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Contributions of external forcing and internal variability to the
multidecadal warming rate of East Asia in the present and
future climate
Dajeong Jeong 1, Changhyun Yoo 1✉ and Sang-Wook Yeh 2

External forcing and internal variability contribute to multidecadal variation in the warming rate of East Asia. By rescaling the
Coupled Model Intercomparison Project Phase 6 multi-model mean to the temperatures observed for the 1890–2020 period, we
find that external forcing contributes about −0.2 to 0.1 K decade−1 to the warming rate until the 1980s, but this rate increases to
0.4 K decade−1 in recent decades. This multidecadal variation in the forced response is decomposed further into contributions by
greenhouse gases, anthropogenic aerosols, and natural forcing. Once the external component is removed, the warming rate
explained by the internal variability is ±0.15 K decade−1 in the twentieth century, reaching about −0.21 K decade−1 in recent
decades. We find that 68% of the variance in the internally generated temperature anomaly is explained by the Indian Ocean Basin
Mode (IOBM), the Atlantic Multidecadal Oscillation, and the Interdecadal Pacific Oscillation, with the IOBM playing a dominant role.
In future Shared Socio-economic Pathway 2-4.5 scenario simulations, the impact of external forcing is projected to triple over the
2020–2100 period. Because the influence of internal variability remains relatively stable over this period, the contribution of
external forcing becomes more pronounced in driving East Asian warming. These findings improve our understanding of both
external and internal factors that shape trends and variation in the warming rate of East Asia and have implications for constraining
future projections.
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INTRODUCTION
The observed surface air temperatures over East Asia have shown
a robust increase of more than 1 K over the past century1,2. As in
other regions of the globe, increasing greenhouse gas (GHG)
concentrations are the main driver of the multidecadal warming
trend in East Asia, though the cooling effect of anthropogenic
aerosol concentrations has offset some of this warming2–4.
However, although GHG concentrations have been steadily
increasing, the rate of change in the temperature over East Asia
has varied from warming at about 0.4 K decade−1 to cooling at
about −0.2 K decade−1 over the past century5,6. In addition, the
recent slowdown in long-term warming has drawn attention to
the influence of internal variability7–10. The importance of external
and internal components differs depending on the region and
period11. Thus, to better plan mitigation and adaptation strategies,
we need to understand how sensitive East Asia’s temperature is to
external forcing and how much of its variance is driven by Earth’s
internal variability.
Accurately estimating the forced response is an important step

in quantifying both external and internal contributions to a
temperature time series. Statistical approaches can be used to
estimate the response to external forcing12. One example is based
on the linear relationship between the observed global surface air
temperature and equivalent carbon dioxide concentrations13. This
relationship is quite robust even at the continental scale, and the
resulting forced response signal is not susceptible to model bias
because the method uses only observations. However, its
applicability at regional scales and when other types of forcing,
such as aerosol forcing, are involved is not guaranteed. Another

type of approach uses the multi-model mean (MMM) of several
climate model simulations, assuming that freely evolving internal
variability is uncorrelated between different realisations within a
large ensemble14–17. Simulations in the Detection and Attribution
Model Intercomparison Project18 of the Coupled Model Inter-
comparison Project Phase 6 (CMIP6)19 allow us to estimate the role
of each type of external forcing at each grid point. Nevertheless, a
weakness of this approach is that the MMM is potentially biased
compared to the degree to which the real world responds to
external forcing. To account for potential differences between the
amplitude of the true forced response and the MMM response,
this study employs a semi-empirical approach by rescaling the
MMM using the linear relationship between the MMM and
observations20–22. We then apply the same method to each
model simulation to identify the forced responses in each model,
which vary greatly depending on how sensitive the model is to
the forcing.
Once the forced signal is removed from the total temperature,

the rest can be explained by the variability of freely evolving
climate modes5,20,23,24. On a multidecadal time scale, three major
climate modes play an important role in modulating the East
Asian climate: the Atlantic Multidecadal Oscillation (AMO),
Interdecadal Pacific Oscillation (IPO)2,20,25–27, and Indian Ocean
Basin Mode28–30 (IOBM). For example, Miao et al.20 showed that
the internal component of East Asian temperatures is associated
with the AMO and IPO, with correlation coefficients of −0.49 and
0.28, respectively. However, these correlations were not statisti-
cally significant at the 95% confidence level, and the IOBM, which
we find to be dominant in the present study, was not included in
their analysis.
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This analysis is then applied to future scenario simulations to
investigate whether and to what extent the relative amplitude of
the forced response compared to the internal variability changes
over the 2020–2100 period. This assessment can provide
information on the extent to which future warming in East Asia
can be mitigated by climate and air pollution policies. This analysis
is also carried out for individual simulations to determine each
model’s sensitivity to forcing and uncertainty due to internal
variability.

RESULTS
Contribution of external forcing and internal variability to the
observed warming rate
Throughout the analysis period (1890–2020), warming has
occurred globally, but has been more pronounced in East Asia
(20 N°–50°N, 100E°–145°E) than in the rest of the world (Fig. 1a).
While the global mean temperature has increased by about 0.09 K
decade−1, East Asia has experienced a higher warming rate of
0.11 K decade−1 (green boxed region in Fig. 1a; see also Fig. 2a in

Miao et al.20). The rate of warming has also varied between
decades (e.g., Fig. 2a in Yao et al.6). For example, there has been a
pause in the warming during some periods, such as the 1960s and
the 2000s (grey line in Fig. 1b). This temporal behaviour remains
apparent irrespective of whether the temperature anomalies are
computed with 11-year running means (Supplementary Fig. 1c, d).
These periods of paused warming can also be observed in the
global mean temperature, as has been reported previously
(Supplementary Fig. 1a, b and Fig. 1 in Yao et al.6). The cause of
the temporal behaviour of the temperature in East Asia can be
better understood by decomposing it into externally forced and
internally generated components (red and green lines in Fig. 1b,
respectively). As described in “Methods”, the externally forced
component is obtained by rescaling the MMM of all-forcing
historical simulations (HIST) with the observations. The internally
generated component of these observations is then obtained by
subtracting the externally forced component from the total.
To quantify the warming rate driven by external forcing, we

take the externally forced component (red line in Fig. 1b) and
compute the Theil-Sen slope for a 21-year running window (red

Fig. 1 Decomposition of the external and internal components. a Trend map for the temperature anomalies is shown in Kelvins per decade
for the period from 1890 to 2020. The anomalies are obtained as the deviation from the climatology of the reference period 1900–1950. The
green box indicates the East Asian domain (20°N–50°N, 100°E–145°E). The dotted regions indicate where the trends are statistically significant
at the 95% level. b Temperature anomalies averaged over the East Asian domain (grey) are shown together with their 11-year running average
(black). The externally forced component (EXT; red) and the internally generated component (INT; green) are derived from 11-year running
averaged temperature anomalies. c 21-year running trend is used to estimate the temporal evolution of the externally forced (red line) and
internally generated (green line) warming rates. The standard deviation of the internally generated component (0.11 K decade−1) is added/
subtracted (green shading) to produce the range for the East Asian warming rate.
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line in Fig. 1c). This use of a running trend allows for continuous
observations over the course of decades, instead of using
warming rates measured for certain selected periods. We find
that East Asia has consistently experienced warming due to
external forcing over the entire analysis period except for the early
twentieth century and the period from about the 1950s to the
1960s (red line in Fig. 1c). The externally forced warming rate
varies from about −0.2 to 0.1 K decade−1 until the 1980 but
increases dramatically to about 0.4 K decade−1 in recent decades.
We note that rescaling (red line) merely shifts the MMM

temperature anomaly time series (blue line) to fit the observed
time series (black line) without changing its shape (Supplementary
Fig. 2). The original MMMminus the rescaled MMM is about −0.2 K
throughout the study period (purple line). As a result, rescaling has
a negligible effect on the warming rate; rather, it simply removes
the centennial trend from the internally driven temperature
anomaly (Supplementary Fig. 2b). This indicates that rescaling
compensates for the underrepresented climate sensitivity of the
MMM, i.e., an increase of about 1 K over the entire period (blue
line in Supplementary Fig. 2a), while the observations show a
warming of about 1.2 K (black line in Supplementary Fig. 2a).
Without rescaling, there is long-term positive temperature
responses due to internal variability (blue line in Supplementary
Fig. 2b).
Internally generated variability can change the total warming

rate in addition to the forced response. In the early twentieth
century, the warming rate due to internal variability exhibits
fluctuations of about ±0.15 K decade−1 (green line in Fig. 1c). A
positive contribution persists in the mid to late twentieth century,
but after the 1990s, it gradually decreases, reaching −0.21 K
decade−1 in recent decades. We estimate the potential change
associated with this freely evolving component by calculating its
standard deviation over the entire period. By comparing this to
the externally forced warming rate, we can compare the strength
of the externally forced signal to the strength of this internal

noise31,32. The standard deviation has a value of 0.11 K decade−1,
which is comparable to the forced warming rate of East Asia.
Adding a range of ±0.11 K decade−1 to the warming rate by the
external forcing (shaded in Fig. 1c), we find that the internal
variability substantially modulates the warming rate and deter-
mines whether it is positive or negative. However, as the warming
rate by the external forcing has increased, the internal variability
has not been sufficiently large since the 1980s to produce a
negative warming rate in East Asia, which is consistent with recent
studies11.
Ignoring factors such as land use changes, the externally forced

warming rate can be decomposed into the responses to historical
GHG forcing, anthropogenic aerosol (AER) forcing, and natural
(NAT) forcing (Fig. 2; see also “Methods”). The response to each
type of forcing is calculated by taking the MMM of the single-
forcing simulations without rescaling. This is because we do not
have single-forcing observations and because rescaling has a
negligible influence on the warming rate over East Asia (see
Supplementary Fig. 2). To examine the accuracy of the decom-
position, we also combine the three individually forced warming
rates and compare this with the total warming rate. The sum of
the three externally forced warming rates (orange line in Fig. 2a)
reasonably reproduces the externally forced component (red line
in Fig. 2a), with a correlation coefficient of about 0.90 (p < 0.01).
The residual of the total warming rate minus the sum of the three
warming rates (grey line in Fig. 2a) remains low except for the
1930–1960 period.
Consistent with our understanding, GHG forcing is the main

driver of overall warming in East Asia, while AER forcing
contributes to cooling (magenta and purple lines in Fig. 2b,
respectively). The warming rate due to GHGs starts at about 0.1 K
decade−1 in the early twentieth century, increasing steadily to
about 0.2 K decade−1 in the late twentieth century. This increase is
associated with a positive trend in GHG emissions because the
temperature in East Asia has a linear relationship with equivalent

Fig. 2 Warming rates in East Asia driven by individual external forcings. a Externally forced component of the observed warming rate over
East Asia (red; the same warming rate shown in Fig. 1c) is compared with the warming rate component derived by summing the individual
forcings (orange). The Pearson correlation between the externally forced component and the sum is 0.90. The residual is defined by
subtracting the derived sum from the total externally forced component. b Warming rates attributed to individual forcings, i.e., greenhouse
gas (GHG; magenta), aerosol (AER; purple), and natural (NAT; blue) forcings.
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CO2 (e.g., Fig. 2 in Wu et al.13). The warming rate due to AER
forcing is about −0.2 K decade−1 in the 1960s and less than −0.1 K
decade−1 in recent decades. The contribution of NAT forcing (blue
line in Fig. 2b) has both positive and negative values, with some
sporadic cooling periods during major volcanic eruptions (e.g., the
Agung eruption in 1963 and the El Chichón eruption in 1982).
When averaged over the entire period, the GHG-, AER-, and NAT-
driven warming rates in East Asia are 0.13, −0.08, and 0.02 K
decade−1, respectively (Supplementary Fig. 3).
Having decomposed the total East Asian warming rate into its

forced and internal components, and then further decomposing
the forced components into individual forcing components, we
now investigate the degree to which the internal variability of the
East Asian warming rate is explained by the major multidecadal

climate modes, the AMO, IOBM, and IPO (see “Methods” for the
definition of the climate modes). The internal variability, as
measured using the standard deviation, is high over East Asia (Fig.
3a), surpassing that over the tropical eastern Pacific, the North
Pacific, and the North Atlantic despite the presence of the IPO and
the AMO. The partial regression coefficient between each climate
mode and the near-surface temperature highlights the impor-
tance of the IOBM in explaining the internal variability in East Asia
(Fig. 3c–e). The influence of the AMO is mainly observed in
southern East Asia rather than over the whole of East Asia (Fig. 3c),
while the IPO has a relatively weak influence on the internal
variability of East Asian temperatures (Fig. 3e). The IOBM, on the
other hand, tends to exhibit a warm Eurasia and cold Arctic-like
pattern, meaning that it has a strong influence over East Asia

Fig. 3 Internal temperature variability and the role of climate modes. a Standard deviation is presented for the internal component (cf,
green line in Fig. 1b) of the 11-year running average of the temperature anomalies at each grid point. This metric indicates the variation in
temperature due to internal variability. The green box indicates the East Asian domain (20°N–50°N, 100°E–145°E). b Coefficient of
determination is calculated between the reconstructed temperature anomalies from three climate modes—the Atlantic Multidecadal
Oscillation (AMO), Indian Ocean Basin Mode (IOBM), and Interdecadal Pacific Oscillation (IPO)—and the observed internal temperature
anomalies. Partial regression coefficients in the relationship between the internal temperature anomalies and the climate modes are shown
for the (c) AMO, (d) IOBM, and (e) IPO. The dotted regions indicate where the regression coefficients are statistically significant at the 95%
level. f 11-year running average of the internal variability of the temperature anomalies in East Asia (black; the green line in Fig. 1b), and the
reconstruction derived from the three climate modes (green) are shown together with the standardised climate mode indices: AMO (red),
IOBM (yellow), and IPO (blue). Their relative contributions, measured by their partial regression coefficients from a multiple linear regression
model, are shown as percentages.
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(Fig. 3d). The mechanism linking the IOBM to the East Asian climate
can be understood through Rossby wave propagation33. This
specific effect of the IOBM on the internal variability of temperatures
in East Asia has not been reported in previous studies.
The internal component of East Asian temperature can be

reproduced using the AMO, IOBM, and IPO indices as predictors in
a multiple linear regression model (Fig. 3f). Here, the existing
connection between the climate modes34,35 is statistically
removed when constructing the climate mode indices (“Meth-
ods”). The reconstructed temperature (green line) exhibits a strong
correlation with observations (black line), with a correlation
coefficient of 0.83 (p < 0.01). Thus, these three modes explain
68% of the internal variability in the temperature anomaly in East
Asia. The relative contribution of each climate mode is measured
as the ratio of each mode’s partial regression coefficient to the
sum of all partial regression coefficients in the multiple linear
regression model built from the three standardised indices. This
approach is made possible by the use of standardised and
independent indices as predictors in multiple linear regression,
allowing the partial regression coefficients to be interpreted as
measures of the individual contributions of each predictor.
Individually, the AMO, IOBM, and IPO account for 26.2%, 65.9%,
and 7.9%, respectively, of the 68% variability. Thus, the IOBM is the
largest contributor of the three indices to East Asian internal
variability. When the same analysis is performed for each grid
point (Fig. 3b), the spatial pattern of the variance explained by the
three modes has features of the observed internal temperatures
spread (Fig. 3a). The values of explained variance over the East
Asian region range from 50% to 80%.

Future projections and model diversity
The present analysis estimates the contributions of individual
types of forcing and variation due to multidecadal climate modes.
Note that the separation of the forced response for the
observation data was performed by rescaling the MMM to the
observed temperature through linear regression analysis. The
same analysis can also be conducted for the temperature time
series in individual models by replacing the observed time series
with historical simulations of the individual models. This allows the
sensitivity of the individual models to forcing and the role of their
internal variability to be estimated. In addition, this technique can
be extended to future scenario and thus constrain the model bias
in climate sensitivity.
The warming rates due to external forcing in the models vary

substantially, averaging about 0.09 K decade−1 over the historical
period (1890–2020), with a highest warming rate of about 0.12 K
decade−1 and a lowest rate of about 0.06 K decade−1 (coloured
markers in the HIST column of Fig. 4a). The observed forced
warming rate, which is about 0.08 K decade−1 (black dot in Fig. 4a;
see also the red line in Fig. 1c), falls well within the range of the
modelled warming rates. Their range can be attributed to the
sensitivity of the models to individual forcing types. For example,
the decomposition of the individual models reveals significant
variability in the warming rate attributed to GHGs (0.10–0.20 K
decade−1), AER (−0.13 to −0.05 K decade−1), and NAT (all close to
0.01 K decade−1) forcings (not shown).
We also estimate the variation in the warming rate that can be

attributed to internal variability in East Asia using the standard
deviation (Fig. 4b). The observed standard deviation over the
historical period averages about 0.11 K decade−1 (black dot; see
also green shading in Fig. 1c), with models showing a spread of
about 0.06 K decade−1 in the standard deviation of the internal
warming rate (0.09–0.15 K decade−1). As mentioned above, the
observed variation in the internal warming rate of East Asia can
primarily be explained by the IOBM and the AMO, with a small
contribution from the IPO. However, the relative contributions of
the three climate modes differ considerably between the

individual models (not shown). This may be due to differences
in the climate modes themselves and/or to the atmospheric/
oceanic teleconnections in terms of how the impacts are
conveyed to East Asia, but this is beyond the scope of the
present study.
Extending the analysis to the Shared Socio-economic Pathway

2-4.5 (SSP245) future scenario, the models exhibit an increased
warming rate (the SSP245 column in Fig. 4a), and we find a wider
range for the forced warming rate between the individual models
than across the historical period. The mean future warming rate is
about 0.28 K decade−1, while the models produce values of
0.20–0.40 K decade−1, i.e., a range of about 0.20 K decade−1.
Compared to the warming rate of the historical period (0.09 K
decade−1), the projected values produced by the models are
about 3.1 times higher. The forced warming rates for the
individual models are also about 2.1–3.8 times higher than that
for the historical period (Fig. 4a). This suggests that the sensitivity
of the models to the different forcing types does not change
substantially between the periods.
In the SSP245 simulations, despite a slight reduction of about

9%, the standard deviation for the internal variability remains
similar at 0.10 K decade−1 (cross marks in Fig. 4b). The range for
the standard deviation also remains similar between the two
periods, increasing from about 0.06 K decade−1 in the historical
simulations to 0.08 K decade−1 in SSP245 (the coloured markers in
Fig. 4b) simulations. This suggests that there will be no substantial
systematic changes in the contribution of the internal variability
during future climate simulations. One possible reason for the
marginal increase in the inter-model range may stem from a
greater diversity of climate modes due to stronger external forcing
in the future. This can be addressed by examining various
scenarios in future research.
Figure 4c presents the ratio of the forced response to the

internal variability. Because the internal variability remains stable
while the forced response is projected to increase, the ratio
increases from about 0.8 to 2.8, with a range of about 0.7 in the
historical simulations increasing to about 3.9 in the SSP245
projections. This suggests that the sensitivity of individual models
to external forcing will play a greater role in determining the rate
of warming over East Asia in the future.

DISCUSSION
In this study, we investigate the relative contributions of external
forcing and internal variability to multidecadal variation in the
warming rate in East Asia between 1890 and 2020. The externally
forced component is obtained by rescaling the MMM warming
rate from 10 historical simulations of CMIP6 to the observed
warming rate. The external component—which has values of
about 0.1, −0.2, and 0.4 K decade−1 in the early, mid, and late
twentieth century, respectively—explains the multidecadal varia-
tion in the warming rate. Because the internal component has a
standard deviation of 0.11 K decade−1 during the 1890–2020
period, the relative contribution of external forcing increases
substantially in the late twentieth century. When further decom-
posed into individual forcing components, the externally forced
warming rate (0.08 K decade−1) of the entire period is mainly
driven by GHG warming (0.13 K decade−1) and AER cooling
(−0.08 K decade−1), while NAT forcing plays a smaller role (0.02 K
decade−1). The internal variation is largely explained by the three
major climate modes on a multidecadal time scale: the AMO,
IOBM, and IPO. The variance explained by these three modes is
about 68%, and the IOBM is the largest contributor to the internal
East Asian warming rate. We postulate that although the
magnitude of the warming rate and the contributions of the
external forcing and internal modes may show some seasonality,
the overall results are likely to remain the same.
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In future climate projections based on the SSP245 scenario, the
impact of external forcing on the rate of warming in East Asia is
expected to increase as the forcing becomes stronger, while the
role of internal variability is expected to remain relatively similar.
As a result, model sensitivity to external forcing will play an
increasingly important role in determining the rate of warming
over East Asia in the future. This suggests that, for more robust
future projections, we need to accurately assess and improve the
sensitivity of climate models so that their predictions match
observations. This is particularly true for individual model
projections. Compared to the average of model projection of
about 0.28 K decade−1 warming for 2020–2100, the individual
model projections exhibit a substantial range of 0.20–0.40 K
decade−1.
Our results highlight the importance of the IOBM and AMO and

the more minor role of the IPO in the internal multidecadal
variability of the warming rate in East Asia. However, in the
models, the role of the AMO and IPO is relatively exaggerated
compared to observations, while the opposite is true for the IOBM
(not shown). If the influence of the AMO and IPO is primarily
conveyed through atmospheric wave propagation, the discre-
pancy between the models and observations is likely due to the
bias in the convective forcing associated with the modes and in

the background waveguide. This is an interesting subject but is
beyond the scope of the present study. The relative importance of
the climate modes may have implications for understanding
decadal predictions using models, such as those used by the
Decadal Climate Prediction Project.
It is important to note that our analysis of future projections

focuses only on the SSP245 scenario. We can apply the same
analysis to a range of future climate and air quality scenarios, such
as those developed by the Aerosol Chemistry Model Intercompar-
ison Project. This will provide valuable insights into future
projected outcomes under different climate and air quality
scenarios and will help inform the design of mitigation strategies
on a continental or regional scale.

METHODS
Observational and model-simulated data
To investigate the role of external forcing and internal variability
on the rate of warming in East Asia, we use the monthly near-
surface air temperature data from the Berkeley Earth Surface
Temperature (BEST) dataset36. We assess the credibility of BEST
data in the East Asia region by comparing it with HadCRUT537, and
our findings are consistent across both datasets (not shown). Due

Fig. 4 Warming rates of individual models in the historical and future simulations. a Time mean warming rates due to external forcing are
presented for historical (HIST; 1890–2020) and future (SSP245; 2020–2100) simulations. The observed, external warming rate (black dot) is
obtained only for the HIST simulations. The model mean values are marked by black crosses. The warming rates of the individual models are
represented by the coloured triangles. b Standard deviation of the internal variation components of the temperature are shown for the
observations and the models. The ratio of (a) and (b) is shown in (c).
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to the lack of observations in the East Asia domain (20°N–50°N,
100°E–145°E) during the earlier period, this study analyses data
from 1890 to 2020. To select a domain without any missing values
(as in the polar regions), we calculate the global average of the
variables by limiting the domain to a range of 60°S–60°N. As
indices for oceanic climate modes, we use the sea surface
temperatures (SSTs) from the Hadley Centre Global Sea Ice and
Sea Surface Temperature38 dataset. The SST data has the same
horizontal resolution as the BEST data.
For the model simulations, we select 10 models, each with a

single ensemble member from the CMIP619. Based on our findings
that the use of one ensemble member from each model produces
results that are indistinguishable from those produced when
employing up to 150 ensemble members, we choose to use only
one ensemble member for each model for simplicity. The 10
models, listed in Supplementary Table 1, provide both HIST
simulations and single-forcing simulations, i.e., GHG, AER, and NAT
forcing. Because the historical simulations only cover the period
up to 2014, we also use the SSP245 scenario simulations for 2015
to 2020 to match the observation period. Among the various SSP
scenarios, SSP245 is chosen because it represents the intermediate
GHG emissions scenario. For the future climate, we use the same
SSP245 simulations from 2021 to 2100. To match the horizontal
resolution, a 1° × 1° bilinear interpolation is conducted for all
model datasets. In all models, we employ a land masked skin
temperature as a representation of the SST.

Definition of climate modes
We use three major climate modes on a decadal to multidecadal
timescale that are known to influence temperatures in East Asia: the
AMO39,40, IOBM41, and IPO42. To account for interdecadal changes
in internal variability, these climate modes are calculated using 11-
year smoothed SST anomalies after removing the external forcing
signal at each grid point. The AMO is calculated by averaging SST
anomalies over the North Atlantic (0°–60°N, 0°–80°W)43. Similarly,
the IOBM is calculated by averaging these over the entire Indian
Ocean (45°S–20°N, 30°E–120°E)33. The IPO is calculated by
subtracting the area mean of two regions, the northern Pacific
(25°N–45°N, 140°E–145°W) and the southern Pacific (50°S–15°S,
150°E–160°W), from that of the eastern Pacific (10°S–10°N,
170°E–90°W)44. All indices are averaged using cosine-latitude-area
weighting and standardised by their mean and variance.
To ensure the independence of each climate index, we

compute the index and then remove the linear relationship
between the computed index and SST anomalies. The next index
is defined using the remaining SST anomalies, and this process is
repeated for the third index. We choose to define the AMO first,
followed by the IPO and then the IOBM. However, we find that our
results are not sensitive to changes in the order in which the
indices are calculated (not shown).

Quantification of externally forced and internally generated
responses
To extract the temperature response to external forcing, we use
the rescaled MMM21,22. To rescale the MMM, we linearly regress
the temperature anomalies of the MMM against the actual
temperature time series, where the actual temperature is obtained
either from observations or the individual model simulations.
Rescaling adjusts the amplitude differences between the actual
forced response and the forced response obtained from the MMM.
By applying this rescaled method, the average observed forced
response increases by about 0.18 K compared to the MMM
(Supplementary Fig. 2). The internal component is then obtained
by removing the externally forced components from the total time
series. Because our interest is in multidecadal trends and
variability, we apply 11-year smoothing to the temperature
anomalies. This 11-year window is subjectively chosen, but our

results are not sensitive to the window size when it is varied from
9 to 15 years (not shown).
The warming rate of the externally forced component is

evaluated by the 21-year running trend of the Theil-Sen slope.
This running trend is chosen to provide a continuous assessment
of the warming rate that is not limited to a specific period. The 21-
year window is chosen to cover a decadal timescale in accordance
with previous studies6,20. We use the Theil-Sen slope to estimate
the trend while minimising the effect of potential outliers. Our
results remain robust to the use of a linear trend.
To measure the variation in the warming rate due to internal

variability, we use the standard deviation of the internal
component. The total variance is then explained by each climate
mode (i.e., AMO, IOBM, and IPO) using the multiple linear
regression model. Because the indices are all standardised, the
relative size of the regression coefficients for each index is used to
evaluate the relative role of each climate mode.

DATA AVAILABILITY
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