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Seasonal predictability of the dominant surface ozone pattern
over China linked to sea surface temperature
Yuan Chen1, Dean Chen2, Linru Nie1, Wenqi Liu1, Jingfang Fan3, Xiaosong Chen 3 and Yongwen Zhang 1✉

Mitigation surface ozone pollution becomes increasingly pivotal in improving China’s air quality. However, the impact of global sea
surface temperature anomalies (SSTA) on the long-term predictability of China’s surface ozone remains challenging. In this study,
we employ eigen techniques to effectively characterize dominant surface ozone patterns over China, and establish cross-
correlations between the dominant patterns and global SSTA time series. Our findings reveal that China’s summer ozone pollution
is strongly associated with crucial SSTA clusters linked to atmospheric circulations, i.e., the West Pacific Subtropical High and the
Pacific-North American teleconnection pattern. For winter, ozone pollution is attributed to SSTA clusters related to the Southern
Oscillation, the Madden-Julian Oscillation and others. We propose a multivariate regression model capable of predicting surface
ozone patterns with a lead time of at least 3 months. Evaluation of our model using a testing dataset yields an R-value of around 0.5
between predicted and observed data, surpassing statistical significance threshold. This suggests the viability and potential
applicability of our predictive model in surface ozone forecasting and mitigation strategies in China.
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INTRODUCTION
Ozone in the stratosphere forms the ozone layer, which is
essential for absorbing the Sun’s ultraviolet radiation and
protecting life on Earth. However, Ozone in the lower levels of
the troposphere is a kind of air pollutant that has serious damage
to human life, such as corroding human lungs, and destroying
crops and forest vegetation1. Numerous studies indicated that
worldwide, several hundreds of thousands of premature deaths
annually were associated with ground-level O3 pollution2. Surface
O3, known as a secondary air pollutant, isn’t directly emitted by
vehicles or industries; rather, it is produced by the reaction of
sunlight with nitrogen oxides and hydrocarbons in the air3,4. In
recent years, it has become a significant pollutant in major urban
areas of China5–7. Notably, a recent study indicated a substantial
rise in O3 pollution across Northern China. However, the trends of
O3 pollution in several regions of China do not exhibit significant
increases compared to the influences of natural and climate
variability8. As such, predicting surface O3 concentrations is crucial
for mitigating the damage caused by air pollution in China.
Notably, long-term predictions are invaluable as they enable
governments to strategically plan air pollution control measures
months or even a year in advance.
Efforts to improve predictions of surface O3 concentrations have

involved investigating the primary factors influencing them7. Not
only do emissions of surface O3 precursors play a significant
role8,9, but large-scale ocean-atmosphere circulations also have
substantial impacts on O3 levels10. Connections between large-
scale ocean-atmosphere circulations and local air pollution are
critical for long-term air pollution forecasting11. Previous research
has demonstrated that large-scale climatic patterns can be
harnessed to predict surface-level O3 concentrations in the United
States up to a season in advance, attributed to the interactions
between large-scale ocean-atmospheric circulations and the
inherent long-term memory10. Additionally, it has been observed

that the North Atlantic Oscillation-driven anomalous atmospheric
circulations influence O3 pollution in Europe by modulating the
photochemical reactions involved12,13.
Furthermore, certain meteorological conditions such as

drought, elevated temperatures, and intense sunlight are con-
ducive to the formation of surface O3 pollution. Studies
investigating the relationships between these meteorological
conditions and broader climatic influences have unveiled the
potential for seasonal prediction of surface O3 concentrations14.
Springtime warming in the Western Pacific Ocean, Western Indian
Ocean, and Ross Sea is related to the interannual shifts in the
frequency of simultaneous occurrences of heat waves and O3

pollution in China during summer15. Arctic sea ice has also been
identified as an indirect influence on surface O3 levels in Northern
China through its effect on meteorological patterns across
Eurasia16. Rossby waves, known for triggering anticyclones in
Northern China, create an environment characterized by stable air,
high temperatures, and low humidity, which consequently traps
particulate matter and O3 pollutants near the surface17,18. Utilizing
a global three-dimensional Goddard Earth Observing System
Chemical transport model (GEOS-Chem), researchers have found
that the East Asian summer monsoon plays a significant role in the
interannual variability of summer surface O3 in China19. Moreover,
the El Ni~no=Southern Oscillation (ENSO), a paramount inter-annual
climate phenomenon, has been linked to variations of the total
ozone column amounts by affecting tropopause height20–22.
Global climate change has also been implicated in the rising
trends of surface O3 concentrations in China16,23.
However, extant literature primarily concentrates on O3

pollution in specific regions of China (e.g. north China) affected
by several teleconnection patterns or the long-term variability of
O3-related meteorological conditions under climate effects. These
studies did not directly address the long-term prediction of O3

pollution across China. It is essential to recognize that predictions
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of O3-related meteorological conditions and O3 pollution itself are
not completely equivalent. Moreover, there are O3 fluctuation
patterns due to the correlation of O3 concentration between
different regions within China24. Consequently, the objectives of
this study encompass the identification of important fluctuation
patterns in surface O3 concentrations across China, and the
examination of their associations with the global SSTA. SSTA has
well-documented impacts on atmospheric circulation and further
subsequent implications for ozone levels25. Furthermore, the long-
lasting memory of SSTA, ranging from months to years, harbors
potential seasonal prediction power26,27.
To identify crucial patterns of O3 fluctuations, eigenanalysis

emerges as a potent and efficient technique for decomposing
multiple fluctuation patterns into a set of independent principal
modes. Common methods include classic principal component
analysis (PCA) and empirical orthogonal function (EOF) analysis,
recognized as efficient tools in climate studies and various
investigations into O3 pollution10,24,28,29. For instance, two
dominant patterns of summer O3 pollution in China have been
discerned with the influence of the West Pacific Oceans30.
Additionally, an advanced Eigen Microstate method, approached
from a statistical physics standpoint31–33, has been employed.
Thus, here we focus on predicting the time series of the first
dominant pattern, effectively addressing the intricate nature of
ozone pollution across various regions in China, including the
north and south. This involves extracting the system’s eigen or
principal modes and examining their temporal evolution.

RESULTS
Spatial and temporal characteristics of the surface O3 pattern
in China
We first perform data preprocessing to derive the detrended
surface O3 and SSTA. In order to investigate the spatiotemporal
characteristics of O3 patterns over China, we employ eigen
analysis on the detrended O3 field for the summer and winter of
the training period (June 2013 to February 2018); and obtain
eigenvectors and principal modes for both seasons (refer to
Methods). We find that the 1st eigenvalues account for 22.8% and
36.8% of the total variance in summer and winter, respectively.
The spatial distributions of the corresponding eigenvector u1 are
predominantly positive across China in both seasons, with notable
differences in regional concentration (see Fig. 1a and b). During
the summer season, the most significant positive components,
indicating elevated O3 concentrations, are observed in the
northern regions of China, specifically in Hebei and Shanxi, as
illustrated in Supplementary Fig. 1a. This pattern is attributable to
heightened precursor emissions34 and the meteorological phe-
nomenon of a high-pressure anomaly in north China. Conse-
quently, this anomaly induces both high-temperature and low-
humidity anomalies, fostering enhanced photochemical reactions,
all of which contribute to O3 production30.
Conversely, during the winter season, Southern China emerges

as the region with the highest O3 concentration, as depicted in
Supplementary Fig. 1b. This phenomenon can be attributed to the
long-range transport of O3 and O3 precursors within the polluted
air masses originating from the northern regions, alongside
photochemical formation under dry and sunny weather condi-
tions7,35. Additionally, the first principal component (PC1), which
corresponds to the temporal evolution of the primary mode, is
computed from Eq. (1) of Methods, and is illustrated in Fig. 1c and
d. Notably, it displays trends that are akin to the average O3

concentrations over China during the same period (see Supple-
mentary Fig. 1c, d). In fact, PC1 captures the predominant
fluctuation region for O3 pollution in China, distinct from
representing ozone fluctuations across all locations throughout
the country.

The 2nd eigenvalues explain 11.3% and 11.7% of the total
variance in summer and winter, respectively. The spatial distribu-
tions of the 2nd eigenvectors (Supplementary Fig. 2a and b) reveal
a distinct boundary between northern and southern clusters,
reflecting the influence of diverse weather systems on surface O3

fluctuations. For example, Northern China is susceptible to Rossby
waves, which can trigger heat or cold waves originating from
Siberia17,18, whereas Southern China is influenced by tropical
circulations36.

Global SSTA linked to the surface O3 pattern in China
To elucidate the relationship between dominant surface O3

patterns and global climate, we construct a network based on
Methods. The cross-correlation between PC1 and the global SSTA
time series is computed based on Eq. (2) (refer to Methods). To
conduct significance tests, we generate synthetic correlation using
two different null models: the White Noise Null Model (WNNM)
and the Monthly Autocorrelation-preserving Null Model (MANM).
In WNNM, the daily SSTA time series and PC1 is completely
shuffled, resulting in a typical white noise time series. On the other
hand, MANM preserves the order within a one-month time
window, corresponding to the typical timescale of SSTA memory,
and then shuffles the order of different time windows. This MANM
test maintains the autocorrelation within a month but eliminates
the true correlation between the two-time series. Supplementary
Table 1 shows the reliability of the MANM test effectively
identifying spurious correlations in comparison to the conven-
tional T-test10,27,37.
Figure 1e, f shows the Probability Density Functions (PDFs) of

the absolute correlation jCC�
v1;si j for the observed data (depicted in

red), in contrast to WNNM (in green) and MANM (in blue). It is
evident that the correlations for MANM are considerably larger
than those of WNNM, which can be attributed to the influence of
autocorrelation. However, the peaks of the PDFs are distinct
between the observed and the null models for both summer and
winter, as depicted in Fig. 1e and f. The observed data exhibits
significantly larger correlations. To eliminate spurious correlations,
we employ the 97.5% significance level of the MANM test as the
threshold Δ (refer to Fig. 1e and f). Correlations below this
threshold do not establish a link between PC1 and SSTA nodes.
Figure 2a and b illustrate the spatial distributions of significant

correlations CC�
v1;si exceeding the threshold across global SSTA for

summer and winter, respectively. The regions with positive and
negative correlations between PC1 and SSTA nodes are repre-
sented in red and blue, respectively. Certain regions exhibit robust
correlations in both seasons (above 0.5 or below− 0.5). The
associated delay times are derived as outlined in the Methods
section and are depicted in Fig. 2c and d. Notably, some SSTA
regions have delay times exceeding 90 days, suggesting long-term
memory behavior between these SSTA regions and surface O3 in
China, and the potential for predicting ozone levels more than one
season in advance. To pinpoint critical SSTA regions, we identify
the critical SSTA nodes where jCC�

v1;si j>Δ and τ* > 90. We select the
four largest clusters formed by spatially contiguous critical SSTA
nodes, as shown in Fig. 2e and f. These clusters are teleconnected
to surface O3 in China over distances exceeding 3000 km, with the
exception of cluster CS3 in Fig. 2e, which is proximate to Eastern
China.
Variations in SSTA, exhibiting inertial memory over months to

years, can induce anomalies in large-scale atmospheric circula-
tion38,39. These atmospheric circulation changes, in turn, could
have repercussions on air pollution and surface O3 levels in
China40,41. To delve into the underlying physical mechanisms
associated with the identified SSTA clusters, we present the
most relevant atmospheric circulation indexes corresponding to
the identified SSTA clusters in Fig. 2e and f. Specifically, the
summer clusters CS1, CS2, CS3, and CS4 are linked to the Walker
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circulation (Ni~no 1+2)42, the North Pacific High (NPH)43, the West
Pacific Subtropical High (WPSH)44, and the Pacific-North Amer-
ican teleconnection pattern (PNA)45, respectively (see Fig. 3a).
The significant correlation coefficients above 0.5 between the
atmospheric circulation indexes and the corresponding SSTA
clusters are shown in Table 1. Furthermore, these atmospheric
circulation indexes exhibit significant correlations with PC1 of
surface O3 pollution over months, as well as with the SSTA
clusters (see Table 1).
Supplementary Figure 3 illustrates the time-delayed average

atmospheric field anomalies following strong or weak atmo-
spheric circulations. In Supplementary Figure 3a, the weak
Walker circulation induces a high-pressure anomaly over the
Western Pacific Ocean and Eastern Asia. Similarly, the weak NPH,
the strong WPSH, and the strong PNA also lead to high-pressure
anomalies in north China (see Supplementary Fig. 3c, e, g)
associated with lower humidity, elevated temperatures, reduced

cloud cover, and intensified solar radiation. These conditions
create favorable environments for photochemical reactions that
generate surface O3

16,20–23,46,47. Conversely, the opposite atmo-
spheric field anomalies are associated with low-pressure
anomalies and low levels of surface O3 pollution in Supplemen-
tary Fig. 3b, d, f, h.
In winter, clusters CW1, CW2, CW3, and CW4 are associated with

the Southern Oscillation Indices (SOI)48, the North Atlantic
Oscillation (NAO)49, the Amundsen Sea Low (ASL)50, and the
Madden-Julian Oscillation (MJO)51, as depicted in Fig. 3b. The
correlation coefficients between them are presented in Table 1.
During winter, Southern China emerges as a dominant contributor
to surface O3 pollution, indicating mechanisms distinct from those
in summer. SOI is negatively correlated with cluster CS1 and PC1
(see Table 1). Following the negative phase of SOI, East Asia
experiences a strong north-to-south wind anomaly transporting
O3 pollution and O3 precursors from northern regions (see

Fig. 1 Spatial and temporal characteristics of the surface O3 pattern in China and significance tests. Spatial distribution of the 1st
eigenvector of the O3 principal mode in a summertime and b wintertime, respectively. Time series of PC1 in c summertime and d wintertime,
respectively. PDFs of the absolute correlations jCC�

v1 ;si j between PC1 and SSTA nodes for real data (red area) and the synthetic data for WNNM
(green) and MANM (blue) for e summertime and f wintertime, respectively. Black dashed line represents 97.5th percentile of the synthetic
correlations of MANM.
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Supplementary Fig. 4a). During the negative phase of NAO, ASL
and MJO exhibit atmospheric fields with a similar wind pattern
facilitating the transport of O3 pollution (Supplementary Fig. 4c, e,
g). Conversely, for the opposite phases, the atmospheric fields are
depicted in Supplementary Fig. 4b, d, f, h. It is noteworthy that
these atmospheric circulation indexes are interdependent; for
instance, ASL can influence MJO and SOI, subsequently affecting
O3 pollution in China52–55.

Seasonal prediction of the surface O3 pattern in China
To assess the predictive power of these SSTA clusters for surface
ozone in China, we employ a multiple linear regression model. The
model, based on a combination of these clusters, predicts the time
series of the first principal component (PC1) with a fifteen-day
moving average for summertime and wintertime surface O3 in
China beyond 90 days. Using a training dataset from June 2013 to
February 2018, the model is obtained by Eq. (4) (see Methods). The

Fig. 3 Atmospheric circulations related to SSTA clusters. Sketch maps of four atmospheric circulations corresponding to four SSTA clusters,
influencing PC1 of surface O3 pollution in China during (a) summer and b winter.

Fig. 2 Global SSTA linked to the surface O3 pattern in China. Distributions of significant correlation coefficients over global SSTA nodes
linked to PC1 of surface O3 in China for the (a) summertime and b wintertime, respectively. Distributions of the corresponding delay times to
the correlation coefficients for the (c) summertime and d wintertime. Four clusters of SSTA connected to the surface O3 with the largest areas
and long-term delay times more than 90 days for the (e) summertime and f wintertime, respectively.
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R-value R0 between predicted and observed data are 0.89 and 0.81
for summer and winter, respectively (Fig. 4a, b). For the testing
dataset from June 2018 to February 2023, the R-value R1 is lower
than those of the training dataset but remains around 0.5 for both
seasons (Fig. 4a, b). To evaluate the significance of the model’s
predictive performance, we conduct the MANM test by shuffling
the time series of SSTA nodes within each cluster. The significance
level of R1 for the prediction model exceeds the 97.5th percentile
compared to the null model (Fig. 4c, d). Supplementary Fig. 5
presents the absolute correlation coefficients between each SSTA
cluster and PC1 for each year within the testing periods, which
reveal variations in predictive power across different years and for
different SSTA clusters.

DISCUSSION
In this study, we explored the realm of long-term surface ozone
(O3) pollution prediction in China. Initially, we employed eigen
techniques to extract dominant principal modes characterizing
China’s summer and winter O3 pollution patterns. Notably, the
spatial distribution corresponding to the first mode exhibits
consistent patterns, with critical regions suffering high levels of O3

pollution dominating this mode, a distinction apparent between
summer and winter. Conversely, the spatial distribution associated
with the second eigenvalue reveals a distinct boundary between
northern and southern clusters, driven by differing meteorological
conditions in Northern and Southern China.
Furthermore, we calculated cross-correlations with time delays

between PC1 and the SSTA time series. This analysis highlights
four crucial SSTA clusters that significantly influence PC1 of O3

pollution. Our findings reveal that summer O3 pollution is linked to
the Walker circulation, the North Pacific High, the West Pacific
Subtropical High, and the Pacific-North American teleconnection
pattern corresponding to the four SSTA clusters. These atmo-
spheric circulations with anomalies can create favorable environ-
ments for photochemical reactions that generate surface O3

pollution. Winter O3 pollution is associated with the Southern
Oscillation, the North Atlantic Oscillation, the Amundsen Sea Low,
and the Madden-Julian Oscillation.
To enhance predictive capabilities, we proposed a statistical

model to forecast the first principal component of O3 pollution in
China for both summer and winter seasons. This model is based
on PC1 and its association with the states of the identified SSTA
clusters, with a lead time of at least 3 months. With the training
dataset, our model demonstrated high prediction accuracy,
achieving R-values of 0.89 and 0.81 for summer and winter,
respectively. In the testing dataset, the R-values remains close to
0.5 for both seasons. The performance of our prediction model
indicates its proficiency in capturing general trends in the time
series, despite its limitations in predicting short-term fluctuations.
The findings from our study can assist communities in

anticipating climate conditions affecting ozone pollution one

season in advance, allowing for the implementation of emission
control measures to minimize the adverse impacts of deteriorating
air quality due to unfavorable climate conditions.

METHODS
Data
The study utilizes the maximum daily 8 h average (MDA8)
surface O3 concentration dataset (version 2) over China from
June 2013 to February 2023. The dataset, with a grid resolution
of 0. 1∘ × 0. 1∘, is sourced from the Tracking Air Pollution in China
(TAP). This dataset merges ground measurements, satellite
retrievals, chemical transport model, land-use information with
machine learning models and meteorology fields, ensuring its
reliability56,57. For each grid j, a time series {xj(t)} of O3

concentration is available. This study focuses on summertime
(June-July-August) and wintertime (December-January-Febru-
ary). The global daily average Sea Surface Temperature (SST)
data from the ERA5 Reanalysis58, with a resolution of
0.25∘ × 0.25∘ from 1991 to 2023.

Data detrending
The O3 concentration dataset is divided into two periods: (1) June
2013 to February 2018, serving as the training period for model
fitting; (2) June 2018 to February 2023, serving as the testing
period to assess the model’s reliability. The mean seasonal cycle
(calculated based on the training period) for each calendar day is
subtracted from the O3 data for both periods. For SST, the data
from 1991 to 2023 is divided into three parts (1991–2000,
2001–2010 and 2011–2023) to obtain the SSTA. The first two parts
are based on the entire decade data to remove the seasonal cycle,
while the last part is based on the data of the first 7 years
(excluding the year corresponding to the test set).

Principal modes of O3 fluctuation
The detrended O3 field over China, comprising N grids and a time
length of M, can be represented as a matrix
Y ¼ ðy1; y2; ¼ ; yt; ¼ ; yMÞT , where yt= (yt1, yt2,…, ytN) represents
the state of system at time t28. The covariance matrix C= YTY/M is
constructed, and its eigenvalues λ1 ≥ λ2⋯ ≥λN ≥ 0 and eigenvec-
tors u1, u2,…, uN are obtained by solving the eigen equation
Cu= λu. All eigenvectors are normalized and orthogonal to each
other. The projection of the fluctuation field Y onto the n-th
eigenvector Y onto the n-th eigenvector un ¼ ðun1; un2; ¼ ; unNÞT
results in the n-th principal component:

vn ¼ Yun; (1)

whose elements vtn, t= 1, 2,…,M (it also can denote as a time
series {vn(t)}). The contributions of principal components to the
system’s evolution are sorted in decreasing order, with the first
principal component being the most crucial.

Table 1. Relationships between the atmospheric circulation indexes and the corresponding SSTA clusters and PC1 of surface O3 pollution in months.

Atmospheric Circulation Index Ni~no 1+2 NPH WPSH PNA

Corresponding SSTA cluster CS1 CS2 CS3 CS4

Summer Lagged correlation between the circulation index and PC1 0.74 ± 0.18 −0.65 ± 0.21 0.79 ± 0.16 0.71 ± 0.19

Lagged correlation between the circulation index and SSTA 0.72 ± 0.18 −0.59 ± 0.22 0.79 ± 0.16 0.75 ± 0.18

Atmospheric Circulation Index SOI NAO ASL MJO

Corresponding SSTA cluster CW1 CW2 CW3 CW4

Winter Lagged correlation between the circulation index and PC1 −0.63 ± 0.21 −0.42 ± 0.25 −0.53 ± 0.23 −0.58 ± 0.22

Lagged correlation between the circulation index and SSTA −0.66 ± 0.2 −0.46 ± 0.24 −0.64 ± 0.21 −0.54 ± 0.23
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Network constructing
In our network, the nodes are defined as the principal
components of O3 fluctuation (with a primary focus on the first
mode) and SSTA grids59. The links, on the other hand, represent
the connections between them. For a given SSTA grid i, the SSTA
time series is denoted as {si(t)}. To quantify the relations between
the PC1 of O3 fluctuation v1 and the SSTA time series, we calculate
the cross-correlation function60–63:

CCv1;si ðτÞ ¼
ðv1ðtÞ � v1Þ � ðsiðt � τÞ � siÞh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v1ðtÞ � v1½ �2
D Er

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
siðt � τÞ � siÞ½ �2

D Er ;
(2)

where v1 and si represent the averages over the periods; 0≤τ≤365
is the delay time. When considering either summertime or
wintertime, the variable t spans intermittent periods of summer
and winter across various years. Specifically, for summertime, the
range is 365(yy− 1)+ 152 ≤ t ≤ 365(yy− 1)+ 243, for wintertime,
it is 365(yy− 1)+ 335 ≤ t ≤ 365yy+ 59, where yy represents each

respective year index from the initial value 1. We determine the
maximum absolute value of the cross-correlation as CC�

v1;si , and
record the corresponding delay time as τ*. When τ* > 90, the SSTA
grid can provide the potential prediction power more than one
season in advance. Thus, a network link is defined when jCC�

v1;si j>Δ
and τ* > 90; otherwise, there is no link between v1 and si. Δ is the
threshold to select the significant correlation, which we set as the
97.5% significant level of the MANM test (see Fig. 1e and f).

Multiple linear regression model
In this study, we construct a multivariate linear model by
combining correlated clusters identified in previous steps. For
SSTA cluster Cj, the time series of the weighted averages of SSTA is
denoted as:

WSjðtÞ ¼
P

i2Cj
siðtÞ � jCC�

v1;si jP
i2Cj

jCC�
v1;si j

: (3)

Fig. 4 Seasonal prediction of the surface O3 pattern in China. Prediction of time series of PC1 (with the fifteen-days moving average) for the
surface O3 in China based on the multiple linear regression modeling for a summertime and b wintertime, respectively. The blue shadow area
shows the prediction for the testing dataset. Black dotted line represents the real PC1 time series with the 15-day moving average.
Significance test of R-value for the prediction of the testing dataset for c summertime and d wintertime, respectively. The red area is above the
97.5th percentile.
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The multiple linear regression model is then constructed as
follows:

v01ðtÞ ¼
XNc

j¼1

aj �WSjðt � τ�j Þ þ b; (4)

where v01ðtÞ represents the predicted PC1, Nc is the number of
selected clusters, and τ�j is the delay time exceeding 90 days
between PC1 and WSj, identified based on Eq. (2) for the training
set. The parameters aj (j= 1,…, Nc) and b are fitted using five-year
time window data and remain fixed for predicting PC1 in the
following year. As the prediction extends to subsequent years, the
parameters are updated based on the past five years.

DATA AVAILABILITY
The meteorological data are obtained from the European Centre for Medium-Range
Weather Forecasts (ECMWF), accessible at https://cds.climate.copernicus.eu/#!/home.
The China Surface O3 Concentration Dataset (Version 2) can be retrieved from http://
tapdata.org.cn/?page_id=129. Derived data supporting the results of this research
are available from the corresponding author upon reasonable request.

CODE AVAILABILITY
The source codes for the analysis of this study are available from the corresponding
author upon reasonable request.
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