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Deep learning reveals moisture as the primary predictability
source of MJO
Na-Yeon Shin1, Daehyun Kim 2,3✉, Daehyun Kang 4, Hyemi Kim5,6 and Jong-Seong Kug1,7✉

The Madden-Julian Oscillation (MJO) is the dominant mode of tropical intraseasonal variability that interacts with many other Earth
system phenomena. The prediction skill of the MJO in many operational models is lower than its potential predictability, partly due
to our limited understanding of its predictability source. Here, we investigate the source of MJO predictability by combining
machine learning (ML) with a 1200-year-long Community Earth System Model version 2 (CESM2) simulation. A Convolutional Neural
Network (CNN) for MJO prediction is first trained using the CESM2 simulation and then fine-tuned using observations via transfer
learning. The source of MJO predictability in the CNN is examined via eXplainable Artificial Intelligence (XAI) methods that quantify
the relative importance of the input variables. Our CNN exhibits an enhanced prediction skill over previous ML models, achieving a
skill level of about 25 days. This level of performance is slightly superior or comparable to most operational models participating in
the S2S project, although a few dynamical models surpass it. The XAI methods highlight precipitable water anomalies over the
Indo-Pacific warm pool as the primary precursors of the subsequent MJO development for 1–3 weeks forecast lead times. Our
results suggest that realistic representation of moisture dynamics is crucial for accurate MJO prediction.
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INTRODUCTION
The Madden-Julian Oscillation (MJO), the dominant mode of
tropical intraseasonal variability, is a planetary-scale, eastward-
propagating disturbance in the tropics with a period of
30–90 days1,2. MJO is known to influence, among others, the
frequency and intensity of high-impact weather events in the
midlatitudes such as flooding and tornadoes3–5. Therefore, an
accurate prediction of the MJO is a prerequisite for a reliable
outlook of high-impact weather events with more than 2 weeks of
forecast lead time.
Despite the steady improvement in the MJO prediction skill of

the dynamical models over the past few decades6, many
operational models still struggle with a rather poor prediction
skill7,8. Moreover, the MJO prediction skill of the operational
models fall short of the estimated potential predictability of the
MJO9–11, suggesting that model errors are a barrier to further
enhancing MJO prediction skill. The persistent errors in the model
representation of the MJO12–15 partly come from our limited
understanding of the phenomenon16,17.
One of the least understood aspects of the MJO is its

predictability source. Even though there are models that exhibit
a superior skill in forecasting the MJO than other models (e.g.,
ECMWF integrated forecasting system CY43R37), understanding
why the particular model performs better than others are a non-
trivial task. In particular, it is not well understood where the
predictability comes from. A systematic assessment of the source
of MJO predictability would be helpful to better understand the
nature of the MJO and eventually help improve its prediction skill.
Recent applications of Artificial Intelligence (AI) and Machine

Learning (ML) techniques to weather and climate prediction have
demonstrated their high potential18–20. In addition, attempts have

been made to understand ML results by utilizing ‘eXplainable AI’
(XAI) tools18,21,22, which aid human interpretation of the ML
predictions23.
Although ML methods and XAI tools have been also applied to

MJO prediction in recent studies24–27, their prediction skill
(~20 days) has remained lower than that of most operational
forecasts. Thus, the sources of MJO predictability using XAI for
relatively long forecast lead times (>15 days) have yet to be
thoroughly investigated and quantified. In addition, while the XAI
methods they used have provided information about the specific
regions within the input fields that influenced the ML model’s
prediction, they did not quantify the impact of changes to the
input field on the predicted output value24–27. A shortcoming of
the previously developed ML models for MJO prediction is that
they used only observations, which limits the number of MJO
events used in the training to capture the diverse nature of the
MJO28.
In this study, we use a long-term (1200-year) climate

simulation made with Community Earth System Model version
2 (CESM2)29, which is known to simulate a realistic MJO30,31, to
build a robust regression CNN model for MJO prediction. We
then fine-tune the parameters of the CESM2-data-trained CNN
with observations via the so-called ‘transfer learning’ technique
to address the systematic bias of CESM218,32. Although transfer
learning has been successfully utilized in several climate
studies18,21, it has not been applied to MJO research. It will be
shown that our model is skillful at forecasting the observed MJO
and that atmospheric water vapor anomalies are identified as
the primary source of MJO predictability for forecast lead times
within 3 weeks.
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RESULTS
Performance of the CNN-based MJO prediction model
Figure 1 shows the bivariate correlation coefficients (BCOR)6,33,34

skill scores of our CNN-based MJO prediction model as a function
of the forecast lead time. The model is trained to predict the
values of RMM1 and RMM2 indices with the daily anomaly maps
over 30°S-30°N and 0-360°E of the following five input variables:
outgoing longwave radiation (OLR), zonal winds at 200hPa (U200)
and 850hPa (U850), precipitable water (PW), and surface
temperature (TS). We use data from boreal winter (December-
January-February-March) during which MJO activity peaks35. See
Methods for the details. Hereafter, the CNN model before and
after the transfer learning will be referred to as CNNCESM2 and
CNNOBS, respectively.
The prediction skill of the CNNOBS is above 0.5 up to ~25 days of

forecast lead time, which is superior to those of the previous ML
models developed by Martin et al.26 (~19 days) and Delaunay &
Christensen24 (~21 days). When measured in a similar way, the
ECMWF model shows the highest prediction skill (~36 days based
on NDJFM season and initial MJO amplitude>1), which is followed
by several models, including CESM2 as a dynamical model (red
line in Supplementary Fig. 1), that exhibit the prediction skill of
about 24–27 days7,8,16 as shown in Supplementary Fig. 1. Some
dynamical models show skills lower than ~21 days (Supplemen-
tary Fig. 1). Therefore, the CNNOBS is capable of tapping the
predictability of the MJO embedded in the input data to achieve
forecast skill that is slightly better than or comparable to that of
most dynamical models in the S2S archive, except for the ECMWF
model. However, there are other dynamical models that still
outperform CNNOBS

36,37.
Refining the CNNCESM2 with observations is found to have

statistically significant impacts on the prediction skill of the model

up to 3 weeks forecast lead time (p < 0.05) (Supplementary Fig. 1).
The increase in the BCOR skill score after the transfer learning is
most pronounced for weeks 2 and 3, with the increases being
larger than 0.1. It is worthwhile to note that the period of the
CESM2-simulated MJO is on the shorter side of the observed range
(Supplementary Figs 2a, b), which may limit the CNNCESM2 in
detecting the source of MJO predictability in observation within
2 weeks. The notable increase in the skill score after the transfer
learning, therefore, suggests that the CNNOBS is appropriately
calibrated to lessen the effect of the systematic bias of CESM2 (i.e.,
the shorter-than-observed periodicity) for the forecast lead time
within 3 weeks through the transfer learning.

Investigation of the MJO’s predictability source
The high skill of the CNNOBS demonstrated in Fig. 1 warrants
investigating its origin, namely, the source of MJO predictability.
As a rough, but simple way to evaluate the relative importance of
the input variables, we repeated the prediction with the CNNOBS

by zeroing a single variable at a time. Through this process, the
importance of a variable is assumed to be proportional to the
degree of skill degradation when the effect of a single variable is
eliminated.
When compared to the skill of the ‘all-variable’ forecasts, it is

found that the greatest decrease in the skill score occurs when PW
is removed, particularly within 20 days of forecast lead times,
suggesting that PW anomalies are the dominant predictability
source for up to 3 weeks (Fig. 1). At the 10-day forecast lead time,
for example, the BCOR skill score drops by about 0.15 when the
effect of PW is removed from the input. Small, but noticeable
reductions in BCOR are also observed with the removal of U200
and TS. Interestingly, the effects of U200 on the skill score are
largest at shorter forecast lead times (5–10 days), while the
reduction in skills after removing TS is greatest at forecast lead
times longer than 25 days. Overall, U850 or OLR has minimal
effects on the prediction skill.
While Fig. 1 shows the relative importance of each input

variable on the skill of the CNNOBS, it lacks information about the
specific features in the input data that the ML model ‘sees’ when
making predictions. To identify the features in the input data that
have a relatively large impact on the predicted RMM indices, we
use an XAI method called the Signed-Contribution (SC) map (see
Methods).
Figure 2 shows the SC maps of each input variable for the

models that forecast RMM1 (Fig. 2a-e) and RMM2 (Fig. 2f-j) values
15 days after the initial date. As consistent with Fig. 1, the
magnitude of the signals presented in the SC maps is the largest
in PW, suggesting that PW is the most important input field for the
MJO prediction. The corresponding SC maps of TS and upper and
lower-level zonal winds show signals that are comparable in
magnitude, but much weaker than the PW’s, and a negligible
signal is found in OLR. Note that the results shown in Fig. 2 are
consistent with those from the saliency map38 (Supplementary
Fig. 3), a well-known XAI method that indicates the sensitivity of
the output to each input variable.
The SC map of PW for RMM1 indicates that positive PW

anomalies in the western Indian Ocean (WIO) are related to an
increase in the RMM1 forecast with a 15-day forecast lead time
(Fig. 2a). Likewise, positive PW anomalies in the western Pacific
cause a decrease in the value of RMM1 forecast (Fig. 2a), while
increasing the value of RMM2 forecast (Fig. 2b). The corresponding
lag-correlation map (Supplementary Fig. 4) indicates that the
strong PW signals in the SC map of the 15-day forecast overlap the
anomalies that are most pronounced 15 days before RMM1 or
RMM2 peaks. This suggests that the CNNOBS makes skillful
predictions by carrying the predictability embedded in the input
moisture anomaly field through 15 days. Similarly, the SC map and

Fig. 1 The skills of the CNNOBS and relative importance among
input variables based on skill. The bivariate correlation (BCOR) skills
between the target and the CNNOBS output variables (i.e., RMM
indices) for observation data. The BCOR is calculated by the mean
for 20 networks. The black solid line is calculated for all test datasets
of observation when the initial MJO amplitudeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRMM1Þ2þðRMM2Þ2
q� �

is strong (>1). The shaded areas indicate

the 95% confidence level using the bootstrap method. The gray
dashed line indicates a BCOR skill at 0.5. The dots represent the
BCOR skills between the target and the prediction after removing
the effect of a single variable using the CNNOBS for the 5, 10, 15, 20,
25, and 30-day forecast lead time. The red, yellow, green, blue, and
purple dots indicate the prediction skills with PW, TS, U200, U850,
and OLR removed, respectively.
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the lag-correlation map for RMM2 show a reasonable match, albeit
being somewhat weaker than for RMM1 (Supplementary Fig. 4).
Interestingly, Figs. 1 and 2 show that OLR anomalies contain

almost no memory of the future MJO evolution, although PW and
OLR are both strongly correlated with RMM indices (Supplemen-
tary Fig. 4). The lack of memory in the OLR field suggests that the
moisture anomaly largely determines the distribution of con-
vective activity39,40. While the OLR SC maps show much stronger
signals when the CNNOBS is trained without PW, the resulting
model exhibits lower prediction skill (not shown). This again
suggests that the memory of OLR variability in intraseasonal
timescale largely comes from that in the moisture field.
The patterns of the PW signals in the SC maps vary notably with

the forecast lead time. Figure 3 shows the SC and lag-correlation
maps of PW for RMM1 at the 5, 10, 15, 20, and 25-day forecast lead
times. Overall, strong signals are mostly concentrated in the Indo-
Pacific warm pool region. At a longer lead time (e.g., 25-day),
positive signals are found mainly in the far western Indian Ocean
(Fig. 3a). As the forecast lead time decreases, the dipole of positive
and negative signals gradually moves to the east, and the strong
signals appear in the Maritime Continent, northern Australia, and
the west Pacific at 5-day forecast lead time (Fig. 3e). These regions
are close to the areas of negative OLR anomalies associated with
RMM1 (Supplementary Fig. 2c).
For all forecast lead times considered, the PW SC maps (Fig. 3a-e)

favorably match the corresponding lag-correlation map (Fig. 3f-j).
This again suggests that, for a given moisture anomaly field, part of
the subsequent evolution of the moisture field is predictable, and
the CNNOBS learns the pattern of that evolution. In other words,
moisture anomalies contain memories that last longer than the
weather time scale, and the CNNOBS is able to use the memory for
the prediction of RMM indices. The smooth transition of the signals
in the zonal direction as a function of the forecast lead time also

strongly suggests that, although the CNNOBS is trained indepen-
dently for each lead time, the CNNOBS captures a common feature in
the dynamics of the real MJO.
The signals in the TS SC maps look similar to that of the PW SC

maps, while the TS signals are located slightly to the east of the
PW signals (Supplementary Fig. 5). Note that the signals in the TS
SC maps show a zonally-elongated pattern along the equator
across the western Pacific, which is absent in the corresponding
lag-correlation map. This phase lag between PW and TS is
presumably due to that SST anomalies tend to be highest to the
east of enhanced MJO convection after the ocean received
enhanced shortwave under the suppressed phase and before
enhanced surface flux and turbulent mixing cool the ocean
surface during the active phase. Our results are consistent with the
studies that highlighted the pre-conditioning role of SST
anomalies in the propagation of the MJO41.
Relatively large signals in the western hemisphere are found in

the SC and linear correlation maps of U200 (Supplementary Fig. 6),
unlike in the corresponding PW or TS maps, where the signals are
mostly concentrated in the Indo-Pacific warm pool. The U200
anomalies in the western hemisphere are associated with the ‘dry’
component of the MJO42,43, which has been suggested to
sometimes help initiate the MJO in the Indian Ocean44. Our
model seems to capture the dry component of the MJO as a
predictability source of the MJO.
Figure 4 summarizes our investigation of MJO predictability

source in a quantitative manner. In Fig. 4, the relative role of each
variable is quantified as the bivariate mean-squared difference45

(BMSD) between the prediction results with and without a single
variable (see Methods). Figure 4 quantifies the relative influence of
each variable on the changes in RMM indices themselves, whereas
Fig. 1 shows the effect of each input variable on the skill score.
Therefore, high (low) BMSD values indicate that the input variables

Fig. 2 The signed-contribution (SC) map for a 15-day forecast lead time. The SC maps of observation for (a-e) RMM1 and (f-j) RMM2 at a 15-
day forecast lead time. (a,f) PW, (b,g) TS, (c,h) U200, (d,i) U850, and (e,j) OLR. The map indicates an averaged SC map of the individually
obtained SC map for each network, initialized with different weights.
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exert a large (small) influence on the variation of the RMM indices,
suggesting a wealth (scarcity) of information that can be utilized
as sources of MJO predictability. In general, forecasts at shorter
lead times tend to be affected more strongly by input values
(initial conditions), whereas the effect of input values diminishes
as the forecast lead time increases. Interestingly, however, the
total BMSD (gray bars in Fig. 4) increases until the 10-day forecast
lead time before decreasing at the longer lead times. This may
imply that the factors governing the predictability in the lead
times shorter than 10 days are not sufficiently considered in the
CNNOBS. Thus, the potential to improve the skill score of the early
forecast lead times (< 10 days) remains. Note that the
corresponding results obtained by comparing other all possible
combinations of the input variables show consistent results
(Supplementary Methods and Supplementary Fig. 7).
The lines in Fig. 4 show that the relative influence of PW is the

largest for the forecast lead times shorter than 3 weeks, again
strongly suggesting that PW is the dominant source of MJO
predictability at those forecast lead times. The relative contribu-
tion of PW reaches up to about 50% at the 10-day lead and
reduces as the forecast lead times increase. Therefore, up to the
forecast lead time of about 3 weeks, PW is not only most
conducive to skill improvement (Fig. 1) but also the variable that
has the most control over the predicted RMM indices (Fig. 4).
The next largest contributions to the total BMSD come from

U200 and TS, followed by that of U850 and then OLR. The U200’s
relative impact, which has the second largest proportion up to
about 2 weeks, reduces from about 23% (at 5-day lead) to 17% (at
15-day lead) and then increases to about 32% (at 30-day lead).

This result agrees with the U200 showing the second largest
impact on a skill within about 2 weeks (Fig. 1). The relative effects
of TS show an increasing trend as the forecast lead time increases.
At the 25-day forecast lead time, the proportion of TS to the total
BMSD is more than two times that at the 5-day forecast lead time.
This suggests that TS has a relatively large memory for MJO
predictability on longer timescales. The effects of U850 and OLR,
which occupy a small proportion with relatively weak influence,
decrease monotonically as the forecast lead time increases.

DISCUSSION
Once successfully trained, making predictions with ML-based
weather and climate prediction models takes only a tiny fraction
of the time and computing power that are required to numerically
solve the governing equations of the Earth system components
for the equivalent prediction exercise. If the prediction skill of the
ML models is comparable to that of the dynamical models, the
low-cost aspect makes them an attractive tool for weather and
climate prediction that can be used together with the dynamical
models. By overcoming the issue of limited data availability with
the use of a multi-century CESM2 simulation, the CNNOBS showed
a remarkable MJO prediction skill of about ~25 days, which was
superior to the skill of previous ML models as well as many
dynamical models.
Although the skill of the CNNOBS is still behind that of a few

dynamical models, our results demonstrated the potential that the
ML models can be further improved by fully utilizing high-quality,
high-volume data. Interestingly, the skill of the CNNOBS was

Fig. 3 The evolution of SC and lag-correlation maps with decreasing forecast lead times. The evolution of the (a–e) SC maps of CNNOBS and
linear (f-j) lag-correlation maps of observation for (a,f) 25, (b,g) 20, (c,h) 15, (d,i) 10, and (e,j) 5-day forecast lead time. The maps are calculated
for PW and RMM1 index. The SC map in each panel indicates an averaged SC map of the individually obtained SC map for each network,
initialized with different weights. The shadings of lag-correlation maps indicate a 95% confidence level.
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comparable to that of the dynamical forecasts made with CESM2
(~24 days; red line in Supplementary Fig. 1)46. Considering that the
CNNOBS is trained with the CESM2 long-term simulation, our
results suggest that the skill of ML models may further improve if a
GCM that better simulates the MJO is used to create the long-term
training simulation data for the training of an ML model. In
addition, our methods can be applied to multi-model simulation
results by training deep learning models separately for each
simulation, which would facilitate comparisons of MJO predict-
ability and its sources among different climate models.
The current study also demonstrated that skillful ML models

could be used to reveal the nature of the target phenomenon. Our
results highlighted the large-scale moisture anomalies as the
dominant source of MJO predictability for up to 3 weeks of
forecast lead time. This strongly supports the ‘moisture mode’
theoretical framework for the MJO47–50, which explains the
maintenance and propagation of MJO convection by those of
moisture anomalies. Our results also suggest that moisture
dynamics is a crucial process for successful MJO prediction with
the dynamical models. While we used the column-integrated
water vapor as input, it will be of interest to further examine
whether water vapor anomalies in different layers (boundary layer
vs. lower free-troposphere) play different roles as the MJO’s
predictability source.
All current ML models for MJO prediction, including our CNN

model, take the ‘time-skipping’ approach, in which the models
take input variables of the initial time and directly predict output
variables at a target future time. Therefore, the time-skipping ML
models are constructed independently for each forecast lead
time. While our results indicated that the ML models con-
structed for different target forecast lead times exhibited
consistency (Fig. 3), the use of time-skipping models may not
be suitable to represent the non-linear evolution of errors in the
initial conditions, limiting the effectiveness of the ensemble
prediction. Meanwhile, recursive ML models have been success-
fully constructed and used for weather and subseasonal
prediction (FourCastNet51, DLWP52). It will be worthwhile to
design the recursive ML models (e.g., recurrent neural network,
long-short term memory, transformer, etc.) specifically for MJO
prediction and assess their MJO prediction skills. Furthermore,
the application of various DL techniques, including graphical
neural network and generative adversarial network, holds
promise for further enhancing MJO prediction skill and under-
standing the uncertainty associated with it, taking advantage of
the inherent capabilities offered by each of these techniques.

METHODS
Data
We used a 1200-year-long pre-industrial simulation made with
CESM229. CESM2 shows a realistic representation of the MJO30,
which qualifies the model as a reasonable tool to understand the
predictability of the MJO. The daily mean of outgoing longwave
radiation (OLR), zonal winds at 250hPa (U250) and 850hPa (U850),
precipitable water (PW), and surface temperature (TS) over 30°S-
30°N and 0-360°E were used. All variables were interpolated onto a
2.5° × 2.5° grid. The daily mean fields were pre-processed as
anomalies by removing the mean and the first three harmonics of
the climatological seasonal cycle. Each input variable was then
normalized by its own domain-averaged standard deviation
before being used as input to the CNNOBS. The RMM indices, the
output variable for the CNNOBS, are obtained as the principal
components of the leading two combined empirical orthogonal
function (CEOFs) of meridionally averaged (15°S-15°N) OLR, U250,
and U850 anomalies53. As in Wheeler & Hendon53, the previous
120-day mean was removed from the three variables before
obtaining the CEOFs and their principal components.
For the observational data, we used NOAA interpolated OLR54,

ERA-5 reanalysis55 U200, U850, PW, and TS from 1 January 1979 to
31 December 2018. The horizontal resolution and pre-processing
methods used were the same as those used for CESM2.

Convolutional neural network (CNN) and transfer learning
CNN56 is specialized in learning the relationship between input
and output by extracting features from input images. With maps
of five variables as the input and two numbers as the output, we
constructed a simple CNN structure that consists of three
convolutional layers of 30 2 × 2 convolution filters, one 50-unit
hidden layer, and one output layer with 2 units (Supplementary
Fig. 8). We used the rectified linear unit, the mean square error,
and Adam as the activation function, the loss function, and the
optimizer, respectively. The learning rate is 0.005 for CNNCESM2 and
0.0005 for CNNOBS. To set the number of epochs, we applied early
stopping.
Firstly, we trained a CNN with a 1200-year-long

CESM2 simulation (CNNCESM2). To use all available data for pre-
training, we did not conduct cross-validation on the
CESM2 simulation and utilized 75% of the entire CESM2 dataset
for training and 25% for validation. In this study, the CNNCESM2 is
independently trained for each forecast lead time (1 to 30 days).
Furthermore, we trained 20 different networks, each initialized

Fig. 4 The quantified contribution (bivariate-mean-square difference; BMSD) of each input variable for 5, 10, 15, 20, 25, and 30-day
forecast lead time. The BMSDs are calculated between the original prediction and the prediction after removing the effect of a single variable
using the CNNOBS for each forecast lead time. The gray bars indicate the sum of the BMSDs for all variables. The red, yellow, green, blue, and
purple bars indicate the proportion of BMSD for PW, TS, U200, U850, and OLR, respectively, to the total sum. The x-axis is the lead days.
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with different weights, to take into account the sensitivity of the
CNNCESM2 to weight initialization.
The prediction skill of CNNCESM2 increases as more training data

are used (Supplementary Fig. 9), and more than 400 years of
training data are required for the model to yield the skill score
greater than 0.6 at the 15-day forecast lead time. Interestingly, the
forecast skill is not completely saturated even with more than 700
years of training data (corresponding to 100% in the x-axis in
Supplementary Fig. 9), suggesting that using longer simulation
data would be beneficial to further improve MJO prediction.
Second, we utilize transfer learning32 to fine-tune the weights of

all layers of the pre-trained model (i.e., CNNCESM2) to fit the
observation data. We use transfer learning to simultaneously
acquire 1) the advantages of CESM2 with vast amounts of data
and 2) the benefits of using observational (and reanalysis) data.
For cross-validation, we split the observation dataset into three
groups with 3:3:4 ratios and performed three rounds of transfer
learning with one of the three groups as a test dataset and the
remaining as training and validation datasets. As a result, we
obtained a total of 60 independent CNNs (20 networks ´ 3
datasets) for each forecast lead time. All results in this study are
the average of all networks, which is referred to as the CNNOBS.

Signed-contribution (SC) map
Shin et al.21 proposed an XAI method called the contribution map,
which quantitatively estimates the relative influence of each input
variable at each grid point on the output. For every input value, its
influence on the prediction is measured as the difference (D in
Eq. (1)) between the original prediction and the prediction after
zeroing the input variable:

Di;j ¼ f Xj
� �� f Xi

j

� �
; (1)

where f is an ML prediction model, Xj is the full input data array
for the jth sample, and Xi

j is the modified array with the ith element
replaced with zero. The overall ‘contribution’ of the ith element to
the prediction results is then quantified as the root-mean-squared
D:

Ci ¼
ffiffiffiffiffiffi
D2
i;j

q
; (2)

where – indicates the average over the entire sample. In the
Contribution map, Ci is displayed as a function of longitude and
latitude for each input variable (e.g., Shin et al.21). While
providing useful insights into how an ML model makes a specific
prediction, the original Contribution map measures only the
magnitude of the influence, lacking sign information. To
overcome this limitation, we developed the signed-
contribution (SC) map, which provides the sign of the relation-
ship between the input and output together with the magnitude
of the importance. To produce an SC map, we first obtain two
conditional averages of Di;j by using only those with sufficiently
high (i.e., greater than 1.0 standard deviation) and low (i.e., lower
than −1.0 standard deviation) values of the ith element in the
input data:

Dhigh
i ¼ Di;j

XðiÞj>SDi ;Dlow
i ¼ Di;j

X ið Þj<�SDi (3)

where X ið Þj is the ith element of the input data for the jth sample
and SDi is the standard deviation of the ith input element. The
‘signed-contribution’ is obtained as the difference between the
two conditional averages:

SCi ¼ Dhigh
i � Dlow

i : (4)

The sign and magnitude of SCi reflect the direction and
amplitude of the output changes associated with removing the
effect of the ith input element, respectively. As in the contribution
map, SCi is displayed as a function of longitude and latitude for

each input variable in the SC map (e.g., Figs. 2 and 3). In this paper,
we show the average of SC maps for all individual networks,
initialized with different weights.

Bivariate-mean-square-difference (BMSD)
We conducted a single-variable zeroing test using our CNNOBS to
evaluate the extent to which the RMM indices themselves are
altered by removing the effect of individual input variables (Fig. 4).
To do this, we computed the BMSD for each input variable (BMSDk
in Eq. (5)), which is the mean-square-differences between the
original predictions and the single-variable zeroing prediction for
both RMM1 and 2 indices, as follows:

BMSDk ¼ 1
N

XN
j¼1

f 1 Xj
� �� f 1 Xk

j

� �h i2
þ f 2 Xj

� �� f 2 Xk
j

� �h i2� �
(5)

where f is an ML prediction model, the subscripts 1 and 2 indicate
the prediction value of RMM1 and RMM2 indices, respectively. Xj is
the full input data array for the jth sample (N=total number of
samples), and Xk

j denotes the modified array with all kth variables
replaced by zero. The total BMSD (Eq. (6)) is the sum of the BMSDs
of five input variables:

total BMSD ¼
X5

k¼1

BMSDk : (6)

To quantify the contribution of each input variable, we
calculated the ratio of each variable’s BMSD (BMSDkratio in Eq.
(7)) to the total BMSD as follows:

BMSDkratio ¼ BMSDk=total BMSD: (7)

In this paper, we show the average of BMSDs for all individual
networks, initialized with different weights.
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