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Global land drought hubs confounded by teleconnection
hotspots in equatorial oceans
Tejasvi Chauhan 1, Vikram Chandel 2 and Subimal Ghosh 1,2✉

Emerging data-driven techniques, such as Complex Networks (CNs), can identify spatial linkages between droughts on a global
scale and can improve early warning systems. Recent studies used CNs to identify hotspots of global drought teleconnections as
land drought hubs; however, these studies excluded the ocean regions in CN, an oversight that can upend the insights gained thus
far. Here, using a comprehensive global CN analysis on drought onsets, we show that oceanic regions harbor significantly larger
drought hubs than land regions. The Indo-Pacific Warm pool (IPWP) in the Maritime continent emerges as the most significant
drought hub having the farthest teleconnections. We show that IPWP, together with a few sub-tropical land and ocean regions,
exhibit a ‘rich club phenomenon’ in CN. Further, using a causal network learning algorithm, we demonstrate the confounding role
of oceans in modulating drought onsets on land regions. Our study reveals insights on the spatiotemporal linkages of global
drought onsets and highlights the role of oceans in driving global drought teleconnections and modulation of land drought hubs.
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INTRODUCTION
With their large spatiotemporal scales and high intensities,
droughts leave an indelible mark on the global socioeconomy
and are thus regarded as one of the most devastating natural
disasters1. Persistent droughts have profound impacts on water
availability2,3, plant health4,5, wildfires6, and human well-being7–9,
the repercussions from which can cascade into critical areas such
as water resources management10, agricultural and food secur-
ity11–14, ecosystem services15–17, and the global economy18–20. The
sixth Assessment Report (AR6) by the Intergovernmental Panel on
Climate Change (IPCC) projects an increase in the intensity and
frequency of droughts across the globe, fuelled by global
warming, potentially reducing agricultural yields by up to 20%
per decade14,21,22. Human-induced climate change has intensified
agricultural and ecological droughts across the globe, which
threatens a global food crisis19,23. Globally, around 55 million
people are impacted by droughts every year24, and in the past
century, droughts were responsible for the deaths of around 10
million people and have left multiple economies in dire straits25.
According to United Nations, around 129 countries are projected
to have increased exposure to droughts within the next few
decades25.
While spatial variability of droughts is projected to increase26,

our knowledge about the dynamics of droughts, their prediction,
and their propagation in a warming world is limited27–29. Droughts
are complex phenomena driven by both local processes and
large-scale circulation of the atmosphere; hence, onsets, intensity,
spatial extent of large-scale droughts have significant distant
teleconnections and local dependence. Once set up, a large-scale
drought inhibits precipitation due to land-atmosphere feed-
back30,31 and thus can persist for longer durations. This internal
feedback is not completely known in earth systems, and
increasing anthropogenic perturbations make predicting drought
onsets, durations, and intensities challenging.
Complex network (CN) analysis has gained prominence in many

domains, including earth science32–38 as it can help delineate

internal feedback and external teleconnections from the observed
earth science data. Due to its ability to capture the spatial
embedding of physical processes that current models do not
completely resolve, many attempts have been made to under-
stand the climate extremes (droughts and precipitation extremes)
using network-based approaches39–46. For example, Mondal et al.
202342 delineated CN between onsets of droughts on land to
identify regions across the globe with very high connectivity
called ‘drought hubs’. These regions were argued to be directly
linked to multiple droughts across the globe as hotspots of global
drought teleconnections through their links observed in spatially
embedded CN. However, they have overlooked the influence of
external confounders in the CN framework, a known cause of
spurious links in network analysis47–53. It is widely recognized that
network delineation approaches can produce misleading links
when variables have common drivers52,53. In this study, we
contend that the exclusion of oceanic sources in CN analysis on
drought onsets can give rise to critical oversights.
Droughts in the ocean regions may exhibit a higher degree of

connectivity compared to land regions and hence, may hold
higher predictive information for droughts across the globe. It is
also intuitive because ocean regions are responsible for rainfall in
many land regions simultaneously. For example, the Pacific Ocean
is a source of moisture for parts of Australia, East Asia, North and
South America54–57. Similarly, the Indian ocean is also responsible
for rainfall in parts of South Asia, Australia, and East Africa56,58,59.
The presence of ocean regions in a CN can thus modify the
existence and characteristics of these teleconnection hotspots
which can also alter the identification of “drought hubs” and “Rich
Club Phenomenon”42. In addition, previous studies have failed to
acknowledge inflation in network estimates caused by the
projection system. Many projection systems have increasing grids
per unit physical area as we move to higher latitudes. This leads to
a significantly higher number of nodes near poles, which
consequently generates misleading estimates of node importance
measures. By incorporating ocean nodes into our global CN
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analysis and accounting for the inflation caused by the projection
systems, we can better capture the characteristics of teleconnec-
tions between drought onsets across the globe.
In this study, by including droughts in ocean regions as nodes in

CN, we address these caveats and generate insights, which can
better our understanding of drought teleconnections across the
globe. We conducted a comprehensive global CN analysis on
drought onsets that incorporates nodes on the ocean surface in
addition to land. We use the Standardized Precipitation Index
(SPI), Standardized Precipitation-Evapotranspiration Index (SPEI),
and the self-calibrating Palmer Drought Severity Index (sc-PDSI) to
classify droughts. We employ the event synchronization technique
and a causal network learning algorithm – PCMCI (see methods) –
to demonstrate that oceans have a significantly higher number of
connections across the globe than land regions; hence, oceans
have bigger ‘drought hubs’ than on land.

RESULTS AND DISCUSSIONS
Figure 1a shows the degree centrality (DC) of each grid from a
complex network (CN) generated using event synchronization (ES)
technique (Eqs. 1–5) on onsets of droughts on land grids. Here, DC
represents the degree of connectivity of any grid in CN measuring
the number of grids on which the onset of a 12-month cumulative
drought (Supplementary Fig. 1 and Eq. 7), measured by SPI-12
from ERA-5 data (hereafter called SPI), can occur within a lag (or
lead) of up to 6 months. Hence, drought onsets between any two
grids can be synchronized in either direction (up to 6 months, see
methods for details), leading to an undirected link between each
grid pair. While computing DC, we consider only those links of the
network on which ES was found statistically significant at 95%
confidence. Hence, computed DC gives a robust estimate of the
degree of connectivity of each grid. Drought onsets in a few land
regions – namely Sahel, South Africa, the Middle East, western

North America, South America, and northern Australia – have a
very high DC (Fig. 1, a). A higher DC of a region indicates that the
drought onsets in the region are synchronized with many drought
onsets across the globe. Using various CN metrics on the
synchronized grids across the globe, these regions are declared
as ‘drought hubs’ in the literature42 which are argued to be
hotspots of global teleconnections of droughts.
The DC estimated in this study has been corrected against error

caused by the projection system (Eq. 6), a vital correction that is
missing in many previous studies using CN on spatial data-
sets39–42,45. Polar regions have significantly more nodes per unit
area than the equator. Hence, we get an increasing number of
links for the same physical area as we move from the equator to
the poles, which can lead to an overestimation of network
measures and misleading inferences, as shown in Supplementary
Fig. 2. The Supplementary Fig. 2a shows DC generated using
sc-PDSI on land-only grids as done in the literature42, while
Supplementary Fig. 2b shows the same plot after correcting for
the projection system. It can be clearly seen that applying
correction (methods) reduces the estimated degree of higher
latitudes. The amount of overestimation of the degree will be
directly proportional to the resolution of the data. A higher
resolution data will have a higher number of nodes to penalize as
we move away from the equator (Eq. 6). Hence, we used the
corrected plots of DC for further analysis.
We have also generated Fig. 1a using SPI and sc-PDSI indices

from the CRU dataset (methods), and DC from these datasets is
shown in Supplementary Fig. 2b, c. We observe a general
agreement of hotspot regions of high DC using multiple datasets
and drought metrics, though they differ slightly in the estimates of
DC of these regions which could be because of different processes
captured by the index. PDSI depends on land-atmospheric
interactions and involves a greater role of soil moisture and
evapotranspiration, which also depend on a region’s land-use and

Fig. 1 Degree of connectivity of drought onsets after including ocean regions in CN. Logarithm (log10) of Degree centrality (DC) of grids
from complex networks (CN) generated using drought onsets on land (a) and both land and ocean (b). Links in CN were tested for statistical
significance (methods), and the Figure shows DC for only statistically significant links at 95% confidence.
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land cover types. On the other hand, drought onsets from SPI are
based on only precipitation with no consideration of soil moisture
or land atmospheric interactions. PDSI is known to correlate well
with SPI and SPEI at time scales higher than around 18 months60

which is higher than the timescale considered in this study. Given
the difference in what these indices represent, SPI at time scales
shorter than 18 months may show droughts when sc-PDSI doesn’t.
Hence, slight differences between drought onsets from SPI and
PDSI and their synchronization are expected. Regardless, the
results from all the datasets point towards similar highly
connected drought regions over land and are also similar to that
reported in the previous studies42.
To verify the efficacy of ERA-5 for this study, we compare it with

monthly precipitation data from Global Precipitation Climatology
Project (GPCP)61 from 1979-2022 (Supplementary Fig. 3). GPCP
provides combined estimates of precipitation using observations
from ground stations and satellite products and hence can be
used to validate the ERA5 data. Supplementary Fig. 3 shows
statistically significant correlation (at 95% confidence) between
monthly precipitation from ERA5 and GPCP. The ERA5 has a
positive correlation over both ocean and land regions, however,
the correlation of ERA5 with land regions is higher than the ocean
regions. Within ocean regions, the highest correlation of up to 0.9
exists in the equatorial oceans. Similar results have also been
reported using other datasets in the literature62. As an additional
check on the applicability of the ERA5 dataset, we have also
generated Event Synchronization networks using SPI from GPCP
and results are presented in Supplementary Fig. 4. We find that
while the degree centrality (DC, Supplementary Fig. 4) is system-
atically overestimated in the ERA-5 dataset (Fig. 1b) across the
globe, it well captures the spatial embedding of the global
network as well as the relative node importance and drought
hubs. The correlation and consistency of network metric (DC)
between ERA5 and GPCP demonstrate the validity of ERA5 in
this study.

Drought hubs in ocean
Concurrent regional droughts on land are known to be driven by
ocean-atmosphere interaction63. While the precipitation deficits
responsible for the onsets of meteorological droughts are brought
upon by large scale ocean-atmosphere interactions, land-droughts
like hydrological droughts, are complex, and their duration and
intensity are also modulated by land-atmosphere interactions64.
Temperature also plays a major role in driving the land
precipitation and vapor pressure deficit – important factors
controlling the land-atmospheric feedback. Ocean-atmospheric
interactions, for example, ENSO plays a major role in temperature
variability in many regions around the globe57. This leads to a
hypothesis that the onsets of droughts on the ocean might be
synchronized with drought onsets on land regions. Considering
ocean regions along with land regions in a CN framework of
drought onsets may lead to a bigger hubs outside land regions
(Fig. 1a). To test this, we generate the CN by including drought
onsets over the oceans, and the updated DC is shown in Fig. 1b
using SPI and Supplementary Fig. 5 using SPEI. Networks from
both datasets show similar results. The oceanic regions in the
tropics have DC around two to three times the DC of land regions
(Fig. 1b, maximum DC of land regions on log scale is around 2.5
while that in the ocean it is around 3). The wider spatial spread of
oceanic hubs is also apparent from Fig. 1, which might also be
because of high interconnectedness of these regions. Physically,
this happens because ocean regions have ability to simultaneously
modulate droughts on multiple land regions at varying time scales
(El Niño Southern Oscillation, Atlantic Niño, Indian Ocean dipole),
which translates into synchronization of their drought onsets. The
land hotspots in Fig. 1a have also gained more connectivity in
Fig. 1b, which is expected because total number of nodes in the

network have increased from ‘land only’ to ‘land+ocean’ case.
While the regions with high connectivity remain apparent on land,
the DC on the ocean regions– primarily the Indo-Pacific warm pool
(IPWP) in the Maritime continent, the central Pacific, and the
Atlantic Ocean – is manifold higher than the DC of land regions.
Hence, the oceans can also be hotspots of drought teleconnec-
tions or regions that drive global land droughts simultaneously.
These regions of high connectivity in the ocean might contain
more predictive information for droughts on land than the land
drought hubs from Fig. 1a.
From Fig. 1, we can see that the inclusion of the ocean region

reveals teleconnection hotpots in equatorial oceans. The between-
ness centrality (BC, Eq. 8) generated using networks from SPI and
SPEI, which indicates the importance of a node as an intermediary
between any two nodes in the network, is shown in Supplemen-
tary Fig. 6. Both datasets show a consistency in the spatial pattern
of BC. We observe the highest BC in the Pacific Ocean and the
IPWP followed by the Atlantic Ocean, Western Indian Ocean, and
some parts of the Middle East and South Africa. It should be noted
here that we haven’t corrected BC for the errors due to the
projection system, and this correction is out of the scope of the
current study. The regions in the equatorial ocean regions with
high DC and BC than land regions indicate the presence of
manifold bigger drought hubs in the ocean than on land. This
result is also intuitively related to the dependence of all major
droughts on ocean-atmosphere dynamics43.
To investigate further, we plot the spatial extent of synchroniza-

tion of drought onsets in the two most major ocean hubs
observed in Fig. 1(b) – the IPWP and the Pacific Ocean. The results
are shown in Supplementary Fig. 7a and b, respectively. We
observe that the droughts in IPWP (approximate spatial extent
considered marked in Supplementary Fig. 7a) have synchroniza-
tion with South Asia, South Africa, South America, and Australia,
whereas the Pacific Ocean is connected to the Middle East, East
Africa and Western North America in addition to various oceanic
regions. El-Niño Southern Oscillation (ENSO) in the Pacific Ocean,
which changes the precipitation pattern over the IPWP, is known
to alter global precipitation patterns by atmospheric and oceanic
teleconnections65,66. Hence, the connections between land
regions might be an impression of lagged associations of land
regions to a common driver in the ocean.
To test this, we show the connections of drought onsets on land

regions using CNs with and without considering ocean regions in
Supplementary Figure 8. Supplementary Fig. 8a-d shows connec-
tions of land drought hubs without considering ocean regions,
and Supplementary Fig. 8e-h shows the connections of the same
regions after considering ocean grids as nodes in CN analysis.
Drought onsets in western North America and the Middle East are
connected to each other in land-only analysis (Supplementary Fig.
8a and b); however when oceans are included (Supplementary Fig.
8e and f), we observe that both are synchronized with the central
Pacific Ocean. This pattern is due to the dependence of droughts
in the Middle East and West North America on ENSO67,68.
Droughts in Middle east and North America are modulated by
ENSO through the zonal shifts of subtropical jet stream and
Rossby waves. There exists stronger convergence (divergence)
during warm (cold) phases of ENSO along with moisture transport
from Arabian sea towards the Middle East69,70. At the same time,
ENSO modulates the strength and location of polar and sub-
tropical Jet streams through Rossby wave breaking and controls
the moisture transport to the parts of North America71. Similarly,
drought onsets over South Africa and Australia are linked to each
other and are also connected to the IPWP (Supplementary Fig. 8c
and g), as both are driven by ENSO72,73. Sahel region (Supple-
mentary Fig. 8d) shows some connections with drought onsets in
south Asia and shows very limited synchronization with the IPWP
region. These results prove that the existence and role of global
land drought hubs are overestimated in literature due to the CN
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model artifact of not considering oceanic regions. The global
drought hubs that drive global drought onsets and, potentially,
modulate the land drought hubs are in ocean regions instead of
land regions.

Revisiting the rich club phenomenon of drought hubs
To quantify the spatial extent of teleconnections of droughts hubs
found in the ocean, we compute the mean synchronization
distance (MSD, Eq. 9) of each node in CN. For every node, MSD
measures the average spatial distance of all nodes which are
connected to it. If the connectivity of a node or its spatial scale of
synchronization is assumed to be its wealth in a network, the
existence of a small fraction of nodes with a large degree of
connectivity or MSD is analogous to a ‘rich club’ and has been
argued to be a prominent topological characteristic of networks42.
Figure 2 and Supplementary Figure 5 show MSD computed using
links that were found statistically significant at 90% and 95%
confidence, respectively. Since nearby grids are expected to be
highly connected, we generate MSD considering links with
distances more than 1000 km (Fig. 2a, Supplementary Fig. 5a)
and 10,000 km (Fig. 2b, Supplementary Fig 5b).
We find that with a threshold of 1000 km (Fig. 2a, Supplemen-

tary Fig. 5a), extratropical regions (30N-60N and 30S-60S) have
higher MSD than the equatorial regions with an exception in the
equatorial Indian Ocean, northern South America and the Atlantic
Ocean, which also have high MSDs. Among land regions, the

Middle East, northern South America, South Africa, western North
America, and Australia are the regions with the farthest
connectivity. IPWP and the central Pacific Ocean have low MSD
values, reflecting a high number of local connections. All the grids
in the Pacific Ocean interact with each other increasing the
number of links at around a distance of 1000-5000 km, leading to
a reduction in the mean value.
The Zonal Mean of MSD, shown on the right panel of Fig. 2a,

decreases from the north to the south, with a dip at the equator,
when oceanic regions are considered. On the contrary, Mondal
et al.42 from their analysis, excluding the oceanic regions, reported
an increasing MSD of land regions from the northern to the
southern hemisphere, concluding that drought hubs in the
southern hemisphere constitute a ‘rich club’ in the CN. We
performed the CN analysis with land-only grids without any
threshold of distance to reproduce the results of Mondal et al.42 in
Supplementary Fig. 6a. The right panel (Supplementary Fig. 6a)
shows the latitude variation of average MSD (blue) and
percentage land area (red). It is clearly visible that the variation
in MSD with latitude is opposite to the variation in the percentage
of land with latitude. The southern hemisphere has fewer land
areas, which are far from each other. Many of these land regions
can also be connected to a common oceanic source, leading to
overestimating MSD in the southern hemisphere. After consider-
ing the ocean regions in CN, the steep north-to-south increase in
the average MSD of land regions vanishes, and we observe a slight

Fig. 2 The mean synchronization distance (MSD) of drought teleconnections. MSD (Eq. 9) of links generated using event synchronization
after removing all links with distances less than 1000 km (a), and 10,000 km (b). The right panels show the variation of mean MSD along the
latitude. MSD is computed only for those links which were found statistically significant at 90% confidence (methods). The Figure shows that
the equatorial regions have the farthest drought teleconnections. The maritime continent is the biggest hub having the farthest
teleconnections followed by the Atlantic Ocean, South America, the western Indian Ocean, and the equatorial region of Africa.
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increase in the MSD of land regions (Supplementary Fig. 6b),
showing only land regions from a CN which includes nodes on
oceans as well) from north to south. Hence, we conclude that the
tagging of the southern hemisphere as a “rich club” in the previous
study42 resulted from a statistical artifact due to the asymmetrical
distribution of land in both hemispheres and the non-inclusion of
oceans in the analysis.
Since MSD in Fig. 2a can be influenced by a high number of

local connections, we increase the threshold to 10,000 km (Fig. 2b
and Supplementary Fig. 6b) to reveal average spatial scales of only
distant teleconnections. We observe a significant increase in the
MSD of the equatorial region, with the IPWP emerging as the
biggest hub with the farthest teleconnections. Apart from the
IPWP, eastern portions of the Atlantic and the Indian oceans also
have high MSD values. High DC with high BC indicates that these
nodes form hotspots in the network which combined with the
high MSD found in Fig. 2b, shows that they have the most distant
teleconnections as well. Hence, the ‘rich club phenomenon’ in the
CN of global drought onsets contains its most significant clusters
in the equatorial region with the IPWP in the Maritime Continent
being the most significant among them, having farthest
teleconnections. Supplementary Fig. 7a and b show the distribu-
tion of MSD from each land drought hub along with regions in the
Atlantic Ocean, maritime continent, and the Pacific Ocean (all
regions shown in Fig. 4f) considering thresholds of 1000 km and
1000 km, respectively. Supplementary Fig. 7 shows that the fat-
tailed nature of MSD becomes prominent after considering a
threshold of 10,000 km, with the region in the Maritime continent
(IPWP) containing the heaviest tail followed by the Pacific Ocean,
Atlantic Ocean, and the Middle East. The fat-tailed distributions of
ocean regions support the hypothesis that ocean regions are the
drivers of most of the drought onsets on land regions.

Drought hubs in the ocean confound drought hubs on land
The above-mentioned results demand further investigation into
the possibility of land drought hubs being simultaneously
modulated by the ocean-atmosphere processes, like ENSO, acting
as a confounder. Figure 3 shows the annual precipitation anomaly
from ERA5 for major drought hubs along with the state of ENSO. El
Niño and La Niña years are marked as red and blue circles at the
end of each bar. The right panel shows the correlation of the
annual rainfall anomaly with the Oceanic Niño Index (ONI). The
Middle East and western North America have a statistically
significant (p < 0.05) positive correlation with ONI and Australia,
and South America has a statistically significant (p < 0.05) negative
correlation with ONI. The Sahel and South Africa have a negative
correlation; however, it is not statistically significant. These results
indicate that the interannual variability in precipitation of many
the drought hubs is significantly driven by ENSO, which can cause
simultaneous or lagged droughts on multiple land regions based
on the ENSO state and their time scales of interaction with ENSO.
A few weak correlations in Fig. 3 could be because ENSO has a
spatio-temporally varying impact on global precipitation. There
are regions where interannual variability of precipitation has only
a weak association with ENSO because either their relationship
with ENSO has changed over many decades or there exists a
strong seasonality in the strength of their teleconnections to the
Pacific Ocean. Western Africa is known to have a strong
association with the Pacific sea surface temperatures (SSTs) during
the early months of the year. However, this relationship vanishes,
and a stronger association with the Atlantic and Indian ocean gets
established in later parts of the year for boreal summer monsoon
and autumn rainfall, respectively74. Results from Janicot et al.
199675 demonstrate that the relationship between ENSO and
Sahel rainfall is not constant and has a multidecadal scale of
emergence. They show that the correlation between ENSO and
Sahel rainfall has changed sign after 1970s which explains weak

correlation over the total time period of past 70 years in Fig. 3. To
clarify the spatially and temporally varying global effect of ENSO
on precipitation, we have plotted the correlation of ONI with
average annual precipitation from GPCP (Supplementary Fig. 12)
spatially showing only statistically significant grids at 95%
confidence level. Weak correlation of ONI with rainfall in Sahel
and South Africa is also visible. Supplementary Fig. 13 shows the
precipitation anomaly across the globe during El Niño and La Niña
years for the summer (June, July, August (JJA)), and winter seasons
(October, November, December (OND)) of the northern hemi-
sphere. During El Niño years, the composite of summer
precipitation (Supplementary Fig. 13a) shows a simultaneous
reduction of precipitation over IPWP, South Asia, East Africa, Some
parts of Australia, and northern South America. Hence, drought
onsets in these regions can potentially be synchronized. During La
Niña years, JJA precipitation (Supplementary Fig. 13c) shows
opposite behavior where the above-mentioned regions receive
surplus rainfall with small deficits in southern South America and
northern North America, which are synchronized mainly with the
reduced precipitation of central Pacific. Similarly, for winter
months, during El Niño years (Supplementary Fig. 13 b), the
reduction in precipitation in IPWP is synchronized with South
Africa, Australia, and South America. During La Niña years, OND
months receive a simultaneous reduction in precipitation in East
Africa, the Middle east, North America, and Southern South
America, which are synchronized with a reduction in precipitation
in the central Pacific. The above results show that ocean sources
are the confounders of drought onsets on land. For example, in
Fig. 1a, links originating from regions South Africa or South
America can be because droughts in these regions are simulta-
neously modulated by teleconnections from the IPWP as shown in
Supplementary Fig. 13b.
ES cannot separate a direct causal association from a

confounding effect. Any two drought regions on land, if
modulated by the same ocean source, will be delineated as
synchronized unless the influence of oceanic confounder is
removed. Hence, to test for the confounding behavior of oceans,
we apply a causal network learning algorithm – PCMCI (methods)
– to delineate causal graphs from the monthly time series of SPI
on land and ocean regions. The results are shown in Fig. 4. Nodes
are various land drought hubs (regions shown in Fig. 4f), and their
links indicate a causal connection between monthly SPI at
different nodes. A link is only shown if found statistically
significant at a 95% confidence level. Link labels, if present,
indicate the lag at which the connection was found on a monthly
scale; else, the absence of link labels means that the link was
found at zero lag. The node color represents autocorrelatoin
whereas link color represents the strenght of directional link. Cross
mark at the ends of links indicate that the directionality of that link
couldn’t be delineatad. Figure 4a contains connections between
land regions when no ocean regions are considered. Figure 4b
adds SPI from the Atlantic Ocean (AO) to the network, Fig. 4c adds
the Maritime Continent (MC) in addition to the AO, which is
followed by Fig. 4d, which adds a region from the central Pacific
Ocean (PO). The incremental addition is done to add more ocean
regions to the conditioning set one by one and observe the
linkages between the land drought hubs, which are kept constant
throughout the experiments.
When no ocean sources are present (Fig. 4a), we observe 5 links

between land variables showing the Middle East (ME) as the most
connected node with an incoming connection from western North
America (WNA) and South America (SAM), and an outgoing link to
Australia (AU) and Sahel (SH). In addition, we also get a link from
AU to South Africa (SAF). As the Atlantic Ocean (AO) is added as a
node to the network the connection between the AO and ME
emerges. The Atlantic ocean sea surface temperatures (SSTs)
modulate the strength of westerly jet stream, controlling the
geopotential height in the upper troposphere over the Eurasia
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ultimately altering moisture transport over the Middle east76. As
the Maritime Continent (MC) and Pacific Ocean (PO) are added to
the Network, links between land and ocean regions emerge. Some
prominent links are the link from MC to AU, PO to WNA and PO to
SAM. MC to AU links is known to exist via atmospheric moisture
transport and varies with ENSO and the Indian Ocean Dipole
(IOD)56. Link from PO to WNA represents the modulation of sub-
tropical and polar jet streams by the PO and the link from PO to
South America (SAM) represents the control of well-known Pacific-

South American (PSA) mode on south American rainfall at Inter-
annual and quasi-biennial time scales71,77. A link between PO and
MC emerges which represents the modulation of rain between
west and central pacific through changes in walker circulation by
ENSO. The most significant result from the causal analysis is the
vanishing of WNA-ME link upon addition of oceanic sources
(Fig. 4a and d). This shows that the link is not a true causal link
(or a process-based teleconnection) but a synchronization which
appears because of a confounding effect of PO on both these
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Fig. 3 Association of annual precipitation from land hubs with ENSO. Precipitation anomalies from ERA5 from various land drought hubs in
Fig. 1a with the ENSO years. El Niño and La Niña years are marked as red and blue circles, respectively. The right panel shows the scatter plot
and correlation between the precipitation anomaly and the ONI index.
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Fig. 4 Oceans confounding land drought hubs. Networks between SPI from different regions (f ) generated using causal discovery algorithm,
PCMCI. a Networks generated using only land drought hubs as nodes. b–d Consecutively add SPI from the Atlantic Ocean (AO), the IPWP in
the Maritime continent (MC), followed by the Pacific Ocean (PC). A link is only shown if found statistically significant at a 95% confidence level.
The node color represents autocorrelatoin whereas link color represents the strenght of directional link. Cross mark at the ends of links
indicate that the directionality of that couldn’t be delineatad. The lag at which the link was found significant is shown as link label, absence of
which indicates that the link was found at zero lag. We observe an increase in the number of links as ocean sources are incrementally added to
the network. The link between ME and WNA vanishes upon addition of MC as a node.
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regions. This result indicates the role of ocean regions as
confounders of global droughts leading to their synchronisations.
In this study, we employ event synchronization (ES) technique

to compute a global complex network (CN) of drought onsets, and
find regions of high degree centrality (DC), betweenness centrality
(BC), and mean synchronisation distance (MSD) in oceans. Our
results show that after including ocean regions in CN analysis, the
high MSD of the southern hemisphere land regions, as reported in
the literature42, vanishes, and the equatorial regions, particularly
the Indo-Pacific Warm Pool (IPWP) in the Maritime Continent, the
Western Indian Ocean, and the Atlantic Ocean with some
equatorial land regions in Africa and South America emerge as
regions with farthest teleconnections. Among all oceanic regions,
the Maritime continent has the farthest teleconnections, and we
contend that it can be considered as the largest hub in global
drought teleconnections. We argue that a CN made using just land
grids constitutes a subset of a larger land-ocean network
(including both land and oceans) exhibiting a rich club
phenomenon with the most significant node clusters, which hold
the capacity to modulate the entire network being in the ocean.
Hence, the emergence of southern hemisphere rich club
phenomenon is a statistical artifact arising due to missing nodes
on ocean regions in a spatially embedded global network of
drought onsets. Next, we use a causal network learning algorithm
to examine the process connectivity of drought teleconnections
showing that ocean regions confound global drought onsets and
cause simultaneous droughts in multiple regions which leads to
their synchronisation.
Our results significantly advance our understanding of global

teleconnections of drought onsets and highlight the role of
oceanic regions as global drought hubs. Since ocean regions can
modulate multiple droughts simultaneously, identification of
drought hubs in the ocean is critical for early warnings of global
droughts. Hence, the utility of drought hubs in the Maritime
Continent, western Indian Ocean, and Atlantic Ocean in improving
the prediction of drought onsets on land regions is the potential
future extension of this study. While quantifying synchronization
of drought onsets, we make no distinction between teleconnected
droughts and a spatially propagating drought. The same drought,
if it spatially propagates from ocean to land will be identified as a
synchronization link between land and ocean grids if its onset on
land occurs within 6 months of its occurrence over the ocean.
Similarly, a teleconnection of drought onset between ocean and
land (for example, droughts modulated by ENSO on multiple land
regions) will also appear synchronised if there is a temporal
consistency of occurance within 6 months of lead/lag time. An
analysis to distinguish between these two types of connectivity
between drought onsets is possible using directed synchroniza-
tion networks which we leave as a future scope of this study.

METHODS
Data
We used gridded monthly precipitation data from European
Centre for Medium-Range Weather Forecast Reanalysis Version 5
(ECMWF, ERA-5)62 from 1959 to 2022. We also used gridded
monthly precipitation data and monthly sc-PDSI data from 1901 to
2021 obtained from Climate Research Unit (CRU). All gridded data
were aggregated to 2°x 2° spatial resolution. Observed precipita-
tion data is from Global Precipitation Climatology Project (GPCP)61

at monthly scale from 1979 to 2022. We used the Oceanic Niño
Index (ONI) provided by the Physical Sciences Laboratory (PSL),
National Oceanic and Atmospheric Administration (NOAA).

Drought onset and characteristics
In this study, we consider the onset of moderate (or more severe)
droughts similar to recent literature42. We classify drought onsets
based on three well-known indices, Standardized Precipitation
Index (SPI), Standardadized Precipitaion-Evapotranspiration Index
(SPEI), and self-calibrating Palmer Drought Severity Index (sc-
PDSI)42,43,78–80. SPI/SPEI have been generated using 12-month
cumulative precipitation (and evaportranspiration) and hence they
represent 12-month cumulative droughts (SPI12/SPEI12 hereafter
called SPI/SPEI). Drought characteristics like onset, termination,
duration, intensity, and severity are considered based on thresh-
old approach on drought indices81. Here we consider moderate
droughts using a threshold of −1 on SPI/SPEI and a threshold of
−2 on sc-PDSI as shown in Supplementary Figure 1. Hence, a
‘drought onset’ is defined as the month when the value of
cumulative 12-month SPI/SPEI goes below −1, and ‘drought
termination’ is defined when the value recovers from the
threshold as shown in Supplementary Figure 1. The time period
between consecutive onset and termination of a drought event is
called ‘drought duration’. The intensity of drought can be defined
as average value of SPI/SPEI/sc-PDSI between onset and termina-
tion. The severity of drought is defined as cumulative deficit
measured using SPI/SPEI within the duration. To identify
teleconnections of only drought onsets and to ensure enough
sample size we do not use any thresholds of intensity or severity
before classifying a drough onset as an event.

Event synchronisation (ES)
Droughts are driven by atmospheric processes, ocean teleconnec-
tions, and local feedbacks, which bring spatial variability in their
onsets across the globe. Explaining this variability can shed light
on the drought co-occurrence which can ultimately improve
drought prediction. Hence, attempts have been made in the
literature to understand the spatiotemporal variability of drought
onsets using multiple statistical tools. Event Synchronisation
(ES)40,41, is one such tool that has gained popularity in earth
science because of its computational efficiency and ability to
delineate non-linear associations from data. ES is a non-parametric
similarity measure that delineates temporal dependencies as well
as delays between time series of various events (drought onsets in
this case). In this study, ES is calculated for gridded data of
drought onsets as follows:
We compute the varying time delay, τi;jl;m, between onsets at any

two grid locations i; j in an m x n grid, having a total of si and sj
onsets, respectively, as

τi;jl;m ¼ min
tilþ1�til; t

i
l � til�1; t

i
mþ1�tim; t

i
m � tim�1

2

� �
(1)

Where til ðtimÞ represents lthðmthÞ event occurring at grid location
iðjÞ, with l ¼ 1; 2; 3; ¼ ; si and m ¼ 1; 2; 3; ¼ ; sj . τ

i;j
l;m provides the

maximum permitted time delay between drought onsets to call
them synchronised. In this study, we have added an upper limit of
6 months to τi;jl;m, hence, no delays exceeding 6 months shall be
considered as synchronised.
Next, ES is estimated between each grid pair by counting the

temporally coinciding events, under a condition that for each pair
of grids, the absolute value of the temporal delay between any
two synchronous events must not exceed τi;jl;m(or 6 months,
whichever is smaller).

ESi;j ¼ c ijjð Þ þ cðjjiÞffiffiffiffiffiffi
sisj

p (2)
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Where c i; j; jð Þ measures number of times drought onset at i
succeeds onset at j. Hence,

c ijjð Þ ¼
Xsi
l¼1

Xsj
m¼1

Ji;j (3)

And,

Ji;j ¼
1 if 0< til � tim < τi;jl;m

0:5 if til ¼ tim
0 otherwise

8><
>: (4)

In this study, we use gridded monthly SPI-12 from ERA-5
reanalysis product at a spatial resolution of 2° x 2° within latitudes
60°S and 85°N including both land and ocean regions. This gives
us a total number of grids as 13140 (73 × 180). Hence, the final ES
matrix generated is of size 13140 × 13140, which represents the
strength of synchronisation between drought onsets across the
globe. We also apply ES to drought onsets over only land regions
classified using SPI-12 and sc-PDSI data from CRU, both at a spatial
resolution of 2° x 2° within latitudes 60°S and 85°N. In this case, the
total number of grids are 3846 (only land grids between latitudes
60°S and 85°N) and hence, the ES matrix generated is of size
3846 ×3846, which represents the strength of synchronisation
between drought onsets among land regions of the globe.

Complex network (CN) analysis
The ES matrix can be converted to a CN adjacency matrix ðAi;jÞ
where nodes i and j are the grid locations and the links between
them represent the presence of pairwise synchronisation between
the drought onsets on the grids. The ES matrix is symmetric
because while estimating ES in Eq. (2), we count the events in
both the direction (i to j, and j to i). Hence, it does not provide any
information about the direction of synchronisation. In this study,
we test each ESi;j for statistical significance using method of
shuffled surrogates as suggested by Boers et al. 201941. We
randomly reshuffle the time series of events (onsets) and compute
ES 10000 times to generate a null distribution of ESi;j and perform
hypothesis testing at 90% and 95% confidence. Hence the
Adjacency matrix thus generated contains only strongest and
most reliable links in the global connections between drought
onsets.

Ai;j ¼
1 if ESi;j is statistically significant

0 otherwise

�
(5)

From the network generated above, we analyse the importance
of nodes and their spatial embedding using node importance
measures, namely Degree Centrality (DC), Betweenness Centrality
(BC), and Mean synchronisation Distance (MSD), as
explained below.

Correction for errors due to projection system
Most projection systems used by CN literature in earth science
have increasing number of grids per unit area from equator to
either pole. Due to this, a greater number of links will be
generated from higher latitudes than on the equator for the same
physical area. This can lead to overestimation of network
measures which include links from higher latitudes, which if not
corrected, can cause misleading inferences. In this study, we
address this problem by converting the binary adjacency matrix to
a weighted matrix which uses cosine of the latitude of source
node as a weight.

AijÞ ¼
cosðφÞ if ESi;j is statistically significant

0 otherwise

�
(6)

Where, φ is the latitude of node j. Hence, while computing the
measures of node importance in CNs, the nodes at higher latitudes
get penalised. In this study, we compute DC and MSD using Aij).

Measures of node importance in CNs
For a network having a total N number of nodes, Degree Centrality
(DC) is the simplest measure of node importance which measures
the number of connections of a node.

DCj ¼
PN�1

i¼1 Ai;j

N � 1
(7)

Hence, any grid having a high degree of connectivity means
that drought onsets on the location (represented by the grid) are
synchronised with a large number of droughts onsets across
the globe.
Betweenness Centrality (BC) is a measure of node importance

which quantifies the extent to which a node acts as a bridge or
intermediary, facilitating the flow of information, resources, or
interactions between other nodes in the network. It is calculated
by determining the proportion of shortest paths in the network
that pass through a particular node. BC is calculated as follows:

BCj ¼
X

l≠m≠j2V

nl;mðjÞ
Nl;m

(8)

Where, nl;mðjÞ is the count of all possible shortest paths from node
l to m that pass-through node j among all nodes (V). Nl;m is the
total number of shortest paths from node l to m. Hence, drought
onsets on grids with higher BC scores can be considered to have
greater control or influence within the network.
Spatial embedding of a network can be interpreted by

analysing the actual geographical distances between the nodes
in the network. We estimate the mean synchronisation distance
(MSD) of a grid as an average of all the distances the grid is
connected to weighted as per the strength of synchronisation (ES).

MSD ¼
PN�1

i¼1 ESijAijdijPN�1
i¼1 ESijAij

(9)

Where dij is the physical distance between points i and j.

PCMCI
Identifying causal relationships within complex systems is a
fundamental challenge across various scientific disciplines and
has also gained prominence in earth science in recent past. Peter
and Clark Momentary Conditional Independence – PCMCI82 – is a
causal discovery algorithm which builds on the principles of
conditional independence to delineate causal associations from
observations while accounting for temporal delays. It is able to
remove spurious links even in presence of high dimensional
datasets50,51,82 – a well-known problem in conditional indepen-
dence based causal discovery approaches. PCMCI51 achieves it by
reducing the dimensions of the conditioning set prior to
estimation of conditional independence based causal discovery.
A brief description of PCMCI is as follows (for detailed algorithm
please refer to Runge et al. 201982).
The first step uses a modified PC algorithm (named after the

inventors, Peter and Clark83) to generate the reduced conditioning
set for each variable – called “Parents”. From a set of variables
X t ¼ X1

t ; X
2
t ; ¼ ; XN

t , for each variable X
j
t , the PC stage starts with

initialising preliminary parents PðXj
tÞ ¼ ðXt�1; Xt�2; ¼ ; Xt�τmaxÞ

and iteratively removes variables which are redundant and add
no unique information when present in the conditioning set. The
first iteration removes uncorrelated variables from PðXj

tÞ, and the
second iteration removes independent variables found after
conditioning on the most correlated variables in first iteration.
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Next, variables which are found independent after conditioning
on two strongest drivers from the previous iteration are removed
from PðXj

tÞ. This is done until no variables are left to condition on.
As recommended by Runge et al50,51,82, we take an alpha level of
0.02 for hypothesis testing at this stage to not lose any true links
from the PðXj

tÞ.
The second stage, called the MCI stage uses the above-

generated parents PðXj
tÞ for each variable Xj

t and tests the
following null hypothesis at α= 0.05 to find causal relationship
between all variable pairs Xi

t�τ ! Xj
t at multiple lags

τ ¼ 1; 2; ¼ ; τmaxf g:
MCI : Xi

t�τ ?? Xj
tjPðXj

tÞnfXi
t�τg;PðXi

t�τÞ8Xi
t�τ 2 X�

t (10)

where, X�
t ¼ Xt�1; Xt�1; ¼ ; Xt�τmaxð Þ. In this study, we have used a

maximum lag τmax of 1 months and a partial correlation based
conditional independence within PCMCI called ‘ParCorr’. To avoid
the penalty of high dimentionality and maintain high statistical
power in conditional independence tests of PCMCI, we stick to a
limited number of regions and test for causal discovery only at
maximum lag 1.
We apply PCMCI on monthly SPI generated from ERA-5

reanalysis product to test for the presence of confounding
behaviour of ocean regions. We first use PCMCI on monthly SPI
of drought hubs on land and then perform three incremental
addition of ocean variables. The first experiment contains SPI from
land drought hubs only, the second experiment adds SPI from the
Atlantic Ocean (AO), the third experiment adds the Maritime
Continent (MC) in addition to the AO and the last experiment adds
the Pacific Ocean (PO).

DATA AVAILABILITY
All the datasets used in this study are publicly available. ERA 5 reanalysis can be
downloaded from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-land. CRU sc-PDSI, and precipitation data can be downloaded from https://
crudata.uea.ac.uk/cru/data/drought/ and https://crudata.uea.ac.uk/cru/data/hrg/,
respectively. Oceanic Niño Index (ONI) values are taken from http://
www.cpc.ncep.noaa.gov/data/indices/. Global Precipitation Climatology Project
(GPCP) Monthly Analysis Product data provided by the NOAA PSL, Boulder, Colorado,
USA, from their website at https://psl.noaa.gov.

CODE AVAILABILITY
ES was performed using methodology provided by Boers et al. 201941 and codes can
be provided upon request. To perform PCMCI, a publicly available python package
‘tigramite’ (https://github.com/jakobrunge/tigramite) was used.
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