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Serious underestimation of reduced carbon uptake due to
vegetation compound droughts
Jiaxi Song 1,2, Sha Zhou 1,2✉, Bofu Yu3, Yan Li1,2, Yanxu Liu 1,2, Ying Yao1,2, Shuai Wang1,2 and Bojie Fu1,2,4

Compound droughts with low soil moisture (SM) and high vapor pressure deficit (VPD) pose significant threats to terrestrial carbon
sink and agricultural production. However, the frequency and intensity of compound droughts and their adverse impacts on the
carbon cycle remain highly uncertain. Here, we define and identify vegetation compound droughts (VCDs) when low SM and high
VPD severely limit and adversely affect vegetation carbon uptake. We find frequent and severe VCDs and their considerable adverse
impacts on carbon uptake in mid- and low-latitude regions, particularly in drylands. Risks of VCDs have been greatly
underestimated as the widely adopted quantile-based approach identifies only 11% of VCDs and 26% of global GPP anomalies due
to VCDs. The frequency and intensity of VCDs and their adverse impacts on carbon uptake are projected to increase further,
irrespective of whether the CO2 fertilization effect on vegetation growth and photosynthesis is considered or not. These findings
improve our understanding of current and future risks of VCDs and underline the importance of adaptation measures to cope with
the adverse impacts of ever-increasing compound droughts.
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INTRODUCTION
Anthropogenic climate change increases the frequency, intensity,
and severity of climate extremes such as droughts and
heatwaves1–3, which threat ecological and societal sustainabil-
ity4,5. Drought directly limits terrestrial water availability and
carbon uptake through low soil moisture (SM) and/or high vapor
pressure deficit (VPD)6,7, and extreme water stress can substan-
tially reduce agricultural production8,9 and bring about wide-
spread vegetation mortality10,11. Specifically, drought suppresses
photosynthetic assimilation rates by reducing stomatal conduc-
tance and related enzyme activity6,12 and inducing leaf senes-
cence and abscission as well13, resulting in reduced gross primary
productivity (GPP) at the ecosystem scale. When water is limited,
compound droughts (CDs) characterized by concurrent low SM
and high VPD would cause even greater reductions in GPP than
soil drought (low SM) or atmospheric aridity (high VPD) alone14,15.
Low SM and high VPD tend to occur simultaneously over much of
the global land surface, as SM deficits reduce evapotranspiration
and increase sensible heat flux, resulting in a drier and warmer
atmosphere and a higher VPD, and the high VPD in turn enhances
evaporative water loss and accelerates reduction in SM16,17. CDs
are projected to become more frequent and more extreme, which
could greatly reduce land carbon sink and compromise climate
mitigation efforts3,14. However, assessments of past and future
changes in CDs largely focus on extreme events from a statistical
perspective4,17,18 without taking into account whether these
events cause adverse impacts on the environment. As there is
not yet a general consensus on the definition of compound
events, global assessment of CDs and their impacts on terrestrial
ecosystem productivity are varied and uncertain4,14,19,20. An
improved understanding and accurate assessment of global CDs
and particularly their impacts on terrestrial carbon uptake are

therefore crucial for better management and mitigation of the
ever-increasing drought risks in a warmer world.
Compound events have been typically defined as events when

multiple dependent variables exceed extreme quantile-based
thresholds4,5,14,17,18. However, from an impact-centric perspective,
drivers of a compound event do not need to be extreme
individually in a statistical sense, but the co-occurrence of these
drivers at the same location could lead to an amplified societal or
environmental impact19,20. Indeed, adverse impacts can occur
even if not all relevant variables are extreme, and the predefined
extreme quantile does not necessarily cause adverse impacts
under certain circumstances. For example, when CDs are defined
as months with SM below its 10th percentile and VPD above its
90th percentile, this definition has been shown to be problematic
for high-latitude regions where vegetation production in fact
increases with air temperature and VPD as bioproduction is not
limited by water availability14. On the other hand, a quantile-based
definition may also underestimate the frequency of occurrence of
CDs and their adverse impacts on terrestrial carbon uptake in
drylands. Although plants in drylands can maintain photosynth-
esis with limited water supply through their morphology and
physiology21–23, ecosystem productivity is predominantly con-
trolled by water availability24,25. Frequent and severe droughts
directly reduce carbon uptake in drylands, and dryland ecosys-
tems contribute a large proportion to the interannual variability of
global terrestrial carbon sink26,27. Such uncertainty associated with
the quantile-based definition hinders our understanding of the
current and future risks of CDs, undermines reliable projection of
terrestrial carbon sink, and calls for a more suitable definition of
CDs from an impact-centric perspective.
In this study, we propose a framework to define CDs based on

how the GPP responds to low SM and high VPD and provide an
improved assessment of the frequency, intensity, and severity of
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CDs and associated impacts on terrestrial carbon uptake over past
decades and in the future with a warmer climate. In this
framework, we identify soil droughts and atmospheric aridity
based on the assumption that low SM and high VPD strongly limit
GPP, i.e., GPP increases with SM and decreases with VPD under
water-limited conditions, and together they cause adverse
impacts on GPP. CDs are identified when soil droughts and
atmospheric aridity occur simultaneously during the warm season
(see “Methods”). This impact-based approach is applied to
identification of CDs and associated impacts on terrestrial carbon
uptake at the monthly scale using observations (SM from GLEAM
dataset v3.5a, VPD from MERRA-2 reanalysis, and GPP from
FLUXCOM products)28–30 for the period of 1981–2017 and
historical (1930–2014) and future (2016–2100) simulations under
the low (shared socioeconomic pathways SSP1-2.6) and high
(SSP5-8.5) emission scenarios from Coupled Model Intercompar-
ison Project Phase6 (CMIP6).

RESULTS
Identification and characteristics of compound droughts
Many observational and modeling studies show that GPP
responds to SM and VPD in a highly non-monotonic man-
ner7,14,31–36 (Supplementary Fig. 1). SM directly determines the
amount of water that can be used for vegetation growth and
primary production, and GPP always increases with SM when
water is limited, while excessive SM associated with high rainfall
may cause GPP to decrease7,34,35. On the other hand, in an
environment with low temperature and low VPD, an increase in
VPD promotes GPP as warming enhances photosynthetic activity
and vegetation growth, but extreme high VPD may induce closure
of plant stomata to minimize water loss through transpiration,
which inhibits plant photosynthesis and GPP decreases6,14,32.
Given the non-monotonic response of GPP to SM and VPD, we
identify the SM and VPD thresholds that severely limit and exert
negative impacts on GPP using the segmented linear regression to
quantify the relationship between GPP and SM or VPD for each
grid cell (see “Methods”). The change-point of SM above which
GPP no longer increases with SM in the segmented regression is
compared with the SM associated with zero GPP anomaly, and the
threshold is identified as the lower of the two SM values so that
soil droughts occur when the SM falls below the threshold with
negative GPP anomalies (Fig. 1e). Similarly, the threshold of VPD is
identified as the higher of two VPD values of the change-point
VPD and the VPD associated with zero GPP anomaly (Fig. 1f). CDs
are therefore defined as months in the warm season when SM falls
below the SM threshold and VPD exceeds the VPD threshold
simultaneously. CDs identified with this impact-based definition,
henceforth called vegetation compound droughts (VCDs), are
compared with those defined with the quantile-based definition,
i.e., months when SM falls below its 10th percentile and at the
same time VPD exceeds its 90th percentile for that month14. The
latter is henceforth called statistical compound droughts (SCDs).
To evaluate the effectiveness of the impact-based definition, we

first assess the average GPP anomalies when VCDs occur using
observational products and CMIP6 historical simulations. VCDs are
detected over 66% of the land area (excluding Antarctica and
Greenland) based on observations and over 91% of the land area
in CMIP6 simulations, with 61% of the land area detected in at
least 50% models (Fig. 1a, c). Over these areas, we find negative
GPP anomalies for soil droughts (months when SM falls below its
threshold), atmospheric aridity (months when VPD exceeds its
threshold), and hence VCDs (Fig. 1a, c and Supplementary Fig. 2).
It is worth noting that atmospheric aridity and VCDs are not
detected in many high-latitude regions where vegetation growth
and carbon uptake are essentially temperature-limited and GPP
always increases with VPD (Fig. 1a, c and Supplementary Fig. 2).

The global patterns of average GPP anomalies for VCDs are
broadly consistent between observations and models (r ¼ 0:54),
with the global area-weighted mean of −0.61 ± 0.42
gC·m−2·day−1 in CMIP6 simulations and −0.15 ± 0.10
gC·m−2·day−1 in observations (Supplementary Table 2). These
findings indicate that CMIP6 models realistically simulate VCDs
and their adverse impacts on terrestrial carbon uptake around the
globe. Observed negative GPP anomalies induced by VCDs are
much stronger than anomalies induced by soil droughts or
atmospheric aridity alone (Supplementary Fig. 3). The additional
effect of soil droughts, i.e., differences in average GPP anomalies
between VCDs and atmospheric aridity alone, is greater than the
additional effect of atmospheric aridity over 64% of VCD regions,
indicating that low SM substantially aggravates the adverse
impacts of atmospheric aridity on carbon uptake, especially over
mid-latitude dry regions (Supplementary Fig. 3).
SCDs can be identified for every grid cell using the quantile-

based approach (Fig. 1b, d). Consistent with previous assessments
using CMIP5 models14, the quantile-based results from
CMIP6 simulations and observations show positive GPP anomalies
in high-latitude regions (Fig. 1b, d), where low SM and particularly
high VPD tend to enhance terrestrial carbon uptake (Supplemen-
tary Fig. 2). In high-latitude regions (north of 55°N) where air
temperature is low and atmospheric aridity seldom occurs, higher
VPD associated with increased temperature promotes photosyn-
thetic carbon uptake and vegetation growth, resulting in a
positive correlation between GPP and VPD (see an example in
Fig. 1i, j). However, the quantile-based definition of atmospheric
aridity does not account for this, and positive average GPP
anomalies associated with SCDs are identified over more than
14% of land areas in both observational products and
CMIP6 simulations (Fig. 1b, d). This problem is solved by the
impact-based approach which accounts for the GPP responses to
SM and VPD and can capture the deleterious effect of CDs that
lead to negative anomalies of GPP.
The frequency of SCDs (CMIP6: 2.6 ± 1.0%; observations:

3.5 ± 1.6%) is much lower than (only 11% of) that of VCDs (CMIP6:
24.5 ± 8.8%; observations: 32.0 ± 11.7%) (Fig. 2a, b, k, Supplemen-
tary Fig. 4a, b and Supplementary Table 2). The higher frequency is
induced by higher SM thresholds and lower VPD thresholds for
VCDs compared to the 10th percentile SM and 90th percentile
VPD for SCDs (Fig. 3a–d and Supplementary Fig. 5). For instance,
low SM begins to limit and exert a negative impact on GPP when
SM is below the 31st percentile in Grid A located in Amazon Basin
and likewise, high VPD begins to adversely affect GPP when VPD
above the 74th percentile (Fig. 1e–g). These results indicate a
larger number of VCDs that cause negative GPP anomalies over
low- and mid-latitude regions, which has been overlooked using a
fixed extreme percentile threshold globally. Correspondingly, we
find large total GPP anomalies caused by VCDs, with −1.44
PgC·yr−1 in CMIP6 and −0.31 PgC·yr−1 in observations at the
global scale, while only less than 26% of the total GPP anomalies
(CMIP6: −0.24 PgC·yr−1; observations: −0.08 PgC·yr−1) are
identified by SCDs (Fig. 2i, j, o, Supplementary Fig. 4i, j and
Supplementary Table 2). The large differences in the frequency
and total GPP anomalies between the two approaches indicate
that the adverse impacts of CDs on land carbon uptake in low-
and mid-latitude regions have been considerably underestimated
by the widely used quantile-based approach.
In addition to the frequency, we further identify the intensity,

duration, and severity of CDs based on the two approaches. CD
intensity is measured as the quadratic mean of departures of SM
and VPD from their thresholds at the monthly scale, and severity is
calculated as the cumulative intensity during consecutive CD
months (see “Methods”). Given differences in the thresholds of SM
and VPD between the two approaches, the intensity of VCDs is
50% higher than that of SCDs on average, while the duration of
the former is 35% longer (Fig. 2c–f, l, m, Supplementary Fig. 4c-f
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and Supplementary Table 2). This suggests that VCDs tend to
occur consecutively in the warm season. The combination of
higher intensity and extended duration leads to greater severity of
VCDs (CMIP6: 1.30 ± 0.20 sd; observations: 1.42 ± 0.37 sd), approxi-
mately double that of SCDs (CMIP6: 0.67 ± 0.25 sd; observations:
0.72 ± 0.55 sd) (Fig. 2g, h, n, Supplementary Fig. 4g, h and
Supplementary Table 2). Overall, with the impact-based approach,
we find more frequent and more severe CDs, which lead to larger
adverse impacts on terrestrial carbon uptake than previously
identified using the quantile-based approach.

Global hotspots for the occurrence of compound droughts
The global pattern of the frequency of CDs identified using the two
approaches depends on the thresholds of SM and VPD extremes as
well as the correlation of SM and VPD extremes. More frequent SCDs
are identified in humid regions, where we also find larger negative

rank correlations between SM and VPD (Fig. 2b and Supplementary
Fig. 6). This is consistent with previous studies which suggest that
the correlation between dependent variables strongly affects the
concurrence frequency of multivariate extremes using the quantile-
based approach17,18. For example, we find a higher rank correlation (
r ¼ �0:75) and hence more frequent SCDs in Grid C located in the
Amazon Basin than Grid D (r ¼ �0:45) located in western Australia
(Fig. 3e, h). Additionally, tail dependence of low SM and high VPD
may also lead to higher frequency of SCDs (Fig. 3f, i).
Higher frequency of VCDs occurs in regions where GPP is more

frequently limited and adversely impacted by high VPD and/or
low SM (Fig. 2a and Fig. 3a–d). In other words, if negative
anomalies of GPP occur for less extreme low SM and high VPD
conditions, a higher frequency of VCDs would be identified, e.g., a
higher frequency at Grid D than at Grid C (Fig. 3g, j). In particular,
we find a high frequency of VCDs in dryland ecosystems with a
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Fig. 1 Gross primary productivity (GPP) anomaly during vegetation (VCDs) and statistical (SCDs) compound droughts. a–d Average GPP
anomalies (gC·m−2·day−1) for VCDs and SCDs in observations (1981–2017, a, b) and CMIP6 historical simulations (1930–2014, c, d). Stippling in
(c) denotes grid cells in which VCDs are detected for at least 7 of 14 models. e–g Relationship between GPP anomaly (gC·m−2·day−1) and soil
moisture (SM) (e) or vapor pressure deficit (VPD) (f) or both (g) for Grid A ( ) located in the Amazon basin (data from MPI-ESM1-2-HR). In
scatter plots (e, f), the color of the scatters indicates the density of the samples, where higher density in luminous yellow and lower density in
pale blue. The red dashed, red solid, and black solid lines represent the fitted response trends, change points, and x-intercepts, respectively.
SM and VPD have been standardized by their standard deviation (sd) during the historical period. In the bin plot (g), red and blue lines
indicate percentile thresholds for VCDs and SCDs, respectively. h–j The same as (e–g), but for Grid B ( ) located in northern Canada. As GPP
always increases with VPD (i), VCDs do not occur at Grid B.
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low level of the mean SM and high mean VPD (Supplementary
Figs. 7 and 8). In drylands, the negative relationship between SM
and VPD caused by land-atmosphere coupling would also increase
the frequency of VCDs37. Sustained low SM strongly limits
evapotranspiration and shifts surface energy partitioning towards
sensible heat to increase air temperature, resulting in a warmer
and drier atmosphere and a higher VPD16,17. At the same time,
high VPD enhances evaporative demand to accelerate the drying
of the soil. These processes enhance the mutual dependence of
SM and VPD, resulting in frequent VCDs and amplified adverse
impacts on terrestrial carbon uptake. Such dependence between
SM and VPD would be statistically significant when SM falls within

a transitional regime between dry and wet conditions16,38. For
dryland ecosystems, especially when low SM and high VPD co-
occur but are not strongly correlated38, it is difficult to detect the
dependence of SM and VPD based on correlation and the
frequency of VCDs is therefore underestimated using the quantile-
based approach.
Compared to non-drylands, we find a larger underestimation of

the frequency, duration, intensity, and severity of VCDs in drylands
(Fig. 2p–s). This results in a similar magnitude of underestimation
of total GPP anomalies between drylands and non-drylands during
the historical period, although the mean GPP is much lower in
drylands (Fig. 2t). In addition, dryland ecosystems contribute more
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than 41% to total GPP anomalies induced by VCDs globally, which
corroborates the dominant role of semi-arid systems in the
variability of global carbon sink26,27. These findings highlight an
underestimated risk in terms of the frequency, intensity, severity,
and carbon loss of VCDs in drought-prone dryland regions.

Increases in frequency, intensity, and carbon loss of
vegetation compound droughts
To understand future changes in VCDs and their impacts on
terrestrial carbon uptake, we use 85-year future simulations

(2016–2100) under the SSP1-2.6 and SSP5-8.5 scenarios compared
to the historical simulation (1930–2014). We evaluate the absolute
changes in the frequency, intensity, and GPP anomalies of VCDs
between the two periods. To facilitate comparison, historical
thresholds of SM and VPD extremes are used to define VCDs for
the two future scenarios, assuming unchanged vegetation
response to drought. In future simulations, we find more frequent
VCDs due to climate change over more than 81% of assessed land
regions, except in the tropical Africa and South Asia with higher
SM (Fig. 4a, b, and Supplementary Fig. 9a, b). Compared to the
historical ensemble, the global frequency of VCDs increases by
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10.9 ± 12.8% in SSP1-2.6 and 14.3 ± 16.5% in SSP5-8.5 (Fig. 4g). The
increase in the frequency is particularly strong over drying areas
where SM declines and VPD rises substantially (Fig. 4a, b, and
Supplementary Fig. 9a–d). In addition, we find large increases in
the intensity of VCDs in SSP5-8.5 (0.99 ± 0.61 sd), while the
increase in intensity is more than halved (0.41 ± 0.30 sd) in SSP1-
2.6 (Fig. 4f, h). Almost all assessed land areas show greater
intensity of VCDs in the future, which is mostly caused by
increased VPD, with additional impacts from reduced SM over
more than 50% of the land area in SSP1-2.6 and SSP5-8.5 (Fig. 4c,
d, and Supplementary Fig. 9a–d). Amazon basin and mid-latitude
regions are projected to experience more frequent and more
extreme VCDs, particular in SSP5-8.5 (Fig. 4a–d), as these regions
are projected to become drier with reduced SM and increased
VPD (Supplementary Fig. 9a–d).
The analysis above shows stronger climate change impacts on

soil droughts and atmospheric aridity, hence VCDs, without
considering potential changes in the GPP responses to SM and
VPD in future simulations in which elevated CO2 also enhances
vegetation growth and carbon uptake and ameliorates the
adverse impacts of enhanced water stress39,40. To account for
this effect, we re-identify future VCDs based on SM and VPD
thresholds in each SSP scenario and compare them with historical
simulations. There is a small difference in the frequency of VCDs
between the future and historical ensembles for both SSP1-2.6
(1.6 ± 4.3%) and SSP5-8.5 (−0.9 ± 5.5%) (Fig. 5m). This is because
of a higher threshold of VPD and a lower threshold of SM that
exert negative impacts on GPP in future simulations (Supplemen-
tary Fig. 10). Nevertheless, VCDs are still projected to be more
extreme because increased variability of SM and VPD leads to
greater departure from future thresholds and an increase in the
intensity by 56% in SSP5-8.5 compared to the historical period
(Fig. 5n, and Supplementary Fig. 9o, p). Intensification of VCDs
poses larger adverse impacts on GPP globally, resulting in
increasingly negative GPP anomalies in the future over most
regions (Fig. 5e–h), and the total GPP anomalies reduce by 0.34
PgC·yr−1 in SSP1-2.6 and 0.37 PgC·yr−1 in SSP5-8.5 compared to
historical simulations. While the total carbon loss induced by VCDs
is similar between SSP1-2.6 and SSP5-8.5, the increases in the
intensity and average GPP anomalies in SSP5-8.5 are much greater

compared to those in SSP1-2.6, especially over the Amazon basin
and mid-latitude regions that are prone to the climate change
impacts (Fig. 5 and Supplementary Fig. 9).
We also identify SCDs based on SM and VPD thresholds in each

SSP scenario and find an increased intensity of SCDs and larger
negative GPP anomalies over most regions in the future
(Supplementary Fig. 11). However, the projected reductions in
total GPP anomalies of SCDs are only 0.05 PgC·yr−1 in SSP1-2.6
and 0.01 PgC·yr−1 in SSP5-8.5 compared to historical simulations,
less than 1/6 of the GPP reductions induced by VCDs. This is
because the frequency of CDs has been greatly underestimated
using the quantile-based approach in historical and future
simulations (Fig. 5 and Supplementary Fig. 11). These comparisons
indicate that the impact-based approach can better project the
frequency of CDs and their adverse impacts on terrestrial carbon
uptake in the future.

DISCUSSION
Our study identifies vegetation compound droughts when low SM
and high VPD strongly limit and exert negative impacts on
terrestrial carbon uptake. High VPD promotes evaporative
demand while low SM limits water supply for plant growth and
photosynthetic activities37, and concurrent high VPD and low SM
exert larger loss of ecosystem carbon uptake than they act in
isolation. Given the differences in how GPP responds to low SM
and high VPD across biomes and climate zones36,41, the thresholds
where low SM and high VPD strongly limit and begin to pose
negative impacts on GPP vary in space and time. To account for
the varying thresholds, the impact-based approach resolves the
problem with definition of CDs associated with the widely used
quantile-based approach14,25,42. Specifically, we show that the
frequency of VCDs and associated impacts on terrestrial carbon
uptake have been overestimated in high-latitude regions and
largely underestimated in low- and mid-latitude regions by the
quantile-based approach, which does not consider regional
differences in the GPP responses to SM and VPD. This suggests
higher risks of CDs to land carbon sink, and associated vegetation
growth and food production, than those identified by the
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quantile-based approach previously14, especially in a warmer
climate.
We find a larger underestimation of the frequency, intensity,

severity, and GPP anomalies of VCDs in drylands compared to
non-drylands. Terrestrial ecosystem carbon uptake in drylands is
vulnerable to the adverse impacts of VCDs, which has important
implications for understanding the large contribution of dryland
ecosystems to the variability of land carbon sink26,27. However, the
quantile-based approach only identifies the most severe VCDs in
drylands with constant thresholds of SM and VPD, but the risk
associated with moderate VCDs has largely been ignored. Higher
SM thresholds and lower VPD thresholds defined with the impact-
based approach suggest a limited capacity of dryland vegetation
to deal with water stress and drylands are much more vulnerable
to low SM and high VPD, a finding that is consistent with recent
studies33,37. According to vegetation photosynthesis simulation in
most CMIP6 models, this could be explained by the strong
coupling of low SM and high VPD and hence aggravated water
stress due to strong land-atmosphere interactions16,37,43. Recent
studies based on in situ measurements also reveal mechanisms
related to ecosystem resilience to drought stress. For example, low
biodiversity of dryland biomes reduces the resistance of
ecosystem productivity to drought, and widespread herbaceous

plants over drylands have insufficient access to deeper soil
water44,45. Future work is needed to provide a more comprehen-
sive understanding of how water stress impedes carbon uptake
via ecosystem structure and functioning, and these process-
related parameterizations should be incorporated in Earth system
models so that they could better simulate the adverse impacts on
terrestrial carbon uptake in dry regions.
VCDs are projected to be more frequent and more severe,

causing larger GPP losses in low and particularly high-emission
scenarios. Accounting for changes in the GPP responses to SM and
VPD leads to little changes in the frequency of VCDs between
historical and future simulations. This is because the plant
physiological responses to elevated CO2, such as reduced stomatal
conductance and transpiration, can conserve water and amelio-
rate ecohydrological water stress39,40. Therefore, plants can
maintain the same or even higher rate of photosynthesis at lower
SM and higher VPD. However, the projected increases in the
intensity of VCDs and resultant stronger carbon loss would greatly
limit the capacity of continents to act as a carbon sink in future
simulations, especially over the Amazon and mid-latitude regions
that are vulnerable to anthropogenic climate change. It is worth
noting that recent studies demonstrate that Earth system models
generally underestimate the sensitivity of vegetation carbon
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uptake to drought stress because models are unable to represent
satisfactorily extreme climate events induced by El Niño/Southern
Oscillation and other climate drivers46,47. In addition, some critical
plant hydraulic processes, such as vegetation mortality due to
hydraulic failure, are poorly simulated in these models47,48. This
constitutes a potential source of uncertainty in the projected
terrestrial carbon loss induced by VCDs, and the adverse impacts
of VCDs on global terrestrial productivity and carbon sink may be
greater than those predicted by Earth system models.
Our identification of soil droughts and atmospheric aridity and

hence VCDs relies on a general framework of non-monotonical
responses of GPP to SM and VPD in warm season months. As
tropical rainforest ecosystems can maintain relatively high GPP
throughout the year and the growing season differs from the
warm season in regions with a Mediterranean climate character-
ized by wet winters and dry summers, we have repeated our
analysis for 3-month growing season with the highest average
GPP and all growing months with average GPP larger than 70% of
the maximum monthly GPP. The global patterns of the frequency
and GPP anomalies of VCDs identified using the impact-based
approach are similar for different study periods (Figs. 1, 2 and
Supplementary Figs. 12, 13). The global GPP loss in the 3-month
warm season (−1.44 PgC·yr−1) is larger than the 3-month growing
season (−1.34 PgC·yr−1), and accounts for 84% of the GPP loss in
all growing months (−1.72 PgC·yr−1) (Supplementary Table 3).
This indicates that GPP reductions caused by VCDs mostly occur in
the warm season. We also note an important prerequisite of the
impact-based approach is that GPP responds to soil drought or
atmospheric aridity concurrently in the same month. The impacts
of water stress on vegetation productivity may persist or be
present well after a soil drought or atmospheric aridity event is
over, the so-called ‘drought legacies’, which have been demon-
strated to be widespread in global ecosystems49,50. The legacy
effect causes asynchronous drought-driven ecosystem responses,
which, however, couldn’t be captured by the segmented
regression in the study. It is also reported that the legacy effect
cannot be accurately detected in Earth system models because of
a lack of representation of some fundamental physiological and
structural properties of plants50. Despite the inherent uncertainties
in the models, our analyses combined with observations and
state-of-the-art Earth system models have largely resolved the
problem in the definition of CDs and provided an improved
understanding of spatial and temporal variations in VCDs as well
as the adverse impacts on terrestrial carbon cycle.
In summary, our study identifies vegetation compound

droughts that have severely limited and exerted adverse
impacts on terrestrial carbon uptake and indicates an increased
risk of CDs in terms of the frequency, intensity, and adverse
impacts on terrestrial carbon uptake due to anthropogenic
climate change. Such climate-driven carbon loss through CDs
represents a positive feedback loop that may accelerate future
climate change and calls for better mitigating strategies, such as
reductions in fossil fuels, improved land management practices,
and forest restorations, to deal with increased climate risks51.
More attention should be paid to dryland ecosystems, which
have been limited by water stress and are most vulnerable to
future intensified CDs. Policymakers and stakeholders should
implement effective adaptive measures, such as construction of
cross-basin water transfer projects52, development of irrigation
infrastructures to improve water use efficiency, and cultivation
of drought-tolerant crops9. These efforts will help improve our
capacity to reduce the adverse impacts of climate change in the
future and achieve the sustainability of water resources and
agricultural production.

METHODS
CMIP6 simulations
To evaluate the frequency, intensity, severity of CDs and their
impacts on land carbon uptake in past decades and in a warmer
future, we used CMIP6 historical simulations (1930–2014) and
future projections of two Shared Socioeconomic Pathways (SSPs,
2016–2100): a sustainability scenario SSP1-2.6 with low green-
house gas (GHG) emissions (CO2 emissions cut to net zero around
2075 and radiative forcing reaches 2.6 W·m−2 by 2100) and a fossil
fuel-intensive scenario with high GHG emissions (CO2 emissions
triple around 2075 and radiative forcing reaches 8.5 W·m−2 by
2100)53. We used 14 Earth system models in which monthly total
soil moisture content, near-surface air temperature (T), relative
humidity (RH), and gross primary productivity (GPP) are available
in all three simulations (historical, SSP1-2.6, and SSP5-8.5). VPD
was the difference between the saturation and the actual vapor
pressure calculated with T and RH. For NorESM2-LM, we used
specific humidity, near-surface air pressure, and air temperature to
calculate VPD. These models and corresponding ensembles used
in this study are shown in Supplementary Table 1.
For each model, we used the grid cells with land fraction higher

than 30% for analysis. For each grid cell, we used variables in the
warm season, defined as the consecutive 3 months with the
highest average temperature during the historical (1930–2014)
and future (2016–2100) periods separately. The warm season
generally corresponds to the main growing season with the
maximum productivity and relatively higher drought stress in
temperate and boreal regions. To identify vegetation compound
droughts, we first eliminated long-term trends and seasonal cycles
of GPP, which may be caused by solar radiation, air temperature,
and elevated CO2 concentration, by subtracting the 30-year
centered running mean from GPP for the corresponding month
during the historical and future periods to calculate the GPP
anomalies for each month. We further identified the soil droughts
and atmospheric aridity based on the impacts of SM and VPD on
monthly GPP anomalies, which can largely eliminate the impacts
of other influencing factors (see “Identification of vegetation
compound droughts” below).

Observational datasets
To identify CDs, we also used root-zone SM from the Global Land
Evaporation Amsterdam Model (GLEAM) v3.5a, which covers the
period of 1980–2020 with a spatial resolution of 0:25� ´ 0:25�.
GLEAM is a semi-empirical model for estimating potential/actual
evapotranspiration, interception loss, snow sublimation, and soil
moisture54, constrained by satellite and reanalysis data and has
been widely used in climate, hydrological, and ecological
research28. To improve the accuracy of SM estimates, two
microwave-based SM observations and surface SM from the Noah
model are assimilated into GLEAM by Newtonian nudging
algorithm28. The SM product has been successfully validated
under different vegetation and climate conditions in comparison
with in situ measurements at 30 sites of Soil Climate Analysis
Network and 2325 soil moisture sensors from International Soil
Moisture Network28,54.
We calculated VPD from near-surface air temperature and dew-

point temperature (i.e., the temperature to which air needs to be
cooled at constant pressure to achieve saturation) from Modern-
Era Retrospective analysis for Research and Applications, Version 2
(MERRA-2) at the spatial resolution of 1° × 1°. MERRA-2 provides an
ongoing near-real-time climate analysis since 1980 with improve-
ments in quality compared to MERRA. The improvements include
bias reduction to ensure mass balance for a number of
atmospheric and hydrological variables29. The air temperature
and humidity were largely determined from direct assimilation of
satellite measurements of irradiance55.
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We used monthly GPP outputs at 0.5° × 0.5° from the FLUXCOM
dataset. FLUXCOM used three machine learning algorithms
(random forest, artificial neural network, and multivariate adaptive
regression splines) to upscale carbon flux measurements from 224
eddy covariance towers to produce global gridded GPP along with
satellite and meteorological data30. GPP was estimated as the
median value generated by the three algorithms for each grid cell.
The cross-consistency checks of FLUXCOM GPP with GPP from
sun-induced fluorescence and dynamic global vegetation models
have demonstrated the high quality of FLUXCOM in generating its
spatial patterns and temporal variations30. We selected two
ensembles from ERA-5 and CRU JRA v1.1 meteorological forcing
data separately because they cover the period of 1981–2017, and
the satellite datasets from Moderate Resolution Imaging Spectro-
radiometer (MODIS).
Consistent with model simulations, we extracted SM, VPD, and

GPP of the warm season over the 1981–2017 period and
subtracted 30-year centered running mean from monthly GPP to
eliminate long-term trends and seasonal cycles and obtain GPP
anomalies. To allow for a fair comparison, data analyses of
observational datasets and multi-model simulations were bili-
nearly interpolated to a common spatial resolution of 1.5° × 1.5° to
obtain the ensemble results.

Drylands
The extent of global drylands is based on the United Nations
Convention to Combat Desertification (UNCCD) definition, cover-
ing 46% of the land area excluding Antarctica and Greenland
(Supplementary Fig. 7). Drylands include hyper-arid, arid, semi-
arid, and dry sub-humid areas, with the aridity index, i.e., the ratio
of precipitation over the potential evapotranspiration, less than
0.65. The aridity index is calculated using climate data from the
global climate dataset produced by the Climate Research Unit of
the University of East Anglia, UK56.

Identification of vegetation compound droughts
A two-segment linear regression model provides a first-order
representation of the GPP responses to SM and VPD. A significant
break in the slope would indicate that there is a change-point for
SM or VPD above which GPP would respond to SM or VPD
differently (Supplementary Fig. 1)31,57. The fitted two-segment
regression (SEG) for a grid cell can be expressed as:

Y ¼ α0 þ β0X þ ε ; X < c

α1 þ β1X þ ε ; X > c

�
(1)

where Y is the GPP anomaly in gC·m−2·day−1, X represents SM or
VPD, c the change-point for SM or VPD, and ε the error term.
Parameters (α0, α1, β0, and β1) can be estimated through the
ordinary least squares, and c estimated with a grid search method
together with bootstrap57. To ensure continuity of GPP anomalies
at the change-point c, we forced GPP anomaly to be identical at c,
i.e., α0 þ β0c ¼ α1 þ β1c.
We further tested the significance of the change in slope with

bootstrapping. Null (H0) and alternative (Ha) hypotheses of the
test are:

H0: β0 ¼ β1;Ha: β0≠β1 (2)

When the difference in the slope is significant, the segmented
linear equations can be used to characterize the change in how
the GPP anomaly responds to SM and VPD, otherwise Eq. 1 is
degenerated into a univariate linear (UL) regression equation:

Y ¼ α2 þ β2X þ ε (3)

According to our understanding of how GPP responds to SM
and VPD (Supplementary Fig. 1), vegetation carbon uptake is
strongly limited by water availability when SM is below and VPD is

above the change-point. Under the drought-limited regime, GPP
increases with SM and decreases with VPD32,37. To capture this
regime, the regression coefficients for the drought-limited phase,
β0 or β2, should be significantly positive for SM and, β1 or β2,
significantly negative for VPD. Cases meeting this criterion are
shown in Supplementary Fig. 14. In order to characterize the
adverse impacts of soil droughts and atmospheric aridity on GPP,
we compared the change-point for the cases SEG01 and SEG02 in
Supplementary Fig. 14 with the x-intercept at which the
regression line crosses the x-axis (zero GPP anomaly) and chose
the lower value as the SM threshold and the higher value as the
VPD threshold. Therefore, the x-intercept was taken as the
threshold for SEG01, while the change-point was taken for
SEG02. For the case UL, the x-intercept was directly taken because
the change-point does not exist based on the univariate linear
regression.
There are two exceptional cases in the identification (EXP01 and

EXP02). (i) Drought-limited phase is too weak (EXP01): specifically,
GPP anomaly always remains above zero in the drought-limited
phase because the limitation of low SM (high VPD) is too weak to
cause adverse impacts. Hence, soil droughts or atmospheric aridity
were not identified for this case. (ii) Permanent drought-limited
(EXP02): as SM decreases, GPP anomaly declines rapidly when SM
is above the change-point and gradually when SM falls below the
change-point. Likewise, as VPD rises, GPP declines more rapidly
when VPD is below the change-point and gradually when VPD is
above the change-point. This case occurs in dry and hyper-dry
regimes in Supplementary Fig. 1. SM/VPD thresholds always equal
the x-intercept regardless of change-point because vegetation
productivity has already been strongly reduced by low SM and
high VPD under the dry regime.
This procedure was performed for each grid cell during

historical and future periods. Segmented regression and
x-intercept solving were implemented in R 4.1.2 using ‘chngpt’
and ‘rootSolve’ packages separately57,58.
Fitted regressions are dominated by SEG01 and UL over 75% of

assessed land area in CMIP6 historical simulations and observa-
tions (Supplementary Fig. 15). As expected, UL captures the
relationship between GPP and SM or VPD for dry regimes and is
identified mainly in drylands. SEG01 describes the impacts of SM
and VPD on GPP from dry to wet regimes and is found in humid
areas in the tropics and high-latitude regions (Supplementary Fig.
15i, j). The spatial distribution of the fitted regression cases
therefore supports the conceptual framework shown in Supple-
mentary Fig. 1.
We identified the thresholds at which low SM and high VPD

strongly limit and exert adverse impacts on GPP using the fitted
regression of GPP response to SM and VPD for each grid cell. VCDs
were defined as months with SM below its threshold and VPD
above its threshold simultaneously in observations and CMIP6
historical simulations (Fig. 1). To project future changes in VCDs
and their adverse impacts on terrestrial carbon uptake, we defined
VCDs in SSP1-2.6 and SSP5-8.5 based on (i) the same thresholds
from historical simulations to determine the impacts of climate
change on SM and VPD and hence VCDs (Fig. 4), and (ii) separate
thresholds from each of future scenarios to account for the
impacts of future climate change and elevated CO2 on potential
changes in the GPP responses to SM and VPD, which is essential to
assess the GPP anomalies induced by VCDs in the future (Fig. 5).
We also compared the thresholds from future scenarios with those
from historical simulations, and lower SM and higher VPD
thresholds indicate that elevated CO2 may have ameliorated
ecohydrological water stress (Supplementary Fig. 10).

Characteristics of compound droughts
We analyzed the frequency, duration, intensity, and severity of
CDs and associated average and total GPP anomalies. Average and
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total GPP anomalies are the mean and sum of GPP anomalies
during CD months, respectively. Frequency is calculated as the
proportion of CD months in warm season months (255 months
over 85 years in total for the historical or future simulations and
111 months over 37 years for observations). Duration is the mean
length of months that CDs last in the warm season, and intensity is
the quadratic mean of departures of SM and VPD from their
thresholds for CDs. To facilitate comparison, we used the standard
deviations of SM and VPD during the historical period to normalize
the departures, and the intensity is expressed as:

Intensity ¼
XNm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SMi�SMt
σ SMð Þ

h i2
þ VPDi�VPDt

σ VPDð Þ
h i2r

ffiffiffi
2

p
Nm

(4)

where Nm is the number of CD months, σ SMð Þ and σ VPDð Þ are
standard deviations of SM and VPD, respectively, in observations/
historical simulations. SMt and VPDt are the thresholds of SM and
VPD extremes, respectively.
As the severity of a drought/aridity event depends on its

intensity and duration, it is calculated as the summed intensity
over consecutive CD months in each warm season:

Sev SM ¼
XD
k¼1

SMk � SMtj j
σ SMð Þ (5)

Sev VPD ¼
XD
k¼1

VPDk � VPDtj j
σ VPDð Þ (6)

where D is the number of months, i.e., the duration of CDs,
ranging from 1 to 3 in a warm season. SMk and VPDk are the SM
and VPD in the kth drought/aridity month. Sev SM and Sev VPD
are measures of severity of a consecutive soil drought or
atmospheric aridity event, respectively. The severity of CDs is
calculated as the quadratic mean of this severity measure for soil
drought and atmospheric aridity events:

Severity ¼
XND

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sev SMj

2 þ Sev VPDj
2

q
ffiffiffi
2

p
ND

(7)

where ND is the number of consecutive CD events that range from
1 to 3 months in all warm seasons.
For data analyses, we calculated the frequency, duration,

intensity, severity, and GPP anomalies of VCDs, which were
compared with the characteristics of SCDs in observations and
CMIP6 simulations. We also assessed future changes in the
frequency, intensity, and GPP anomalies of VCDs and SCDs in
SSP1-2.6 and SSP5-8.5 relative to historical simulations.

Uncertainty in the identification of vegetation compound
droughts
The identification of VCDs using the impact-based approach may
depend on how the growing season for GPP is defined. Although
the 3 warmest months used in the main text typically correspond
to the main growing season in mid- and high-latitude regions, it is
probably not the case in tropical regions. Given that tropical
rainforest ecosystems could maintain high GPP all year round
instead of just during the 3-month warm season, there may be
substantial GPP losses due to VCDs in other seasons. To further
confirm the effectiveness of the impact-based approach, we
evaluated GPP anomalies using all months for the growth season
(Supplementary Fig. 13) and the 3-month growing season with the
highest average GPP (Supplementary Fig. 12), in addition to the 3
warmest months. A growing month is defined as a month with the
average GPP exceeding 70% of the maximum monthly GPP
(Supplementary Fig. 13). We compared global total GPP anomalies
identified using the impact-based approach in the 3 warmest

months and all growing months to test whether the adverse
impacts of VCDs on terrestrial carbon uptake mostly occur in the
warm season (Supplementary Table 3).

DATA AVAILABILITY
Datasets used in this study are available online. The CMIP6 simulations were
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https://disc.gsfc.nasa.gov/datasets?project=MERRA-2, and the FLUXCOM dataset
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