exhibits a positive contribution to JRP changes in all
regions except MED, CAS, TIB, EAS, SAS, and SEA under high-
emission scenarios. Comparing the four scenarios, CFPR is larger
while CFC is smaller under higher-emission scenarios for almost all
regions. CFHS among different scenarios show two patterns in the

23 regions. For regions with less JRP decrease (e.g., ALA, SAH, SAU,
CAS, MED, and NEU), CFHS is significantly smaller under SSP1-2.6
than under other scenarios. However, For regions with a marked
decrease in future JRP (e.g., AMZ, NEB, EAS, SEA, WAF, EAF, and
SAF), the CFHS is larger under lower emission scenarios.

Fig. 4 Projected JRP of historical 30-year bivariate CHPEs under diverse future scenarios. a Spatial features of future JRP under four
scenarios in the near-term (2015–2040), mid-term (2041–2070), and long-term (2071–2099). b Global average JRP of historical 30-year bivariate
CHPEs. The boxplots represent the spread of JRP estimated from six GCMs. c 23 climate regions in global land areas. d Heat maps of average
JRP for different regions and the global landmass. Near, Mid, and Long in d indicates near-term, mid-term, and long-term, respectively. S1, S2,
S3, and S5 indicate SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively. ALA Alaska, GRL Greenland and Northern Territories, WNAWestern
North America, CNA Central North America, ENA Eastern North America, CAM Central America, AMZ Amazon Basin, NEB Northeastern Brazil,
SSA Southern South America, NEU Northern Europe, NAS North Asia, MED Mediterranean Basin, CAS Central Asia, TIB Tibet, EAS East Asia, SAH
Sahara, SAS South Asia, SEA Southeast Asia, WAF Western Africa, EAF Eastern Africa, SAF Southern Africa, NAU North Australia, SAU South
Australia, GB Global.

Fig. 5 Projected contribution fraction of three drivers on JRP change of historical 30-year bivariate CHPEs under diverse future scenarios
in the long-term (2071–2099). a Spatial features of contribution fraction for the three experiments under four scenarios. b Average
contribution fraction of three drivers of JRP change for different climate regions and the global landmass.
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Socioeconomic and ecological risk projections of CHPE
Significant increases are found in the future global averages of both
socioeconomic risk (SR) and ecological risk (ER) of CHPE relative to
the baseline period (Fig. 6; Supplementary Figs. 20 and 21). The
specific magnitude of the increase varies depending on the future
scenarios considered, with higher-emission scenarios generally

associated with larger risks. Specifically, the future SR sustains a
consistent increase before 2060 under all four scenarios and
afterward remains at the lowest level under SSP1-2.6 while
continuing to enlarge under SSP2-4.5, SSP3-7.0, and SSP5-8.5. The
global average ER series under various scenarios exhibits similar
patterns to the SR series. The ER series under SSP3-7.0 is closer to

Fig. 6 Projected future risk of CHPE. Projected socioeconomic (a–d, i, k) and ecological risk (e–h, j, l) of CHPE. a–h Spatial maps of risk for the
long-term period (2071–2099) under four scenarios. i–j Annual time series of global average CHPE risk. k, l Heat map of average risk changes
relative to the baseline period for different regions and the global landmass. Note that the color bars of the spatial maps and the heat maps
are different.
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SSP5-8.5 in the second half-century compared to SSP2-4.5, which
contrasts with the SR series (Fig. 6i, j). Spatially, the largest increase
of SR relative to the baseline period is projected in Central America,
coastal areas of northern South America, central South America,
western and southeastern Africa, central Asia, western India,
southern China, Southeast Asia, and southeastern Australia while
the decrease is found in Greenland, northeastern Russia, and Sahara.
The largest increase in ER is projected in southeastern North
America, northern South America, the Middle East, eastern Africa,
southwestern India, northeastern China, Southeast Asia, and north-
ern Australia (Fig. 6a–h). We also calculate the average risk change
for the 23 regions (Fig. 6k, l). A large disparity is found in SR change
between SSP5-8.5 and other scenarios for WNA, CNA, ENA, NEU,
MED, and SAU than other regions in the long-term future, which are

developed regions. For less-developed regions such as CAM, AMZ,
NEB, and SEA, the largest increase of SR in the long-term future is
projected under SSP3-7.0 rather than SSP5-8.5. The largest projected
ER increase is under SSP3-7.0 for CAM, AMZ, NEB, SEA, WAF, and
EAF, and under SSP5-8.5 for other regions.
To assess the potential impact of high CHPE risk on socio-

economic and ecological exposure, we classified the raw risk values
into five grades using the natural breaks method34 (Supplementary
Figs. 22 and 23). The fractions of the exposed population/GDP
(Fr_SE) at high SR levels (Levels 4 and 5) indicate that in most
regions, under high-emission scenarios in the long-term, approxi-
mately 50% of the total population/GDP is exposed to high
socioeconomic CHPE risk. Moreover, for regions such as ENA, EAF,
TIB, EAS, SAS, and SEA, this fraction exceeds 75% (Fig. 7a). Consistent

Fig. 7 Social and ecological exposure at different risk levels. Fractions of the exposed population (a) and GPP (b) at five socioeconomic risk
levels for each region in the long-term (2071–2099) under four scenarios.
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with the average risk changes, regions with the largest Fr_SE values
under SSP3-7.0 are CAM, AMZ, NEB, and SEA. Similarly, when
considering ecological exposure, the fraction of the exposed GPP
(Fr_EE) at high ER levels is the highest for SAS, CAS, EAS, SAF, and
NEB, which is projected to surpass 75% in the long-term future
(Fig. 7 b). The relative magnitudes among the scenarios in terms of
Fr_EE are consistent with the average risk changes.

DISCUSSION
In our study, significant increases in future CHPE characteristics are
projected compared to the historical period (Figs. 1–3 and
Supplementary Figs. 5–8). It’s worth noting that there are slight
differences in the spatial patterns of CHPE characteristics between
the historical (Fig. 1c–f) and near-term periods (Supplementary
Figs. 5–8). Take CHPE intensity as an example, large values are
found at higher latitudes in the historical period but shift towards
lower latitudes in the near-term period. To better understand this
discrepancy, we examine spatial maps of CHPE characteristics for
each decade from 1979 to 2014 (Supplementary Figs. 24 and 25).
We find that regions with high characteristic values shift from
areas south of 20°S latitude to the latitude range of 40°N to 20°S.
In regions north of 45°N, high-value areas move further north-
ward. In other words, high-value regions tend to shift towards
lower latitudes and the Arctic regions during the historical period.
The reason may be due to the spatially uneven trends in
precipitation2,35 and heat stress3,36 in different latitudinal zones.
Besides, the dependence between HS and PR changes little across
distinct zones (Supplementary Fig. 26).
In a warmer future, great values in CHPE characteristics are

projected in southern North America, northern and eastern South
America, western and central Africa, South Asia, Southeast Asia,
and northern Australia. These regions coincide with the main
global land monsoon areas, where concurrent rainfall and high
temperatures are influenced by warm and humid air from the
ocean during summer37. However, it should be noted that
northeastern China is likely to witness a smaller increasing trend
in CHPE characteristics. One possible explanation may be related
to the monsoon season in northeastern China occurs during the
winter months, which can result in a cold and dry climate.
Additionally, the Arctic region exhibits high CHPE intensity. This is
because our definition of CHPE intensity focuses on the
magnitude of changes in HS and PR, which are both prominent
in the Arctic38,39.
We find that the changes in CHPE hazard are dominated by the

increasing HS, which is consistent with previous studies8,31,33.
Furthermore, we calculate the contribution fraction of the three
drivers for different regions and the global landmass in this study
(Fig. 5), which can provide valuable insights into the drivers of
future JRP changes and can aid in understanding and mitigating
the risks associated with CHPE hazards. Interestingly, we find that
the HS contribution is the smallest for regions with less JRP
decrease in the future under SSP1-2.6 and for the other regions
under SSP5-8.5. This is probably because the contributions of PR
change are much larger under higher-emission scenarios in the
latter regions with a large decrease in JRP.
Regions with dense populations, particularly highly urbanized

areas, are projected to face high socioeconomic risks. The large
disparity between SSP5-8.5 and other scenarios found in more
developed regions may be due to a more significant increase in
population and GDP in these regions than in the less-developed
ones under high forcing and traditional development patterns22.
Besides, the developing regions such as CAM, AMZ, NEB, and SEA
have the largest exposed population and GDP under SSP3-7.0
rather than SSP5-8.5 in the developed regions. This can be
attributed to SSP3-7.0 representing an imbalanced and regionally
differentiated world, characterized by faster population growth in
developing countries with limitations in educational and

technological development. Similarly, the GPP exposed at high
ecological risk is the largest under SSP3-7.0 among the four
scenarios for CAM, AMZ, NEB, SEA, WAF, and EAF, where uneven
development patterns cause more fragile lands.
There are still some limitations in this study. Firstly, there are

uncertainties in the data used in the study, including uncertainties
in GCMs and multi-mode ensemble approaches. These uncertain-
ties can impact the accuracy and reliability of the results. However,
uncertainty exists in all future projection studies and cannot be
avoided entirely31,40. In addition, we only consider four typical
scenarios in this study while future sustainable development may
involve more choices and strategies Considering a broader range
of scenarios and sustainable development pathways can provide a
more comprehensive insight. Finally, the risk indicators can be
more diverse and comprehensive, and different indicators may
result in inconsistent results22,41,42. We only consider the most
representative indicators of exposure and vulnerability limited by
the large space scale. More comprehensive regional assessments
are anticipated to predict CHPE risk by combining more accurate
datasets and advanced methods in future work. These limitations
suggest areas for improvement in future research, such as using
more reliable data, considering additional variables and scenarios,
addressing regional differences, and conducting more compre-
hensive uncertainty analyses to enhance the accuracy and
reliability of the study.

METHODS
Datasets
We use reanalysis products to explore the historical CHPE and
atmospheric conditions. The daily 1° × 1° 2 m air temperature, 2 m
dewpoint temperature, SSHF, CAPE, VIMC, and TCWV from ERA5
for the 1979–2014 period are utilized in this study. The daily
0.5° × 0.5° precipitation from the Climate Prediction Center (CPC)
for the 1979–2014 period is used and resampled to 1° × 1°.
To project future climatic conditions, we select a multi-model

ensemble including six CMIP6 GCMs (i.e., CNRM-CM6-1, EC-Earth3-
Veg, KACE-1-0-G, MPI-ESM1-2-HR, MRI-ESM2-0, NorESM2-MM), of
which the mean equilibrium climate sensitivity is 3.71, falling
within the always maintained range of 1.5–4.5 °C43. Details of the
selected GCMs are shown in Supplementary Table 1. We down-
load daily variables of precipitation, 2 m air temperature, relative
humidity, and monthly GPP for the historical (1979–2014) periods
and the future (2015–2100) periods. Projections under four future
combined scenarios are employed, i.e., SSP1-2.6 (+2.6 Wm−2; low
forcing sustainability pathway), SSP2-4.5 (+4.5 Wm−2; medium
forcing middle of the road pathway), SSP3-7.0 (+7.0 Wm−2;
medium to high forcing regional rivalry pathway), and SSP5-8.5
(+8.5 Wm−2; high forcing fossil-fueled development pathway). A
common bilinear interpolation scheme is applied to interpolate
the meteorological variables to a common spatial resolution of
1° × 1° 8,44,45. We adopt the widely used Quantile Mapping (QM)
method31,46–48 to correct the daily precipitation and calculated Th.
To analyze the socioeconomic and ecological risk of CHPE, a

variety of datasets are used in this study. We use global population
data from the Global Rural-Urban Mapping Project, Version 1
(1990, 1995, and 2000) and WorldPop (2000–2014) with a
resolution of 1 km49,50. Gridded GDP data with a spatial resolution
of 5 arc-min for the 1991–2014 period are employed51. To project
future global exposure of population and assets to CHPE, we use
global 0.5° × 0.5° population and GDP projections under the four
SSP scenarios52–54. 0.25° × 0.25° GPP data used to calculate the
ecological exposure for the 1988–2014 period are from the
VODCA2GPP dataset55. Historical land cover data are gained from
the European Space Agency with a 300-m spatial resolution.
Global land cover projections with a 0.1° × 0.1° resolution for
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2020–2100 under different RCP scenarios56 are utilized. All the
above data are uniformed to 1° × 1° resolution.

Definition and characterization of CHPEs on a grid cell
The CHPEs refer to the occurrence of HS events followed by PR
events within a prescribed temporal interval. It should be noted
that we only consider the sequential occurrence of PR following
the termination of the HS event, ignoring the concurrent PR and
HS events. In this study, we particularly focus on the warm season,
which is defined as the hottest five months using ERA5
temperature climatology (Supplementary Fig. 2). We calculate Th
based on the widely used formula of wet bulb temperature
TWB

57,58.

Th ¼ TWB þ 4:5 1� RH
100

� �2 !
(1)

TWB ¼ T ´ atan 0:151977 ´ RHþ 8:313659ð Þ12
h i

þ atan T þ RHð Þ � atan RH� 1:676331ð Þ
þ 0:00391838 ´ RH1:5 ´ atanð0:023101 ´ RHÞ � 4:686035

(2)

RH ¼ 100 ´ exp � L
RwðT þ 273:15ÞTd

ðT � TdÞ
� �

(3)

SH ¼ RH
100

´
es Tð Þ

RwðT þ 273:15Þ (4)

where atan is the arc tangent, T is the dry air temperature (°C), TWB

is the wet bulb temperature (°C), Th is the lethal heat stress
temperature (°C), Td is the dewpoint temperature in Kelvin, RH is
the near-surface relative humidity (%), SH is the near-surface
specific humidity (g m−3), es (T) is the saturated water vapor
pressure at T, L is the enthalpy of vaporization (2.472 × 106 J kg−1),
Rw is the gas constant for water vapor (461.5 J K−1 kg−1).
For each grid, a single HS event (orange slashed area in Fig. 8) is

defined when the daily Th exceeds its 90th percentile in the warm
season over 1979–2014 for at least three consecutive days. A
single PR event (blue slashed area in Fig. 8) is detected when daily
precipitation is higher than its 90th percentile on wet days from
1979–2014. We use the 90th percentile to capture an adequate
number of compound events for analysis. The percentile-based
thresholds for identifying extreme events have been proven
reasonable in previous studies3,33,59. Accordingly, we define a
CHPE as an HS event followed by a PR event within 3 days (the
3-day period refers to before the onset of the PR event and after
the cessation of the HS event). To avoid redundancy, we matched
each PR event with the nearest HS event and only retained the

largest PR event accompanied by the same HS event. Finally, we
set the max duration of the HS event (THSmax) in CHPEs (green
slashed area in Fig. 8) to 7 days from the last day forward, since
the physical connection may weaken if the time interval between
HS and PR events is too long. The CHPEs are characterized by four
metrics: frequency, defined as the number of CHPEs in a year;
duration, defined as the total number of days in the HS and PR
event. For CHPE intensity and magnitude, we combine the
normalized daily anomalies in HS and PR:

ISHS ¼
XDUHS

d¼1

Thd � Th25p
Th75p � Th25p

� �
; ISPR ¼

XDUPR

d¼1

Prd � Pr25p
Pr75p � Pr25p

� �
; ISC ¼ ISHS ´ ISPR

(5)

MDHS ¼
PDUHS

d¼1
Thd�Th25p
Th75p�Th25p

� �
DUHS

;MDPR ¼
PDUPR

d¼1
Prd�Pr25p
Pr75p�Pr25p

� �
DUPR

;MDC ¼ MDHS ´MDPR

(6)

where Thd and Prd are the heat stress temperature and
precipitation in day d, respectively. Th25p and Th75p are the 25th
and 75th percentile of Th in the warm season over 1991–2014,
respectively. PR25p and PR75p are the 25th and 75th percentile of
daily precipitation in wet days over 1991–2014, respectively. ISHS
and ISPR are the intensity of HS and PR events in CHPE,
respectively. MDHS and MDPR are the magnitudes of HS and PR
events in CHPE, respectively.

Quantile Mapping method
The QM method is used to correct and minimize systematic biases
in daily precipitation, temperature, and relative humidity from the
six CMIP6 GCMs. The calibration results are provided in
Supplementary Fig. 27. The general mechanism of the QM
method is to find a transfer function to achieve the best fit that
maps the simulated cumulative distribution function (CDF) of the
variables to the observed CDF. The transfer function can be
described as follows:

xbcðtÞ ¼ F�1
o;h Fm;h xm;f tð Þ

� 	
 �
(7)

where xbcðtÞ is the bias-corrected value, xm;f tð Þ is the model
output in the future period at time t, F�1

o;h and Fm;h mean the
inverse CDF for historical observation and model simulation series,
respectively.

Bivariate return period variation and attribution
To evaluate the joint comprehensive impacts of extreme HS and
PR on CHPEs, we employ copulas to analyze bivariate return
periods. We initially estimate the marginal distributions of HS and
PR by utilizing five candidate parametric distributions (i.e.,
Gamma, GEV, Weibull, Normal, and Log-normal). Subsequently,
we employed five commonly used bivariate copulas (Gaussian
copula, Student’s t copula, Frank copula, Clayton copula, and
Gumbel copula) to link the marginal distributions of HSs and PRs.
The selection of the best-fitting marginal distributions and copulas
is based on the smallest Akaike information criterion (AIC)60. We
employ the “and” criterion of the joint return period (JRP) to
measure the bivariate hazards of CHPE:

JRP ¼ E
1� F ISHSð Þ � F ISPRð Þ þ CðF ISHSð Þ; F ISPRð ÞÞ (8)

where F ISHSð Þ (F ISPRð Þ) is the marginal cumulative distribution of
the ISHS (ISPR), respectively, and C F ISHSð Þ; F ISPRð Þð Þ represents the
joint distribution of F ISHSð Þ and F ISPRð Þ. In accordance with
previous studies8,61,62, we set the same exceedance probability
for both the HS and PR extremes: F ISHSð Þ ¼ F ISPRð Þ. E denotes the
average inter-arrival time between compound events.

Fig. 8 Schema of the CHPE identification. TRH and TRP are the
thresholds of the heat stress (HS) and precipitation (PR) series. The δt
is the max time span between an HS event and the followed PR
event and THSmax is the max limit duration of an HS event in CHPE.
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Given the potential changes in future CHPE hazards in a warmer
climate, we individually construct individual bivariate distributions
in the historical (1979–2014) and three future periods (Near-term:
2015–2040; Mid-term: 2041–2070; Long-term: 2071–2099). To
further understand the factors driving changes in JRP, we also
carry out three separate experiments to disentangle the relative
contributions of three drivers (i.e., HS, PR, and their dependence) to
variations in CHPE hazards as suggested by previous studies8,33,63:
(1) fixing the F ISHSð Þ and CðF ISHSð Þ; F ISPRð ÞÞ in the historical period
and exchanging the F ISPRð Þ in the future period; (2) fixing the
F ISPRð Þ and CðF ISHSð Þ; F ISPRð ÞÞ in the historical period and exchan-
ging the F ISHSð Þ in the future period; and (3) fixing both F ISHSð Þ and
F ISPRð Þ in the historical period and using CðF ISHSð Þ; F ISPRð ÞÞ for the
future period (more details see Supplementary Methods). Then we
define the contribution fraction of the three drivers:

CFx ¼ ΔJRPx
abs ΔJRPHSð Þ þ abs ΔJRPPRð Þ þ absðΔJRPCÞ (9)

where CFx and ΔJRPx represent the contribution fraction and
change of JRP result from driver x, respectively.

Socioeconomic and ecological risk calculation
CHPE risk is assessed through indicators of three determinants:
hazard, exposure, and vulnerability. The selected indicators are
listed in Table 1. In this study, we separately calculate the
socioeconomic risk (SR) and ecological risk (ER) of CHPE using the
formulation implemented by the United Nations International
Strategy for Disaster Reduction (UNISDR)64, which has been widely
applied in previous risk studies65–67. We set the weight of the
inflictor (hazard) to 0.5 and the weight of the acceptor (exposure
and vulnerability) to 0.25 each22.

Risk ¼ Hazard0:5 ´ Exposure0:25 ´ Vulnerability0:25 (10)

T ¼
Yn
i¼1

Zi
wi (11)

where T refers to hazard, exposure, and vulnerability, n is the
number of indicators in T, Zi is the indicator and wi is the weight of
it.
A linear scale normalization is performed to standardize all raw

indicator values to an identical range of 0 to 1.

Zi ¼ Xi�Xmin
Xmax�Xmin

´ 10 positive correlation

Zi ¼ 1� Xi�Xmin
Xmax�Xmin

� �
´ 10 negative correlation

8<
: (12)

where Zi and Xi represent the normalized and raw indicator values
for grid i, respectively, Xmax and Xmin represent the maximum and
minimum values across all grids, respectively.

DATA AVAILABILITY
The GCM data can be accessed from the CMIP6 archive (https://esgf-node.llnl.gov/
projects/cmip6/). The ERA5 data can be accessed from https://
cds.climate.copernicus.eu/#!/home. The daily 0.5° × 0.5° precipitation from the
Climate Prediction Center (CPC) for the 1979–2014 period is from https://
www.cpc.ncep.noaa.gov/. Global annual 1 km population data from the WorldPop
archive can be obtained at https://www.worldpop.org/geodata/listing?id=64. Global
1 km population data in 1990, 1995, and 2000 can be accessed from the
Socioeconomic Data and Applications Center (SEDAC) (https://
sedac.ciesin.columbia.edu/data/collection/grump-v1). Global annual 5 arc-min GDP
data from 1991 to 2014 can be accessed from Dryad Data (https://datadryad.org/
stash/dataset/doi:10.5061/dryad.dk1j0). Projected 0.5° gridded global population and
GDP data can be accessed from the Science Data Bank (https://www.scidb.cn/en/
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cover data from 1991 to 2014 can be gained from the European Space Agency (ESA,
https://www.esa-landcover-cci.org/?q=node/197). Projected land cover data are
gained from Fan et al.56 under a data sharing agreement, and the authors are not
authorized to redistribute the data.
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