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Historical footprints and future projections of global dust
burden from bias-corrected CMIP6 models
Jun Liu1, Xiaofan Wang1, Dongyou Wu 1, Hailun Wei2, Yu Li3✉ and Mingxia Ji1✉

Dust aerosols significantly affect the Earth’s climate, not only as a source of radiation, but also as ice nuclei, cloud condensation
nuclei and thus affect CO2 exchange between the atmosphere and the ocean. However, there are large deviations in dust model
simulations due to limited observations on a global scale. Based on ten initial Climate Models Intercomparison Project Phase Six
(CMIP6) models, the multi-model ensemble (MME) approximately underestimates future changes in global dust mass loading (DML)
by 7–21%, under four scenarios of shared socioeconomic pathways (SSPs). Therefore, this study primarily constrains the CMIP6
simulations under various emission scenarios by applying an equidistant cumulative distribution function (EDCDF) method
combined with the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA2) datasets based on
observation assimilation. We find that the results (19.0–26.1 Tg) for 2000–2014 are closer to MERRA2 (20.0–24.8 Tg) than the initial
simulations (4.4–37.5 Tg), with model deviation reduced by up to 75.6%. We emphasize that the DML during 2081–2100 is expected
to increase significantly by 0.023 gm–2 in North Africa and the Atlantic region, while decreasing by 0.006 gm–2 in the Middle East
and East Asia. In comparison with internal variability and scenario uncertainty, model uncertainty accounts for more than 70% of
total uncertainty. When bias correction is applied, model uncertainty significantly decreases by 65% to 90%, resulting in a similar
variance contribution to internal variability.
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INTRODUCTION
Dust is one of the major light-absorbing components of
atmospheric aerosol, originating in desert regions, agricultural
and industrial activities1–5. As well as absorbing radiation, dust
scatters heat and produces a net negative forcing. Moreover, it
also provides iron and bio-essential trace elements to the marine
phytoplankton6, thus affecting CO2 exchange between the
atmosphere and the ocean7. A large portion of dust emissions
can be attributed to desert regions in North Africa, East Asia,
Central Asia, Australia, and North America8,9. Statistically, the total
dust emission contributes 1000–2150 Tg per year globally since
200110,11, which is approximately half of the total tropospheric
aerosols12–14. The westerly circulation can carry Asian dust to
Japan, South Korea, and even across the Pacific to the United
States and the Arctic15–20. Moreover, North American dust is also
transported across the Atlantic to Europe via the westerly
circulation21. North African dust can be transported to the
Americas22. Consequently, numerous studies have examined the
spatiotemporal variations, optical properties, and radiative forcing
of dust aerosols using in-situ observations23–30, satellite remote
sensing31–35, and model simulations36–38.
Model simulations provide information on spatio-temporal

changes in global dust aerosol and enable predictions of future
trends39–41. In recent years, the major properties of dust aerosols
have been recognized systematically using results from CMIP5 and
CMIP6 models42–45. However, Kok et al.46 reported significant
deviations in model simulations of the impact of dust aerosol on
global energy budgets and regional climates. Pu & Ginoux40

reported that the majority of CMIP5 models are incapable of
simulating dust aerosol variability or capturing the relationship
between dust aerosols and local controlling factors (e.g., wind

speed, bare ground, and precipitation). Wang et al.41 showed that
almost all CMIP6 models failed to capture the long-term trends of
aerosol optical depth (AOD) over Asia from 2006 to 2014. Even
though the CMIP models can reproduce the observed “dust belt”,
there are still considerable differences in the spatial distributions
of the dust belt as simulated by different models43,47. As a result,
challenges remain in accurately predicting future trends in dust
aerosols from historical in-situ observations and reanalysis
datasets.
Model simulations of dust aerosol show large deviations as a

result of uncertainties triggered by different socioeconomic
pathways, model self-errors, and internal variability48,49. However,
observational constraints can be used to correct model errors,
thereby improving CMIP6 projections50. Observational constraints
are mainly applied to climate prediction by comparing model
results with those obtained from observational data, and
examples of constraints include multi-model weighting45,51, the
attribution constraint52,53, the emergence constraint54–56, and
quantile mapping57–59. Currently, observational constraints have
been applied to the prediction of global surface temperature,
precipitation, extreme events, Arctic sea ice, and cloud feed-
backs51,60–64. Such constraints have been used in the CMIP6 report
for future projections of global surface temperature, ocean heat
capacity, and sea level65. However, these robust constraints have
not been applied to projections for other variables50,66. For
example, Navarro-Racines et al.67 found that the delta method can
reduce the CMIP5 model bias by up to 50–70%. Using the variance
adjustment technique, Hu & Zhou et al.68 found that the
uncertainty of summer precipitation in the Tibetan Plateau was
reduced by 41.8% in comparison with raw data from CMIP5
models. The traditional quantile-based mapping method
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(cumulative distribution function; CDF) hypothesizes that the
relationship between simulated and observed values during
historical period is also valid for future period69,70. However,
considering the difference between the CDFs for the future and
reference periods, the EDCDF method applies a quantile-based
mapping difference of the CDFs in the historical to match the
climatic fields in the future period71. This method can be used to
correct the mean and distribution range of a target variable, as
well as to reduce model bias57,58.
Our previous study found an obvious reduction in future spring

dust emissions in northern China from CMIP5 model outputs, with
maximum reductions of 4 gm–2 in the Taklimakan Desert and
8 gm–2 in the Gobi Desert72. This is linked to decreased zonal
winds and weakened temperature gradients caused by winter
Arctic warming28,72. However, the uncertainties in model simula-
tions of dust aerosol have not been addressed systematically. As a
result, nine representative study areas were selected around the
globe (North Africa, Mid-Atlantic, Middle East, East Asia, South
Asia, Australia, southern Africa, South America, and North
America), which are mainly grassland, barren or sparse vegetation
and other surface types that are prone to dust emission (Fig. 1). A
spatial climate and dust trend in Modern-Era Retrospective
Analysis for Research and Applications version 2 (MERRA2) are
largely similar to those in Moderate-resolution Imaging Spectro-
radiometer (MODIS). This is because MERRA2 assimilated bias-
corrected AOD from Collection 5 MODIS after 2000, the Advanced
Very High Resolution Radiometer (AVHRR) for 1980–2002 over
ocean-only and other observation products73,74. Thence, we used
MERRA2 reanalysis data in combination with the EDCDF method
to constrain historical simulations of monthly dust mass loading
(DML) in CMIP6 models for 2000–2014 and future projections for
2015–2100. The CMIP6 models are calibrated for the training
period (15 years: 2000–2014), and the validation period is from
2015 to 2021. Simultaneously, the Taylor diagram75 and uncer-
tainty sources partitioning76,77 methods are applied to evaluate
uncertainty in DML projections before and after bias correction.
We focus on future spatiotemporal variations in DML in typical

regions under shared socioeconomic pathway (SSP) scenarios
(SSP126, SSP245, SSP370, and SSP585). This study seeks to
illustrate future changes in global DML and its uncertainty
sources, which is important for improving dust parameters in
climate models and accurately assessing the radiation effects of
global dust aerosols.

RESULTS
Global DML simulation
Figure 2 shows the annual mean climatology of DML for MERRA2,
the CMIP6 multi-model ensemble (MME), and each individual
model (see Supplementary Table 1) for 2000–2014. We found that
CMIP6 models generally capture the major “dust belt” feature that
extends from North Africa, Middle East, and Central Asia to East
Asia, which is consistent with previous studies47,78. According to
Fig. 2a, MERRA2 reanalysis is in good agreement with MME
simulations (Fig. 2b), with a Taylor skill score (SS) approaching 1.
However, the SS values for half of the models remain below 0.8
(Fig. 2 (1), (6), (7), (8), and (9)), suggesting that the spatial pattern
and magnitude of global DML are not adequately simulated.
Compared with MERRA2, the DML simulated by models CESM2-
WACCM, MIROC-ES2L, and NorESM2-MM is significantly lower in
the west and higher in the east of North Africa. Moreover, the total
global DML simulated by CMIP6 during the period 2000–2014
ranges from 5 to 32 Tg, which is smaller than the range in CMIP5
(3 to 42 Tg) noted by Wu et al.43. We also observed significant
differences in dust source regions between MERRA2 and the
models, such as MIROC6 and NorESM2-MM, which simulate
significantly less dust in the atmosphere (5.3 and 9.3 Tg,
respectively), with SS values of 0.23 and 0.50, respectively.
The simulation of interannual variation and magnitude of DML

varies significantly between models (Supplementary Fig. 1). For
example, the DML simulated by the MIROC6 and NorESM2-MM
models is significantly smaller compared with the reanalysis
dataset over North Africa, the Mid-Atlantic, Middle East, and South

Fig. 1 Spatial distribution of dust mass loading and land cover. The climatology of annual mean dust mass loading (DML; g m–2) based on
(a) MERRA2 for 2000–2021 and (b) MODIS for 2003–2021. (c) Global land cover types retrieved by MODIS data. Black boxes indicate the
boundaries of the nine selected study regions: (1) North Africa (18°W–38°E, 0°N–40°N), (2) Mid-Atlantic (18°W–60°W, 0°N–40°N), (3) Middle East
(38°E–68°E, 10°N–50°N), (4) East Asia (68°E–120°E, 35°N–50°N), (5) South Asia (68°E–90°E, 10°N–35°N), (6) Australia (112°E–155°E, 10°S–40°S), (7)
southern Africa (10°E–40°E, 10°S–35°S), (8) South America (50°W–75°W, 15°S–55°S), and (9) North America (75°W–125°W, 25°N–55°N).
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Asia. Moreover, the MME simulations of DML seasonal cycles are
basically in agreement with the reanalysis dataset (Supplementary
Fig. 2). There are noticeable discrepancies among models in North
Africa, East Asia, Australia, southern Africa, and South America, as
well as large discrepancies in dust optical depth (DOD) and dust
emission44,47. Even though the CMIP6 MME is capable of
accurately simulating the annual variation in DML and seasonal
cycles, the simulation deviation of individual models remains high,
indicating the importance of bias correction in predicting future
changes in DML across the globe.

Performance assessment of bias-corrected CMIP6 models
The EDCDF method was then applied to correct the DML from
CMIP6 models. Figure 3 compares the mean total dust loading of
the MODIS and CMIP6 models from January to December for
2003–2014 over the globe, as well as nine study regions before
and after EDCDF bias correction. Before the correction (insets),
CMIP6 MMEs have a good correlation with the observation on
average (R > 0.5, P < 0.01) in other regions, except for southern
Africa (Fig. 3h). As compared with observation results, the total
dust loadings from individual models vary widely, with deviations
of up to 10 times in the Mid-Atlantic, Australia, southern Africa,
and South America. After the bias correction, simulations of total
dust loading are greatly improved, and the correlation coefficient
between MMEs and observation is 0.94 (P < 0.01) in the globe
(Fig. 3a), up from −0.16 (p > 0.05) before correction to 0.6
(p < 0.01) in southern Africa (Fig. 3h). In addition, the uncertainty
ranges of individual models are significantly reduced by more
than 50% compared with the observation. As shown in
Supplementary Fig. 3, the probability density function (PDF)
distribution of the monthly DML bias reveals that the simulation
deviation of dust in typical areas of the world decreased
significantly before and after the correction. Although the
corrected MME does not improve significantly, each individual
model shows distinct improvements in global dust simulation (Fig.
3k). The corrected total dust burden is also much closer to the
results of MERRA2 reanalysis (20.0–24.8 Tg), with a simulated

range of 19.0–26.1 Tg, and the model bias is reduced by up to
75.6% compared with uncorrected models (4.4–37.5 Tg). More-
over, according to the MERRA2 reanalysis (Supplementary Fig. 4),
the global mean dust burden during 2015–2021 is 21.7 Tg, of
which 8.3 Tg is found in North Africa, 3.2 Tg in the Middle East, 1.1
Tg in East Asia and 0.8 Tg in South Asia, respectively. The relative
contributions of the major dust source regions to atmospheric
loading are consistent with those reported by Kok et al.79. There is
a significant decrease in the simulation deviation for these models
(ESM2-WACCM, MIROC-ES2L, MIROC6, MRI-ESM2-0, and NorESM2-
MM). Consequently, the bias-corrected method significantly
improves the CMIP6 simulations of global DML.
To accurately reflect the simulation performance of trend in

DML, we presented time series of DML from 1980 to 2100 based
on MODIS, MERRA2, and CMIP6 models (Fig. 4). The MODIS and
MERRA2 have a certain deviation in time variability, especially in
the Middle East, South Asia, and North America. Additionally, there
is an obvious jump in MERRA2 data before and after 2000, possibly
due to MERRA2 assimilation of MODIS satellite and other
observation products73,74. For this reason, MERRA2 products from
2000 to 2014 were used for model calibration. In comparison with
the uncorrected results, the corrected CMIP6 models and MERRA2
show good consistency. Compared to the past, the bias-corrected
global DML climatology is larger in South America, North America,
and Middle East, and is smaller in North Africa, East Asia, Australia,
and southern Africa. The Mid-Atlantic and South Asia have
remained unchanged. In general, MERRA2 and MODIS DML trends
are similar, except for East Asian trends which have increased and
decreased, but the CMIP6 MME is able to accurately simulate these
trends (Supplementary Fig. 5). However, previous studies based on
ground stations and satellite observations have shown that dust
occurrences in East Asia mainly shows a decrease from 2000s28, so
the obvious increase from MERRA2 needs further study. In model
simulations, spatial distributions of DML trends did not differ
significantly before and after calibration (Supplementary Figs.
5–7). Even though the CMIP6 models do not simulate observed
trends as well, they agree with observations over the Asian
continent, the Mid-Atlantic, southern North Africa, and Middle

Fig. 2 Spatial distribution of annual mean dust mass loading. The climatology of dust mass loading (DML; g m–2) for 2000–2014 based on
(a) MERRA2 and (b) the CMIP6 multi-model ensemble (MME). (1)–(10) Results of individual CMIP6 models. The number at top right in each
panel denotes the global total dust burden (Tg), and the number within each panel is the Taylor skill score (SS) of the individual model.
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East. In contrast, the increase in the Mid-Atlantic is contrary to the
results from 1982 to 2008 reported by Ridley et al.80. The EDCDF
method mainly calibrates the magnitude deviation of model
simulation, and does not significantly calibrate the trend57,58.
However, except for the UKESM1-0-LL model, the spatial trends of
future DML simulated by other CMIP6 models are consistent
(Supplementary Figs. 8 and 9). Compared with all initial models,
the bias-corrected models can more accurately depict the future
dust changes.

Future projection of global DML
In the future projections, we present the relative changes in global
bias-corrected DML over the near-term (2021–2040), medium-
term (2051–2070), and long-term (2081–2100) relative to the
reference period (2000–2014) under the SSP126, SSP245, SSP370,
and SSP585 scenarios (Fig. 5). The trend of DML after bias
correction is relatively consistent with uncorrected results
(Supplementary Fig. 10), but there is a certain deviation in
magnitude (Supplementary Fig. 11). The corrected DML is lower

Fig. 3 Comparison of total dust loading between CMIP6 models and MODIS products. Scatterplots of mean total dust loading from January
2003 to December 2014 over the globe (a) and nine study regions (b–j) between MODIS and bias-corrected CMIP6 models. The colored dots
represent different models, and the gray dots represent CMIP6 MME. The solid slope lines are the linear fitting between MODIS and CMIP6
MME, and the correlation coefficients (R) and P values are shown in the blank space. The 1:1 dotted lines are plotted for reference. Here insets
are uncorrected results. k Global annual total dust burden based on MODIS (cross) for 2003–2014 and MEERA2 (star), uncorrected (circle) and
bias-corrected (triangle) CMIP6 models for 2000–2014. The upper and lower dotted lines are the maximum and minimum values of the
MERRA2 reanalysis.
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(up to −0.49 gm−2) in eastern North Africa, southern Africa, East
Asia and Australia. It is higher (up to 0.22 gm−2) in western North
Africa and the middle-high latitudes of the Northern Hemisphere.
The future changes in DML exhibit similar spatial patterns under
the four SSP scenarios (Fig. 5). Relative to the historical period
(2000–2014), the regional DML will continue to increase in the
Mid-Atlantic, south of North America, South America, southern
Africa, and Australia, while decreasing in the east of North Africa,
Middle East, South Asia and East Asia from 2021 to 2100 under the
SSP126, SSP245, SSP370 scenarios. In general, the DML is reduced
by up to 0.06 (0.03) g m–2 in the Middle East and East Asia, while it
increases by up to 0.10 (0.12) g m–2 in North Africa under the
SSP370 (SSP585) scenario. Before 2040, the DML in North Africa
increases in the west and decreases in the east. Then, it decreases
slowly in the east and shifts to an increasing trend in the long
term. Here a decrease in soil moisture (Supplementary Fig. 15) and
an increase in surface wind speed (Supplementary Fig. 16) in the
Sahara Desert are also conducive to dust emission (Supplementary
Fig. 12). In the Middle East, dust is decreasing under the SSP370
due to enhanced dust wet deposition (Supplementary Fig. 13),
dust emission suppression (Supplementary Fig. 12) due to
increased soil moisture (Supplementary Fig. 15) and reduced
surface wind speed (Supplementary Fig. 16), as well as possible
irrigation expansion81. Under the SSP585, the near-term variation
is similar to that in other scenarios, but in the medium and long-
term, DML only decreases in East Asia, and increases significantly
in the North Africa-Atlantic region, Middle East, northern South
Asia, and southern Africa, up to 0.12 gm–2. In East Asia, a decrease
in DML during 2020–2100 is likely to be closely related to a
decrease in dust storm frequency82 and surface wind72 (Supple-
mentary Fig. 16), as well as an enhancement in precipitation
(Supplementary Fig. 14) and dust wet deposition (Supplementary
Fig. 13).

We also examined the changes in DML over the globe, as well
as the nine selected regions during the long term (2081–2100)
relative to the reference period (2000–2014; Fig. 6 and Supple-
mentary Table 2). The global DML from the CMIP6 MME increases
significantly under all scenarios, with the corrected DML increas-
ing by up to 0.003 gm–2 under SSP585 scenario. Compared with
the bias-corrected results, the initial MME underestimates the
increase of global DML by 7% to 21% during the long term.
Similarly, in North Africa and Mid-Atlantic region, DML increases
under all scenarios, and this is underestimated slightly by the
uncorrected CMIP6 models. Under the SSP585 scenario, the
corrected DML increase over North Africa is up to 0.023 gm–2,
much higher than the 0.016 gm–2 under the SSP370 scenario.
There is a decrease in the DMLs over the Middle East and East Asia,
especially in East Asia under SSP370, with a reduction of
0.006 gm–2, which is slightly less than before the correction
(0.012 gm–2). A recent study revealed that DML increases
uniformly across North Africa and the downwind Atlantic as a
result of increased dust emissions during the spring and summer
months83. However, it decreases over East Asia due to enhanced
local precipitation that promotes wet deposition45 and decreased
surface wind speed72,82, which is consistent with the results in this
study. In South Asia, the DML varies greatly under different
scenarios. SSP126 and SSP245 show no obvious change, but
SSP370 shows a slight decrease and SSP585 shows a significant
increase. Moreover, DMLs in Australia, southern Africa, South
America, and North America also show an increase in all future
scenarios.

Uncertainty assessment
We explored the fractional uncertainty of different uncertainty
sources (internal variability, model uncertainty, and scenario

Fig. 4 The temporal evolution in DML. DML (g m−2) over the globe (a) and nine study regions (b–j) are from uncorrected (dotted line) and
bias-corrected (solid line) CMIP6 MME for 1980–2100, MODIS for 2003–2021, and MREEA2 for 1980–2021. Shading is the upper and lower
boundaries in the 10 bias-corrected CMIP6 model outputs. The solid black lines are MERRA2 reanalysis results, and the green lines are MODIS
results.
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uncertainty) in DML of CMIP6 models before and after bias
correction (Fig. 7). The fractional uncertainty is the prediction
uncertainty divided by the expected mean change in global DML.
Compared with uncorrected DML, the total uncertainty on a
global scale decreased by 63–88% after bias correction. The model
uncertainty is the most obvious reduction (75–92%), followed by
the internal variability (19–65%), while the scenario uncertainty
has no significant change. There are similar changes in
uncertainties in typical regions as there are throughout the world.
As a result of a large decline in model uncertainty of 92%, East Asia
shows the largest decrease in total uncertainty (87.8%). However,
the Mid-Atlantic region has the smallest declines in both total and
model uncertainty, at 63.4% and 75%, respectively. While model,
internal variability and scenario uncertainties decrease signifi-
cantly in southern Africa and South America, reaching 89%
(88.1%), 55.2% (64.2%), and 58.1% (56.2%), respectively.
For different lead times in the 21st century, the fraction of total

variance due to individual uncertainties is also presented in
Supplementary Figs. 17 and 18, respectively. Before bias correc-
tion, the main attribution of uncertainty is model uncertainty, with
variance contributing more than 70%, followed by internal
variability, and scenario uncertainty contributing less than 5%.
After bias correction, the model uncertainty and internal variability
are dominant at all lead times, but the proportions increase and
decline with the increase of lead times respectively. Notably, the
percentage contributed by scenario uncertainty is very small
before and after bias correction. Supplementary Figure 19 and Fig.
8 show the proportion of three uncertainty sources in different
lead times before and after bias correction respectively. With the
exception of Europe and Australia, model uncertainty accounts for
more than 80% of total uncertainty in most regions of the world at
all lead times based on uncorrected models (Supplementary
Fig. 19). After bias correction (Fig. 8), it is found that the
contribution of model uncertainty and internal variability to the
total uncertainty is dominated by the significant reduction of
model uncertainty. Specifically, internal variability is an important
source of uncertainty in the near-term (2021–2040), with most
regions contributing more than 60%, and its proportion decreases

gradually with lead times. Unlike internal variability, contribution
of model uncertainty in most parts of the world is below 40% in
the near term (2021–2040) and increases to more than 50% in
long term (2081–2100). The proportions of model uncertainty in
Europe, northern Indian Ocean and Central Pacific region are
below 50% at all lead times, and even as low as 1% in near term
(2021–2040). It is clear that scenario uncertainty is rarely an
important factor in triggering uncertainty. However, in the region
between North and South America at the end of the century,
scenario uncertainty is an important source of uncertainty,
contributing up to 40%. Therefore, bias correction can effectively
reduce the uncertainty of future predictions regarding dust
aerosols, specifically model uncertainty.

DISCUSSION
We used the MERRA2 and 10 CMIP6 models to explore the
performance of global DML simulations. Approximately half of the
models were unable to reproduce the spatial pattern of DML
compared with MODIS observation and MERRA2 reanalysis for
2000–2014. In addition, the simulation of annual variations and
seasonal cycles of DML varies greatly among models. Therefore,
we applied the EDCDF method to correct 10 CMIP6 models and
presented global climate change projections for the twenty-first
century under the SSP126, SSP245, SSP370, and SSP585 scenarios.
Results show that the EDCDF method can effectively lower the
simulation deviation of DML from CMIP6 models, and does not
significantly change the trend. The uncertainty ranges of
individual models are significantly reduced by more than 50%
compared with the reanalysis data on a monthly scale after bias
correction. Compared with the uncorrected global total dust
burden (4.4–37.5 Tg), the corrected models give values (19.0–26.1
Tg) closer to MERRA2 (20.0–24.8 Tg), and the model deviation is
reduced by up to 75.6%. We further found that the initial CMIP6
MME underestimates the increase of global DML by 7% to 21%
under all SSP scenarios. The spatial changes of DML before and
after bias correction are basically consistent. Compared with the
historical period (2000–2014), the DML will continue to increase

Fig. 5 Future change of bias-corrected DML during different periods. Spatial changes in the global bias-corrected DML (g m–2) relative to
the historical period (2000–2014) for the (a–d) near-term (2021–2040), (e–h) medium-term (2051–2070), and (i–l) long-term (2081–2100) under
the four SSP scenarios from the CMIP6 MME.

J. Liu et al.

6

npj Climate and Atmospheric Science (2024)     1 Published in partnership with CECCR at King Abdulaziz University



up to 0.023 gm–2 in the North Africa-Atlantic region, while it will
decrease up to 0.006 gm–2 in the Middle East and East Asia during
2081–2100.
The analysis of uncertainty sources shows that model uncer-

tainty is the main source of uncertainty in the simulation of future
global DML, accounting for more than 70% of the total
uncertainty, followed by internal variability and scenario uncer-
tainty. Compared with uncorrected models, the application of the
EDCDF method can significantly reduce the total uncertainty by
63–88%, and the reduction of the model uncertainty is as high as
75–92%. The bias correction method obviously changes the
spatial patterns of global uncertainty sources. Before bias
correction, there appears to be a similar distribution of
uncertainties across the entire future period, namely that model
uncertainty contributes the most, followed by internal variability,
and scenario uncertainty contributes the least. After bias
correction, model uncertainty and internal variability are the main
sources of uncertainty, in which the internal variability contributes
more than 60% in near term (2021–2040) and decreases with lead
times. On the contrary, the proportion of model uncertainty is
relatively small in near term, and up to more than 50% by 2100.
Based on MODIS and MERRA2, DML in North Africa has

decreased, while models before and after the correction show
an increase in western North Africa and a decrease in eastern
North Africa (Supplementary Fig. 5). The previous study found that
dust deviation in North African in models is due to errors in the
surface wind field, rather than due to the dust emission
processes84. Interestingly, both observations and models indicate
an increasing trend of dust in the Mid-Atlantic in the historical
(2000–2021) and future periods (2015–2100). Unlike Evan et al.85

who concluded that the AVHRR data over the period
1982–2009 showed significant downward trends in dust optical
depth over North Atlantic, as well as the CMIP5 data in the future,

resulting from the reduction of dust emissions and transport from
Africa. Similarly, Ridley et al.80 also indicated a reduction (～10%
per decade) in dust optical depth over the Mid-Atlantic from 1982
to 2008 observed by the AVHRR satellite, due to a reduction in
surface winds over dust source regions in Africa. We find that dust
over the Mid-Atlantic has a rapid downward trend from the mid-
1980s to 1995, then a steady fluctuation in the 2000s (Fig. 4c). This
result, derived from MERRA2 assimilating AVHRR only-ocean data
for 1980–2002, is consistent with the result of Evan et al.85 from
AVHRR satellite. For 2010–2021, MODIS and MERRA2 show an
increasing trend for dust over the Mid-Atlantic (Fig. 4c), which is
predicted to continue in the future by CMIP6. As mentioned
above, the North African region has been experiencing increased
dust emissions and higher surface wind speeds. However, the
influencing factors (such as AMO86, NAO87, ENSO88, etc.) that
produce this transition need further investigation in the future.

METHODS
MERRA2 reanalysis
MERRA2 is the latest version of the satellite-era global atmospheric
reanalysis produced by the National Aeronautics and Space
Administration (NASA) Global Modeling and Assimilation Office
(GMAO) using the Goddard Earth Observing System Model (GEOS)
version 5.12.489. The GEOS model is coupled with the Goddard
Chemistry Aerosol Radiation and Transport model (GOCART)
aerosol module74 to simulate five types of aerosols (dust, black
carbon, organic carbon, sulfate, and sea salt) from 1980. MERRA2
includes assimilation of bias-corrected AOD derived from AVHRR
and MODIS radiances. We acquired a time-averaged two-dimen-
sional monthly mean data collection (tavgM_2d_aer_Nx), which
included assimilated aerosol diagnostics (such as dust column

Fig. 6 Future change of bias-corrected DML on four SSP scenarios. Distribution of changes in uncorrected (blue) and bias-corrected (purple)
DML (gm–2) for the period 2081–2100 under the four SSP scenarios relative to the historical period (2000–2014) from the CMIP6 MME over the
globe (a) and nine study regions (b–j). The box plots show the 25th and 75th percentiles as solid lines that define the box, the median value as
the solid line within each box, the dots represent the changes from MME, the whiskers extend to the minimum and maximum, and the red
crosses are outliers.
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mass density, AOD, and dust AOD) from 1980 to 202190. This
product is available on a 0.5° × 0.625° grid, and is freely available at
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/.

CMIP6 climate models
Compared with previous CMIP projects, the CMIP6 project
contains the greatest number of climate models, the most
extensive numerical experiments, and the most extensive simula-
tion data, with 112 climate models originating from 33 institutions
worldwide. In this study, limited by data availability, 10 CMIP6
models were used to capture the seasonal to decadal variations in
global DML, including historical simulations for 1980–2014 and
the SSP126, SSP245, SSP370, and SSP585 scenarios for 2015–2100.
In addition, we used monthly data on dust emissions, dust wet
deposition, precipitation, soil moisture content, and surface wind
speed for five models (GISS-E2-1-G, GISS-E2-1-H, MIROC-ES2L,
MIROC6, and MRI-ESM2-0). Note that the output of all models and
MERRA2 reanalysis data were interpolated onto a common 1° × 1°
grid to unify the resolution. Supplementary Table 1 provides a
summary of the models used in this study; further information can
be found at https://esgf-node.llnl.gov/search/cmip6/.

MODIS satellite data
The Moderate Resolution Imaging Spectroradiometer (MODIS) carries
the NASA’s twin polar satellites of Terra and Aqua, which provide
near-global high-quality aerosol data almost on a daily since 2000
and 2002 respectively91. We use monthly MODIS-Terra Level 3
retrievals over the period 2003–2021 with a resolution of 1° × 1°, and

it is available for free at https://ladsweb.modaps.eosdis.nasa.gov/
search/order/.
The Collection 5.1 MODIS global land cover type product

(MCD12C1) provides global distribution of land cover types with a
resolution of 0.05° × 0.05°. It is obtained by supervised classifica-
tion of reflectivity from MODIS’s Terra and Aqua satellites, and
then further optimized for specific categories with post-processing
and auxiliary information. The dataset includes 17 surface vegeta-
tion types developed by the International Geosphere–Biosphere
Programme (IGBP)92. It is used in this study to identify dust source
regions, and is available at https://modis.gsfc.nasa.gov/data/
dataprod/mod12.php.

Calculation of MODIS dust mass loading
To verify the effect of model bias correction, we calculated the
MODIS dust optical depth (DOD) for 2003–2021 by combining
MERRA2 and MODIS aerosol products using the method
developed by Gkikas et al.93. The method mainly considered
that the MERRA2 dust fraction (MDF) to total AOD550nm is also
applicable to MODIS products, and the specific calculation
formula is as follows:

MDF ¼ AODdust;MERRA2

AODtotal;MERRA2
(1)

DODMODIS ¼ AODMODIS ´MDF (2)

where climatological MDF is calculated spatially during the period
of 2003–2021 at a 1° × 1° spatial resolution. Gkikas et al.93

indicated that the MODIS DOD data is well correlated with

Fig. 7 The evolution of uncertainty components. The fractional uncertainty of each component in decadal mean projections (the 90%
confidence level divided by the mean projection) for DML over the globe (a) and nine study regions (b–j). Black, orange, blue, and green
denote total uncertainty, internal variability, model uncertainty, and scenario uncertainty, respectively. The solid and dotted lines are
uncorrected and bias-corrected results, respectively. The numbers within each panel are relative reductions in uncertainty after bias correction
compared to before bias correction.
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AERONET-derived DOD with a correlation coefficient of 0.89, and a
small bias of 0.004 (2.7 %).
The conversion from DOD (τ) to DML (M) is calculated as

follows94:

M ¼ 4
3
ρrreff
Qext

τ ¼ 1
ε
τ (3)

where ρ is the density of dust, rreff is the dust effective radius, Qext
is the dust extinction efficiency, and ε is the mass extinction
efficiency. We used the empirical values suggested by Ginoux
et al.78 and assumed ρ= 2600 kg �m�3, rreff = 1.2 µm, Qext = 2.5,
ε= 0.6 m2g�1, and τ is the MODIS DOD.

EDCDF bias-corrected method
As reported by Li et al.,71 the EDCDF method requires establishing
a cumulative distribution function (CDF) for the observations,
historical simulation, and future projection. The EDCDF method
used in this study improves on previous historical CDF-based
method and applies quantile-based CDF mapping between
historical and projected periods57,58,95. Based on the large
differences in DML spatial distribution, the bias correction is
applied as follows.

xm�padjust
¼ xm�p þ F�1

o�t Fm�p xm�p
� �� �� F�1

m�t Fm�p xm�p
� �� �

(4)

where xm�p adjust
is the projected value of the adjusted model after

bias correction; xm�p is the projected value of initial model; Fm�p is
the CDF of the model simulated fields; F�1

o�t and F�1
m�t are the

quantile functions corresponding to the MERRA2 reanalysis o and
CMIP6 simulation m in the training period t, respectively.

The two-parameter gamma distribution is used for the part of a
given time series x with dust aerosol:

f x; k; θð Þ ¼ xk�1 e�x=θ

θkΓðkÞ for x > 0 and k; θ> 0 (5)

where k is a shape parameter, θ is a scale parameter, and Γ(k) is
the Gamma function.
The purpose of this study is to demonstrate the application of

the EDCDF method to 10 CMIP6 models for global DML in the
historical simulations and future projections. Here parametric
distributions were fitted to DML fields at each grid point. Given
that MERRA2 assimilated MODIS satellite observation from 2000
onwards, the CMIP6 models were calibrated for the training period
(2000–2014). For future projections, we examined the short-term
(2021–2040), medium-term (2051–2070), and long-term
(2081–2100) changes compared with the historical period
(2000–2014) under the four SSP scenarios. For further details of
this method, see Li et al.71 and Yang et al.57,58.

Taylor skill score method
We use the Taylor diagram method75 to evaluate the performance
of the initial and bias-corrected CMIP6 space fields relative to the
MERRA2 reanalysis climatology. The Taylor diagram is a common
method for systematically comparing correlation coefficient (CC),
standard deviation (SD), and root-mean-square error (RMSE)
values, which can effectively reflect the advantages and dis-
advantages of each model simulation. In Taylor diagram, a smaller
distance between the models and the MERRA2 indicates a better

Fig. 8 Spatial distribution for proportion of uncertainty. Proportion of uncertainty of three uncertainty sources (internal variability, model
uncertainty and scenario uncertainty) in projections of multidecadal mean DML based on bias-corrected CMIP6 models. The columns show
the total variance explained by (left) internal variability, (middle) model uncertainty, and (right) scenario uncertainty for predictions of the (a–c)
near-term (2021–2040), (d–f) medium-term (2051–2070), and (g–i) long-term (2081–2100).
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agreement. In addition, we apply the skill score (SS) to quantify
the performance of each model in the historical period. Here the
SS is defined as follows:

SS ¼ 4ð1þ CCÞ4
ðNSDm þ 1

NSDm
Þ2ð1þ CC0Þ4

(6)

where the normalized SD (NSD) is defined as the ratio of the
standard deviation of model simulated and MERRA2 reanalyzed
climatology; m stands for model simulation; NSDm is the normal-
ized standard deviation of the simulation; CC is the correlation
coefficient between simulation and reanalysis data, and CC0 is the
maximum correlation coefficient. The closer the SS is to 1, the
stronger the ability of individual model to represent the
reanalyzed result.

Separating uncertainty sources
We used the method developed by Hawkins and Sutton76,77 to
partition uncertainty in DML projections, which are the internal
variability, model uncertainty, and scenario uncertainty, and the
detailed calculation procedures see Supplementary Text 1 in
Supporting Information. Note that this identification method
requires that all models under historical simulation and future
projections should have the same ensemble members, thence we
choose just one ensemble member for each CMIP6 model. In this
study, we use 10 CMIP6 models and four future emissions
scenarios to isolate the uncertainty sources.

DATA AVAILABILITY
The MERRA2 reanalysis data is available at https://gmao.gsfc.nasa.gov/reanalysis/
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search/cmip6/. The MODIS-Terra Leve 3 AOD is available at https://
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product is downloaded at https://modis.gsfc.nasa.gov/data/dataprod/mod12.php.

CODE AVAILABILITY
Analysis was performed using the Matrix Laboratory (MATLAB; https://
www.mathworks.com/), and all codes to generate the figures are available from
the corresponding author.

Received: 7 July 2023; Accepted: 11 December 2023;

REFERENCES
1. Ramanathan, V., Crutzen, P. J., Kiehl, J. T. & Rosenfeld, D. Aerosols, climate, and the

hydrological cycle. Science 294, 2119–2124 (2002).
2. Pey, J., Querol, X., Alastuey, A., Forastiere, F. & Stafoggia, M. African dust outbreaks

over the Mediterranean Basin during 2001-2011: PM10 concentrations, phe-
nomenology and trends, and its relation with synoptic and mesoscale meteor-
ology. Atmos. Chem. Phys. 13, 1395–1410 (2013).

3. Che, H. et al. Column aerosol optical properties and aerosol radiative forcing
during a serious haze-fog month over East Asia Plain in 2013 based on ground-
based sunphotometer measurements. Atmos. Chem. Phys. 14, 2125–2138 (2014).

4. Che, H. et al. Analyses of aerosol optical properties and direct radiative forcing
over urban and industrial regions in northeast China. Meteorol. Atmos. Phys. 127,
345–354 (2015).

5. Huang, J., Liu, J., Chen, B. & Nasiri, S. L. Detection of anthropogenic dust using
CALIPSO lidar measurements. Atmos. Chem. Phys. 15, 11653–11665 (2015).

6. Rodríguez, S., Riera, R., Fonteneau, A., Alonso-Pérez, S. & López-Darias, J. African
desert dust influences migrations and fisheries of the Atlantic skipjack-tuna.
Atmos. Environ. 312, 120022 (2023).

7. Martínez-Garcia, A. et al. Links between iron supply, marine productivity, sea surface
temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24, PA1207 (2009).

8. Tanaka, T. Y. & Chiba, M. A numerical study of the contributions of dust source
regions to the global dust budget. Glob. Planet. Change 52, 88–104 (2006).

9. Froyd, K. D. et al. Dominant role of mineral dust in cirrus cloud formation revealed
by global-scale measurements. Nat. Geosci. 15, 1–7 (2022).

10. Zender, C. S., Miller, R. L. & Tegen, I. Quantifying mineral dust mass budgets:
terminology, constraints, and current estimates. EOS Trans. Am. Geophys. Union
85, 509–512 (2004).

11. Shao, Y. et al. Dust cycle: An emerging core theme in Earth system science.
Aeolian Res. 2, 181–204 (2011).

12. Charlson, R. J. & Heitzenberg, J. Aerosol Forcing of Climate (John Wiley & Sons
Press, 1995).

13. Houghton, J. T. et al. Climate Change 2001: The Scientific Basis (Cambridge Uni-
versity Press, 2001).

14. IPCC, 2013: Climate Change 2013. The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change (Cambridge University Press, 2013).

15. Uno, I. et al. Asian dust transported one full circuit around the globe. Nat. Geosci.
2, 557–56 (2009).

16. Francis, D. et al. Atmospheric rivers drive exceptional Saharan dust transport
towards Europe. Atmos. Res. 266, 105959 (2022).

17. Gandham, H., Dasari, H. P., Karumuri, A., Ravuri, P. M. K. & Hoteit, I. Three-
dimensional structure and transport pathways of dust aerosols over West Asia.
npj Clim. Atmos. Sci. 5, 45 (2022).

18. Gkikas, A. et al. Quantification of the dust optical depth across spatiotemporal
scales with the MIDAS global dataset (2003–2017). Atmos. Chem. Phys. 22,
3553–3578 (2022).

19. Han, Y. et al. New insights into the Asian dust cycle derived from CALIPSO lidar
measurements. Remote Sens. Environ. 272, 112906 (2022).

20. Zhao, X., Huang, K., Fu, J. S. & Abdullaev, S. F. Long-range transport of Asian dust
to the Arctic: identification of transport pathways, evolution of aerosol optical
properties, and impact assessment on surface albedo changes. Atmos. Chem.
Phys. 22, 10389–10407 (2022).

21. García, M. I., Rodríguez, S. & Alastuey, A. Impact of North America on the aerosol
composition in the North Atlantic free troposphere. Atmos. Chem. Phys. 17,
7387–7404 (2017).

22. Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental
characterization of global sources of atmospheric soil dust identified with the
nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product.
Rev. Geophys. 40, 1–30 (2002).

23. Huebert, B. J. et al. An overview of ACE-Asia: Strategies for quantifying the
relationships between Asian aerosols and their climatic impacts. J. Geophys. Res.
Atmos. 108, 8633 (2003).

24. Wang, X., Huang, J., Zhang, R., Chen, B. & Bi, J. Surface measurements of aerosol
properties over northwest China during ARM China 2008 deployment. J. Geophys.
Res. Atmos. 115, D00K27 (2010).

25. Che, H. et al. Ground-based aerosol climatology of China: Aerosol optical depths
from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmos.
Chem. Phys. 15, 7619–7652 (2015).

26. Wang, X. et al. A comparison of the physical and optical properties of anthro-
pogenic air pollutants and mineral dust over northwest China. J. Meteorol. Res 29,
180–200 (2015).

27. Chen, Q. et al. Enhanced health risks from exposure to environmentally persistent
free radicals and the oxidative stress of PM2.5 from Asian dust storms in Erenhot,
Zhangbei and Jinan, China. Environ. Int. 121, 260–268 (2018).

28. Wang, X., Liu, J., Che, H., Ji, F. & Liu, J. Spatial and temporal evolution of
natural and anthropogenic dust events over northern China. Sci. Rep. 8, 2141
(2018).

29. Wang, X. et al. Optical and microphysical properties of natural mineral dust and
anthropogenic soil dust near dust source regions over northwestern China.
Atmos. Chem. Phys. 18, 2119–2138 (2018).

30. Che, H. et al. Spatial distribution of aerosol microphysical and optical properties
and direct radiative effect from the China Aerosol Remote Sensing Network.
Atmos. Chem. Phys. 19, 11843–11864 (2019).

31. Kaufman, Y. J., Tanré, D. & Boucher, O. A satellite view of aerosols in the climate
system. Nature 419, 215–223 (2002).

32. Han, H. J. & Sohn, B. J. Retrieving Asian dust AOT and height from hyperspectral
sounder measurements: an artificial neural network approach. J. Geophys. Res.
Atmos. 118, 837–845 (2013).

33. Jin, Q., Wei, J. & Yang, Z. L. Positive response of Indian summer rainfall to middle
East dust. Geophys. Res. Lett. 41, 4068–4074 (2014).

34. Jin, Q., Wei, J., Yang, Z. L., Pu, B. & Huang, J. Consistent response of Indian summer
monsoon to Middle East dust in observations and simulations. Atmos. Chem. Phys.
15, 9897–9915 (2015).

35. Liu, J., Wu, D., Wang, T., Ji, M. & Wang, X. Interannual variability of dust height and
the dynamics of its formation over East Asia. Sci. Total Environ. 751, 142288
(2020).

J. Liu et al.

10

npj Climate and Atmospheric Science (2024)     1 Published in partnership with CECCR at King Abdulaziz University

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
https://ladsweb.modaps.eosdis.nasa.gov/search/order/
https://ladsweb.modaps.eosdis.nasa.gov/search/order/
https://modis.gsfc.nasa.gov/data/dataprod/mod12.php
https://www.mathworks.com/
https://www.mathworks.com/


36. Mukai, M., Nakajima, T. & Takemura, T. A study of long-term trends in mineral
dust aerosol distributions in Asia using a general circulation model. J. Geophys.
Res. Atmos. 109, D19204 (2004).

37. Mao, R., Ho, C. H., Shao, Y., Gong, D. Y. & Kim, J. Influence of Arctic Oscillation on
dust activity over northeast Asia. Atmos. Environ. 45, 326–337 (2011).

38. Wu, C., Lin, Z., Shao, Y., Liu, X. & Li, Y. Drivers of recent decline in dust activity over
East Asia. Nat. Commun. 13, 7105 (2022).

39. Ginoux, P., Prospero, J. M., Torres, O. & Chin, M. Long-term simulation of global
dust distribution with the GOCART model: correlation with North Atlantic Oscil-
lation. Environ. Modell. Softw. 19, 113–128 (2004).

40. Pu, B. & Ginoux, P. How reliable are CMIP5 models in simulating dust optical
depth? Atmos. Chem. Phys. 18, 12491–12510 (2018).

41. Wang, Z. et al. Incorrect Asian aerosols affecting the attribution and projection of
regional climate change in CMIP6 models. npj Clim. Atmos. Sci. 4, 2 (2021).

42. Wu, C. et al. Can climate models reproduce the decadal change of dust aerosol in
East Asia? Geophys. Res. Lett. 45, 9953–9962 (2018).

43. Wu, C., Lin, Z. & Liu, X. The global dust cycle and uncertainty in CMIP5 (Coupled
Model Intercomparison Project phase 5) models. Atmos. Chem. Phys. 20,
10401–10425 (2020).

44. Aryal, Y. N. & Evans, S. Global dust variability explained by drought sensitivity in
CMIP6 models. J. Geophys. Res-Earth 126, e2021JF006073 (2021).

45. Zhao, Y. et al. Multi-model ensemble projection of the global dust cycle by the
end of 21st century using the Coupled Model Intercomparison Project version 6
data. Atmos. Chem. Phys. 23, 7823–7838 (2023).

46. Kok, J. F. et al. Mineral dust aerosol impacts on global climate and climate
change. Nat. Rev. Earth Environ. 4, 71–86 (2023).

47. Zhao, A., Ryder, C. L. & Wilcox, L. J. How well do the CMIP6 models simulate dust
aerosols? Atmos. Chem. Phys. 22, 2095–2119 (2022).

48. Weigel, A. P., Knutti, R., Liniger, M. & Appenzeller, C. Risks of model weighting in
multimodel climate projections. J. Clim. 23, 4175–4191 (2010).

49. Knutti, R. et al. A climate model projection weighting scheme accounting for
performance and interdependence. Geophys. Res. Lett. 44, 1909–1918 (2017).

50. IPCC, 2021: Climate Change 2021. The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change (Cambridge University Press, 2021).

51. Brunner, L. et al. Reduced global warming from CMIP6 projections when
weighting models by performance and independence. Earth Syst. Dyn. 11,
995–1012 (2020).

52. Stott, P., Good, P., Jones, G., Gillett, N. & Hawkins, E. The upper end of climate
model temperature projections is inconsistent with past warming. Environ. Res.
Lett. 8, 014024 (2013).

53. Gillett, N. P. et al. Constraining human contributions to observed warming since
the pre-industrial period. Nat. Clim. Change 11, 207–212 (2021).

54. Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on
future climate change. Nat. Clim. Change 9, 269–278 (2019).

55. Brient, F. Reducing uncertainties in climate projections with emergent con-
straints: concepts, examples and prospects. Adv. Atmos. Sci. 37, 1–15 (2020).

56. Chen, Z. et al. Observationally constrained projection of Afro-Asian monsoon
precipitation. Nat. Commun. 13, 2552 (2022).

57. Yang, X. et al. Bias correction of historical and future simulations of precipitation and
temperature for China from CMIP5 models. J. Hydrometeorol. 19, 609–623 (2018).

58. Yang, X. et al. The optimal multimodel ensemble of bias-corrected CMIP5 climate
models over China. J. Hydrometeorol. 21, 845–863 (2020).

59. Mishra, V., Bhatia, U. & Tiwari, A. D. Bias-corrected climate projections for South
Asia from Coupled Model Intercomparison Project-6. Sci. Data 7, 338 (2020).

60. Sun, Y. et al. Rapid increase in the risk of extreme summer heat in eastern China.
Nat. Clim. Change 4, 1082–1085 (2014).

61. Siler, N., Po-Chedley, S. & Bretherton, C. S. Variability in modeled cloud feedback
tied to differences in the climatological spatial pattern of clouds. Clim. Dyn. 50,
1209–1220 (2018).

62. Brunner, L. et al. Comparing methods to constrain future European climate
projections using a consistent framework. J. Clim. 33, 8671–8692 (2020).

63. Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6
models. Sci. Adv. 6, eaaz9549 (2020).

64. Freychet, N., Hegerl, G., Mitchell, D. & Collins, M. Future changes in the frequency
of temperature extremes may be underestimated in tropical and subtropical
regions. Commun. Earth Environ. 2, 28 (2021).

65. Zhou, T. New physical science behind climate change: What does IPCC AR6 tell
us? Innovation 2, 100173 (2021).

66. Lee, J. Y. et al. Future global climate: Scenariobased projections and near-term
information//IPCC. Climate Change 2021: The Physical Science Basis. Contribution
of Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change (Cambridge University Press, 2021).

67. Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A. & Ramirez-Villegas, J.
High-resolution and bias-corrected CMIP5 projections for climate change impact
assessments. Sci. Data 7, 7 (2020).

68. Hu, S. & Zhou, T. Skillful prediction of summer rainfall in the Tibetan Plateau on
multi-year timescales. Sci. Adv. 7, eabf9395 (2021).

69. Panofsky, H. A. & Brier G. W. Some Application of Statistics to Meteorology
(Pennsylvania State University, 1958).

70. Gudmundsson, L., Bremnes, J. B., Haugen, J. E. & Skaugen, T. E. Technical Note:
Downscaling RCM precipitation to the station scale using statistical transforma-
tions—a comparison of methods. Hydrol. Earth Syst. Sci. 16, 3383–3390 (2012).

71. Li, H., Sheffield, J. & Wood, E. F. Bias correction of monthly precipitation and
temperature fields from Intergovernmental Panel on Climate Change AR4 models
using equidistant quantile matching. J. Geophys. Res. Atmos. 115, D10101 (2010).

72. Liu, J. et al. Impact of Arctic amplification on declining spring dust events in East
Asia. Clim. Dyn. 54, 1913–1935 (2019).

73. Buchard, V. et al. The MERRA-2 aerosol reanalysis, 1980-onward, part II: evaluation
and case studies. J. Clim. 30, 6851–6872 (2017).

74. Randles, C. A. et al. The MERRA-2 aerosol reanalysis, 1980-onward, part I: system
description and data assimilation evaluation. J. Clim. 30, 6823–6850 (2017).

75. Taylor, K. E. Summarizing multiple aspects of model performance in a single
diagram. J. Geophys. Res. Atmos. 106, 7183–7192 (2001).

76. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate
predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).

77. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in projections of
regional precipitation change. Clim. Dyn. 37, 407–418 (2011).

78. Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. & Zhao, M. Global-scale attribution
of anthropogenic and natural dust sources and their emission rates based on
MODIS deep blue aerosol products. Rev. Geophys. 50, RG3005 (2012).

79. Kok, J. et al. Contribution of the world’s main dust source regions to the global
cycle of desert dust. Atmos. Chem. Phys. 21, 8169–8193 (2021).

80. Ridley, D. A., Heald, C. L. & Prospero, J. M. What controls the recent changes in
African mineral dust aerosol across the Atlantic? Atmos. Chem. Phys. 14,
5735–5747 (2014).

81. Xia, W., Wang, Y. & Wang, B. Decreasing dust over the Middle East partly caused
by irrigation expansion. Earths Future 10, e2021EF002252 (2022).

82. Li, J. et al. Predominant type of dust storms that influences air quality over
northern China and future projections. Earth’s Future 10, e2022EF002649
(2022).

83. Mytilinaios, M. et al. Comparison of dust optical depth from multi-sensor pro-
ducts and MONARCH (Multiscale Online Non-hydrostatic AtmospheRe CHem-
istry) dust reanalysis over North Africa, the Middle East, and Europe. Atmos. Chem.
Phys. 23, 5487–5516 (2023).

84. Evan, A. T. Surface winds and dust biases in climate models. Geophys. Res. Lett. 45,
1079–1085 (2018).

85. Evan, A. T., Flamant, C., Gaetani, M. & Guichard, F. The past, present and future of
African dust. Nature 531, 493–495 (2016).

86. Yuan, T. L. et al. Positive low cloud and dust feedbacks amplify tropical North
Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 43, 1349–1356 (2016).

87. Doherty, O. M., Riemer, N. & Hameed, S. Saharan mineral dust transport into the
Caribbean: observed atmospheric controls and trends. J. Geophys. Res. 113, 1–10
(2008).

88. DeFlorio, M. J. et al. Interannual modulation of subtropical Atlantic boreal sum-
mer dust variability by ENSO. Clim. Dyn. 46, 1–15 (2015).

89. Colarco, P., da Silva, A. M., Chin, M. & Diehl, T. Online simulations of global
aerosol distributions in the NASA GEOS-4 model and comparisons to satellite
and ground-based aerosol optical depth. J. Geophys. Res. Atmos. 115, D14207
(2010).

90. Global Modeling and Assimilation Office (GMAO) MERRA-2 tavgM_2d_aer_Nx: 2d,
Monthly mean, Time-averaged, Single-Level, Assimilation, Aerosol Diagnostics
V5.12.4, Greenbelt, MD, USA: Goddard Space Flight Center Distributed Active Archive
Center (GSFC DAAC), Accessed on 28 September 2022. https://doi.org/10.5067/
FH9A0MLJPC7N (2015).

91. Levy, R. C. et al. The Collection 6 MODIS aerosol products over land and ocean.
Atmos. Meas. Tech. 6, 2989–3034 (2013).

92. Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements
and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).

93. Gkikas, A. et al. ModIs Dust AeroSol (MIDAS): a global fine-resolution dust optical
depth data set. Atmos. Meas. Tech. 14, 309–334 (2021).

94. Ginoux, P. et al. Sources and distributions of dust aerosols simulated with the
GOCART model. J. Geophys. Res. 106, 20255–20273 (2001).

95. Aloysius, N. R., Sheffield, J., Saiers, J. E., Li, H. & Wood, E. F. Evaluation of historical
and future simulations of precipitation and temperature in central Africa from
CMIP5 climate models. J. Geophys. Res. Atmos. 121, 130–152 (2016).

J. Liu et al.

11

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2024)     1 

https://doi.org/10.5067/FH9A0MLJPC7N
https://doi.org/10.5067/FH9A0MLJPC7N


ACKNOWLEDGEMENTS
This work is supported by the National Natural Science Foundation of China (42205081,
and 41875091), and the China Postdoctoral Science Foundation (2021M701522).

AUTHOR CONTRIBUTIONS
J.L.: conceptualization, methodology, writing original draft, and funding acquisition; X.W.:
methodology and data analysis; D.W., and H.W.: data curation and formal analysis; Y.L.:
conceptualization and writing; M.J.: conceptualization and funding acquisition. All
authors contributed to the review and improvement of the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41612-023-00550-9.

Correspondence and requests for materials should be addressed to Yu Li or Mingxia Ji.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

J. Liu et al.

12

npj Climate and Atmospheric Science (2024)     1 Published in partnership with CECCR at King Abdulaziz University

https://doi.org/10.1038/s41612-023-00550-9
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Historical footprints and future projections of global dust burden from bias-corrected CMIP6�models
	Introduction
	Results
	Global DML simulation
	Performance assessment of bias-corrected CMIP6�models
	Future projection of global�DML
	Uncertainty assessment

	Discussion
	Methods
	MERRA2 reanalysis
	CMIP6 climate�models
	MODIS satellite�data
	Calculation of MODIS dust mass loading
	EDCDF bias-corrected�method
	Taylor skill score�method
	Separating uncertainty sources

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




