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Large spread in interannual variance of atmospheric CO2
concentration across CMIP6 Earth System Models
Verónica Martín-Gómez 1✉, Yohan Ruprich-Robert 1, Etienne Tourigny 1, Raffaele Bernardello 1, Pablo Ortega 1,
Markus G. Donat 1,2 and Margarida Samsó Cabré 1

Numerical Earth System Models (ESMs) are our best tool to predict the evolution of atmospheric CO2 concentration and its effect
on Global temperature. However, large uncertainties exist among ESMs in the variance of the year-to-year changes of atmospheric
CO2 concentration. This prevents us from precisely understanding its past evolution and from accurately estimating its future
evolution. Here we analyze various ESMs simulations from the 6th Coupled Model Intercomparison Projects (CMIP6) to understand
the origins of the inter-model uncertainty in the interannual variability of the atmospheric CO2 concentration. Considering the
observed period 1986-2013, we show that most of this uncertainty is coming from the simulation of the land CO2 flux internal
variability. Although models agree that those variations are driven by El Niño Southern Oscillation (ENSO), similar ENSO-related
surface temperature and precipitation teleconnections across models drive different land CO2 fluxes, pointing to the land
vegetation models as the dominant source of the inter-model uncertainty.
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INTRODUCTION
The implementation of the Paris Agreement on climate in 2015 to
reduce CO2 emissions by signing countries should translate into a
decrease in the atmospheric growth rate of CO2 starting now. To
assess the collective progress towards achieving the purpose of
this agreement, signing countries will take stock of its implemen-
tation every five years in a process known as “global stocktake”.
However, at present, independent verification of the collective

effort to reduce greenhouse gas emissions is hindered by both
large uncertainties in the reporting of national emissions1,2, and by
year-to-year fluctuations in the carbon fluxes of the atmosphere
exchanges with the land and ocean due to the natural variability
of the Earth System1. In fact, by using the best estimates of
atmospheric carbon sources and sinks coming from direct but
sparse observations completed by numerical model data, we can
only partially account for the year-to-year variability of the past
observed atmospheric CO2 concentration. The difference between
our reconstruction and this past observed atmospheric CO2 values
represents the overall uncertainty of the Global Carbon Budget3

(GCB), the so-called “budget imbalance”.
In practical terms, such a budget imbalance translates into a

delay in our ability to detect a change in the global CO2 emissions
by humans. Some authors have quantified that, because of this
budget imbalance, it would take close to 10 years to distinguish
between a scenario of flat emissions (0% growth) from one with
1% per year growth1. Additionally, the GCB has the limitation of
working only as a backward check of the global CO2 emissions. Its
update from one year to the next relies on the availability of
several observation-based products, with the associated unavoid-
able delays linked to technical reasons.
To move beyond this approach, the GCB could use near-term

predictions of future atmospheric CO2 growth rate. Predicting the
near-term (up to a decade) evolution of carbon sinks and
atmospheric CO2 growth is an active field of research that has
received increasing interest in the last few years4–6. Near-term

carbon cycle forecasts attempt to predict the combined effect of
human activity and natural climate variability on the global carbon
cycle. These predictions are performed using Earth System Models
(ESMs) that include detailed representations of the global carbon
cycle, coupled to climate models, and build upon the progress
made by the near-term climate prediction community in the last
years6–11.
For the global stocktake, using information from the near-term

predictions would offer the advantage of independently verifying
global emissions pledges in advance, by quantifying the CO2
growth rate to be expected if pledges are kept. Yet, to provide
useful information from those predictions, the natural variability of
the climate system must be correctly simulated and predicted by
the numerical forecast systems. In fact, fluctuations of the
atmospheric carbon sources and sinks, linked to climate natural
variability, are important drivers of the observed year-to-year
variability of the atmospheric CO2 growth rate (ref. 12,13).
Others authors14 quantified the relative importance of the

internal climate variability of CO2 fluxes compared to potential
emission changes by contrasting two sets of large ensemble
simulations performed with the same model but following two
different emission scenarios: one with a 2% decrease per year of
CO2 emission and one with a 1% increase per year14. They showed
that the delay in the detection of a change between those two
emission policies is up to 10 years due to confounding effects of
natural variability14. That is to say, the confounding effect due to
internal variability is larger than the one due to the budget
imbalance, as estimated in ref. 1.
In summary, representing and predicting natural climate

variability becomes paramount if we aspire to move beyond the
backward verification approach of the GCB and attempt to predict
the evolution of future atmospheric CO2 growth rate. This calls for
an extensive analysis of how forecast systems-type ESMs represent
climate variability and its effects on atmospheric CO2. To achieve
this, here we consider the historical and piControl simulations from

1Barcelona Supercomputing Center - Centro Nacional de Supercomputación (BSC-CNS), Barcelona, Spain. 2Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona,
Spain. ✉email: vero.martin.gomez@gmail.com

www.nature.com/npjclimatsci

Published in partnership with CECCR at King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00532-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00532-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00532-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00532-x&domain=pdf
http://orcid.org/0000-0002-7855-4893
http://orcid.org/0000-0002-7855-4893
http://orcid.org/0000-0002-7855-4893
http://orcid.org/0000-0002-7855-4893
http://orcid.org/0000-0002-7855-4893
http://orcid.org/0000-0002-4008-2026
http://orcid.org/0000-0002-4008-2026
http://orcid.org/0000-0002-4008-2026
http://orcid.org/0000-0002-4008-2026
http://orcid.org/0000-0002-4008-2026
http://orcid.org/0000-0003-4628-1461
http://orcid.org/0000-0003-4628-1461
http://orcid.org/0000-0003-4628-1461
http://orcid.org/0000-0003-4628-1461
http://orcid.org/0000-0003-4628-1461
http://orcid.org/0000-0003-4923-1582
http://orcid.org/0000-0003-4923-1582
http://orcid.org/0000-0003-4923-1582
http://orcid.org/0000-0003-4923-1582
http://orcid.org/0000-0003-4923-1582
http://orcid.org/0000-0002-4135-9621
http://orcid.org/0000-0002-4135-9621
http://orcid.org/0000-0002-4135-9621
http://orcid.org/0000-0002-4135-9621
http://orcid.org/0000-0002-4135-9621
http://orcid.org/0000-0002-0608-7288
http://orcid.org/0000-0002-0608-7288
http://orcid.org/0000-0002-0608-7288
http://orcid.org/0000-0002-0608-7288
http://orcid.org/0000-0002-0608-7288
http://orcid.org/0000-0003-2868-2755
http://orcid.org/0000-0003-2868-2755
http://orcid.org/0000-0003-2868-2755
http://orcid.org/0000-0003-2868-2755
http://orcid.org/0000-0003-2868-2755
https://doi.org/10.1038/s41612-023-00532-x
mailto:vero.martin.gomez@gmail.com
www.nature.com/npjclimatsci


the 6th phase of the Coupled Model Intercomparison Project15

(CMIP6) performed with ESMs to:

1. evaluate their performance in reproducing the interannual
variability of the atmospheric CO2,

2. identify the main sources of interannual variability and
3. investigate the origins of disagreement among models.

RESULTS
Global atmospheric CO2 growth rate interannual variability
We start by comparing the interannual variability of the CO2
growth rate (σt;dCO2dt

) of the CMIP6 historical simulations to the
observed one (Fig. 1). No long-term trend has been removed at
this point in order to evaluate the full performance of the CMP6
historical simulations in reproducing the observed variability. The
year-to-year rate of change of the atmospheric CO2 amount is
directly linked to the sum, over a year, of the anthropogenic
emissions and of the fluxes of Carbon exchanged by the
atmosphere with the land and the ocean:

dCO2
dt

¼ CO2Emissions þ CO2Ocean þ CO2Land (1)

where dCO2
dt , CO2Emissions, CO2Ocean and CO2Land represent the

temporal variations of the global amount of atmospheric CO2, the
global anthropogenic CO2 emissions, the globally integrated
atmosphere-ocean CO2 fluxes, and the globally integrated
atmosphere-land CO2 fluxes, respectively. We stress that, in Eq.
(1), the CO2 fluxes associated with land use changes due to
human activities are included in the CO2Land term.
To quantify the variations in the annual rate of change of the

atmospheric CO2 amount (dCO2dt ; cf. Equation (1)), we compute its
interannual standard deviation (σt;dCO2dt

). In addition, to assess the
origin of those variations, we compute the interannual standard
deviations of the annual globally integrated CO2Land (called σt;Land)
and CO2Ocean (called σt;Ocean) and of the CO2Emissions (called
σt;Emissions ; cf. “Interannual variability and inter-model spread”).
Focusing on the period 1986-2013, Fig. 1 shows that interannual
variability of the observed atmospheric CO2 growth rate is coming
equally from the CO2Land and from CO2Emissions and that CO2Ocean
plays a negligible role. In addition, σt;Land and σt;Emissions show
similar values as σt;dCO2dt

, which implies that the time anomalies of

CO2Land and CO2Emissions are partly compensating each other. In
fact, there is a temporal anti-correlation of ~−0.85 between those
2 terms on average among models (see also Supplementary
Results 1).
The multi-model mean of σt;dCO2dt

from the historical simulations
(“Numerical simulations”) is close to the observed value
(47763 kg s−1 vs 38239 kg s−1; see also Supplementary Results 2).
Similarly, the historical simulations reproduce the observed σt;Land

and σt;Ocean , as well as their relative contribution to σt;dCO2dt
.

However, there is a large inter-model spread in the simulation
of those interannual variability, with the highest (INM-CM4-8) and
the lowest (CESM2) values for σt;dCO2dt

differing by a factor of 3. In
agreement with ref. 16, we find that such a spread comes from the
atmosphere-land CO2 fluxes.
The large inter-model difference in σt;dCO2dt

in the historical
simulations reveals considerable uncertainties in our ability to
predict the near-term evolution of atmospheric CO2 using state-
of-the-art ESMs. This prevents us from providing in advance useful
information for independently verifying global emissions pledged
by the signing parties of the Paris Agreement.

Large inter-model spread in σt;dCO2dt

To explore the origins of the intermodel-spread, we remove the
common multi-model mean response to time-varying external
forcing, βt , to each historical simulation. We call those residuals
the historical_DT (from historical detrended) simulations (for more
details, cf. “”Decomposing the sources of inter-model spread). The
temporal fluctuations of dCO2

dt in the historical_DT simulation of a
given model m can be described as the sum of the specific
externally forced response of the model that deviates from βt (cf.
εmt in Eq. (3)) and the internally driven variability simulated by the
model (cf. γmt in Eq. (3)). In historical_DT simulations, the inter-
model spread in σt;dCO2dt

(Fig. 2) can therefore come from different
responses across models to the same external forcings (εmt),
different simulations of the internal variability of the climate
system (i.e., different γmt), or due to differences across models in
the temporal interaction of εmt and γmt (cf. details in “Decompos-
ing the sources of inter-model spread”).
To disentangle the effects on the inter-model spread in σt;dCO2dt

coming from ε and γ in the historcial_DT simulations, we compute
the temporal variance of dCO2

dt (σ2
t;dCO2dt

) in piControl simulations,

Fig. 1 CO2 growth rate decomposition in the historical period. Interannual standard deviation of (1st section) the rate of change of the
atmospheric CO2 amount (σt;dCO2dt

), (2nd section) the globally integrated CO2 fluxes over Land (σt;Land), (3rd section) the globally integrated CO2
fluxes over Ocean (σt;Ocean) and (4th section) the anthropogenic emissions (σt;Emissions), for observations and CMIP6 ESMs historical simulations
(cf. list of models in Supplementary Table 1). This analysis is performed over the 1986–2013 period, which is common to observation estimates
and historical simulations. Externally forced signal is not removed from the data.

V. Martín-Gómez et al.

2

npj Climate and Atmospheric Science (2023)   206 Published in partnership with CECCR at King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;



which isolate the internal variability by construction (cf. “Decom-
posing the sources of inter-model spread”). Hereinafter, we
denoted the interannual variance as σ2

t , where the subscript “t”
indicates the variance is computed over the time dimension. This
is computed as a measure of the variability of the year-to-year rate
of change of the atmospheric CO2 and of its drivers, which we
note σ2

t;dCO2dt
, σ2

t;Land , σ
2
t;Ocean , and σ2

t;Emissions for
dCO2
dt , CO2Land, CO2Ocean

and CO2Emissions, respectively.
Comparing the inter-model variance of σ2

t;dCO2dt
between piControl

and historical_DT simulations, we find that 65% of the inter-model
variance in historical_DT simulations is directly coming from the
different simulations among models of the internal variability,
whereas 35% is explained by the different model responses to the
same external forcing and its potential interaction with the
internal variability.
In addition, results from Figs. 1 and 2 highlight that the spread

among models in the interannual variability of the atmospheric
CO2 growth rate (σt;dCO2dt

) is coming from how the models simulate

the atmosphere-land CO2 fluxes. In fact, we quantify that 94% and
0.3% of the inter-model variance of σ2

t;dCO2dt
in historical_DT is

coming from the inter-model variance of σ2
t;Land and σ2

t;Ocean ,
respectively.
Since the inter-model spread is primarily coming from different

simulations of the internal variability across models, we further
analyze the piControl simulations to better understand the origins
of this spread. In particular, we will answer the three following
questions:

1. Which land regions are contributing the most to the global
changes in atmospheric CO2 concentration?

2. What are the main drivers of the variability of the air-land
CO2 fluxes?

3. Where is the large spread among models coming from?

Land areas controlling σt;dCO2dt

In this section, we analyze which land areas contribute the most to
the interannual variability of the atmospheric CO2 growth rate.
Figure 3a shows that, on average over all piControl simulations,
tropical areas are the regions contributing the most to σ2

t;dCO2dt
, in

particular: tropical South America, tropical-southern Africa, south-
east Asia and part of Oceania (in agreement with17–20). These
regions explain, in average among models, 22%, 10%, 5%, and 4%
of σ2

t;Land , respectively, whereas their covariances explain as much

as 34% of σ2t;Land (see also Supplementary Results 3). These are also
the areas where models disagree the most on the amplitude of
the interannual standard deviation of the land CO2 fluxes (Fig. 3b).
This indicates that the inter-model spread in Fig. 2 is dominated
by differences among models of the CO2 flux over tropical land
areas. In fact, there is an inter-model correlation of 0.99 between
σt;Land and the temporal standard deviation of the land CO2 fluxes
integrated over the tropics (35°S–35°N).
To identify whether one of the key regions marked in Fig. 3a is

leading the inter-model variance of σ2
t;Land , we decompose the

global σ2
t;Land into its regional contribution (details in Supplemen-

tary Note). As results, Fig. 4 shows that all the tropics explain 44%
of the total inter-model spread of σ2

t;Land , the covariance between
the σ2

t;Land�Tropics and σ2t;Land�Extratropics 32%, extratropics accounts
for 8%, and the residual 13%. These results imply that there is no
only one triggering of the inter-model variance, but all regions are
contributing to it. Moreover, the large covariance between
σ2t;Land�Tropics and σ2

t;Land�Extratropics suggests that models with high
variability of CO2Land in the tropics have also high CO2Land in the
extratropics. Both terms together, all the tropics and the
covariance between σ2t;Land�Tropics and σ2

t;Land�Extratropics explain the
76% of the total inter-model spread observed on Fig. 2.

Ocean drivers of the atmospheric CO2 growth rate variability
Previous studies have shown a strong relation between ENSO and
dCO2
dt as well as CO2Land12,13,21–23. In particular, during El Niño

events (positive phase of ENSO), the land biosphere becomes a
net source of CO2 for the atmosphere12,24,25. The anomalously
warm temperatures over the tropics reduce vegetation productiv-
ity by degrading the photosynthesis processes26, which decreases
the atmospheric CO2 uptake by vegetation. Moreover, warmer
conditions increase the heterotrophic respiration in the tropics
through an enhanced microbial metabolism that decomposes soil
carbon, leading to more CO2 outgassing27. In addition, the broadly
drier conditions during El Niño events increase vegetation
mortality rates, which releases CO2 into the atmosphere28,29.
The opposite mechanisms operate during the negative phase of
ENSO, La Niña events.
We find that there is a general agreement across models that

ENSO is the main oceanic diver of σt;Land (Fig. 3c, e, Supplemen-
tary Fig. 3), in agreement with previous studies. The multi-model
mean of the regression map of grid-points SST on CO2Land from
the piControl simulations shows a very similar pattern as the
regression map of grid-points SST on the Niño4 index (cf. “The
Niño4 index as a proxy for ENSO”; Fig. 3e), pointing to the tropical

Fig. 2 CO2 growth rate decomposition and role of the internal variability. Standard deviation of the CO2 fluxes in total (columns 1–3), and
splitting into the land (columns from 4 to 6) and ocean contributions (columns 7 to 9) for historical_DT CMIP6 simulations (1st, 4th, and 7th),
piControl CMIP6 simulations (2nd, 5th, and 8th) and for observations (3rd, 6th, and 9th). Numbers over the columns indicate the inter-model
spread, σ2m σ2t xð Þ� �

. The externally forced signal was removed from all the historical simulations and observations (cf. details in “Removal of the
externally forced variability in observation” and “Decomposing the sources of inter-model spread”).
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Fig. 3 Main driver of the global atmosphere-land CO2 fluxes. Regression between globally integrated and local atmosphere-land CO2 fluxes
from piControl simulations: amulti-model mean (mean of the model-specific regression coefficients) (Units: kgs−1 kg−1s), b inter-model spread
(standard deviation across models of the model-specific regression coefficients) (Units: kgs−1 kg−1s). c–f are the same as a and b but for the
local SST (Units: K kg−1s) and 2 meters air temperature (Units: K kg−1s) instead of the local CO2 fluxes, respectively. Regression maps are
computed using the annual average from January to December. The CO2 fluxes are defined positively into the land. Black boxes in a indicate
the regions contributing the most to the global atmosphere-land CO2 fluxes. See also Supplementary Figs. 2 and 3 for maps of each model.

Fig. 4 Contributions to the inter-model variance by tropics and extratropics. Percentage of the inter-model variance explained by the
Tropics (44%), Extratropics (8%), covariance between σ2t;Land�Tropics and σ2t;Land�Extratropics (31%) and the residual term (13%). In light gray and close
to the Tropics bar appears the percentage explained by each of the tropical key regions from Fig. 3a. More details about the decomposition
can be found in Supplementary Note.
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Pacific SST variations as the dominant driver of σt;Land (Fig. 3c). The
regression map of SST on CO2Land also shows negative regression
coefficients over the tropical Indian and Atlantic oceans, although
much weaker than in the equatorial Pacific. Such correlations can
be explained by the impacts of ENSO on the other tropical
basins30–32 and, therefore might not reflect a causality link
between those local SSTs and the CO2Land.
Because ENSO is the main driver of the interannual CO2Land

variability, inter-model differences in ENSO characteristics (spatial
pattern, amplitude and teleconnections; Fig. 3f, Supplementary
Figs. 3–6) could explain the inter-model variance of σ2

t;Land . In fact,
the inter-model spread in the regression map of local SST on
CO2Land (Fig. 3d) shows a similar pattern as the inter-model spread
in the regression map of local SST on Niño4 (Fig. 3f; correlation
pattern of 0.89). This similarity supports the link between ENSO
diversity among models and the inter-model variance in σ2t;Land .
However, it is also possible that the inter-model variance in σ2

t;Land

is coming from different land vegetation model responses to
similar atmospheric forcing33 (including the ENSO teleconnec-
tions). In the following section, we discuss in more detail those
two hypotheses.

Origin of the multi-model spread in CMIP6 models
Figure 5a shows that ENSO has a strong impact on land CO2 fluxes
over the tropical areas, as expected from Fig. 3. In particular,
positive ENSO conditions (i.e. El Niño states) are associated with a
decrease of the land CO2 fluxes over most of the tropical areas.

Physically, the influence of ENSO on the land CO2 fluxes takes
place through its impacts on the 2-meter air temperature and
precipitation conditions. During El Niño events, the whole tropical
band warms up (Fig. 5e). These warm anomalies are detrimental
for tropical vegetation already stressed by heat26,34,35 and they are
expected to decrease the land CO2 uptake. However, the highest
absolute regression values between CO2 fluxes and ENSO appear
mostly where there are additionally strong negative regression
values between ENSO and precipitation, like in tropical South
America, South-East Asia and Australia (Fig. 5c). These drier
conditions prevent the growing and development of vegetation
and therefore lead to a decrease of the land CO2 uptake as well (in
agreement with12 and reference therein).
The tropical regions that show the largest inter-model spread in

the land CO2 flux response to ENSO coincide with the regions
showing the largest inter-model spread in the land CO2 flux
regression with the globally integrated CO2Land (compare Figs. 3b
and 5b). In addition, those tropical regions are also the ones where
there is the most inter-model spread in the precipitation and
temperature responses to ENSO (Fig. 5d, f). This supports the idea
that different ENSO teleconnections among models contribute to
the inter-model variance in σ2t;Land , in agreement with the study of36.
However, in case different ENSO teleconnections among

models would really be responsible for the inter-model variance
in σ2

t;Land , we should expect a positive inter-model correlation
between the amplitude of the temperature and precipitation
responses to ENSO and the interannual variability of land CO2
fluxes at the regional scale. Specifically, we expect that models

Fig. 5 Impact of Niño4 in land CO2 fluxes, precipitation and 2-meter air temperature. Multi-model mean of regression maps of the Niño4
index onto a local land CO2 fluxes (defined positively when pointing into land) (Units: kgs−1 K−1), c precipitation (Units: kgm−2 s−1 K−1) and
e 2-meter air temperature (Units: K/K). Inter-model spread of the regression maps of Niño4 onto b CO2Land , d precipitation (Units:
kgm−2 s−1 K−1) and f 2-meter air temperature (Units: K/K), computed as the standard deviation of the regression maps across models. See also
Supplementary Figs. 4, 5 and 6 for maps of each model. The local land CO2 fluxes, precipitation and air surface temperatures are annually
averaged from January to December, whereas the Niño4 index is computed as the average from October to March in such a way that ENSO is
contemporary or slightly leading the anomalies seen on the maps.
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simulating stronger ENSO impacts on temperature and precipita-
tion would also simulate stronger CO2Land interannual variability.
Yet, here we don’t find such correlations in general among the
four key regions controlling the global σt;Land (Table 1). Only the
Southeast Asia region is showing a positive significant inter-model
correlation (r= 0.47) between the local CO2 flux temporal
variability and the sensitivity of the precipitation response to
ENSO (see Supplementary Figs. 7 and 8). Overall, this result implies
that differences in ENSO teleconnections among models is not the
main reason for the inter-model variance in σ2

t;Land . We note that
results based on the Niño3.4 index rather than the Niño4 index are
very similar to those shown here.
Land vegetation is more tightly linked to soil moisture than

precipitation37,38. Ultimately, land vegetation conditions depend
on the soil moisture availability. Therefore, their response to ENSO
depends on ENSO atmospheric teleconnections and their relation
to soil properties. The different representation of water storage
and soil processes among the CMIP6 models could therefore
explain part of the inter-model spread in σ2t;Land .
Another potential explanation for the large inter-model

variance in σ2t;Land , is that the different land vegetation compo-
nents of the CMIP6 ESMs have different sensitivity to similar
atmospheric forcing. To verify this hypothesis, we compute the
inter-model variance in σ2

t;Land from the land-hist simulations (cf.
“Numerical simulations”) and compare it to the historical ones. In
fact, in land-hist simulations the land surface model components
used in historical simulations are forced with the same atmosphere
reanalysis forcing. Differences among land CO2 fluxes in land-hist
can only arise from different land surface model sensitivity to

identical meteorological conditions. Similarly to the historical
simulations, to focus on the inter-model spread, we remove to
each of the land-hist simulations the time varying multi-model
mean signal, and we call this residual land-hist_DT. We stress that
the number of land-hist simulations available is limited (only 7),
the results based on those datasets should therefore be
considered with caution.
In Fig. 6, it is possible to see differences for the same land

surface model between σt;Land computed from historical_DT and
land-hist_DT (e.g., UKESM1-0-LL, MPI-ESM1-2-LR, and IPSL-CM6A-
LR). This can be explained by the different ENSO teleconnections
seen by the land surface model between the forcing coming from
Observations (land-hist) and the one coming from the free ESM
integration (historical). However, overall the inter-model variance
in σ2

t;Land from historical_DT and land-hist_DT simulations are
similar. This result indicates that the main source of spread among
models in σ2t;Land is due to the different sensitivity of the land
vegetation models to identical atmospheric forcing.

DISCUSSION
Using observation-based products, we analyzed the interannual
variability of the atmospheric CO2 growth rate over 1986-2013.
We show that the main sources of interannual variability over this
period are due to anthropogenic emissions and to atmospheric-
land CO2 fluxes. We find that, on average, the historical
simulations of the CMIP6 database reproduce the observed
variability and its partitioning. However, we reveal a large spread
among models, which implies a strong uncertainty in our ability to
predict the near-term evolution of atmospheric CO2 using state-
of-the-art ESMs. In particular, it prevents us from providing a
trustworthy forecast of the atmospheric CO2 concentration,
assuming the global emissions pledged in advance by the signing
countries of the Paris Agreement were respected.
Comparing the historical simulations to the piControl simula-

tions, we find that the inter-model spread is mostly coming from
the different simulations across models of the internal variability
of the land CO2 fluxes, explaining 64% of the total inter-model
variance. Although in all models, ENSO is the main driver of the
interannual land CO2 flux variability at a global scale, we find that
the diversity of ENSO and of its associated teleconnections among
models are not the main causes for this inter-model spread.
Indeed, using land-hist simulations, we show that most of this
spread can be due to the different sensitivities of the ESMs’ land
vegetation component to identical atmospheric forcing.

Table 1. Role of ENSO teleconnections in the inter-model spread of
σ2t;Land .

Region\correlation between (σ2t;Land ,α
2) (σ2t;Land ,ρ

2)

Amazonian −0.22 −0.36

South Tropical Africa −0.28 −0.53

Southeast Asia 0.47 −0.14

Oceania −0.23 0.36

Correlation between the variance of CO2Land over each of the key regions
and the square of the regression coefficient of Nino4 normalized onto
precipitation (α2) and surface air temperature (ρ2) averaged over each key
region (see also Supplementary Figs. 7 and 8). Bold values exceed 95%
level of confidence from one-tailed t test.

Fig. 6 Variability of the CO2 fluxes over land in historical CMIP6 simulations and land-hist LUMIP simulations. The atmosphere-land CO2
fluxes are globally integrated, annually averaged and with the externally forced signal removed, as in Fig. 2. Period 1986–2013. Numbers over
the columns indicate the inter-model spread, σ2

m σ2t xð Þ� �
.
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Overall, our results show that it is pressing to constrain the
sensitivity of the land vegetation models to atmospheric forcing
better in order to improve our ability to predict the future
evolution of the atmospheric CO2 concentration. This calls for
large-scale measurement campaigns of the land surface CO2
fluxes in order to calibrate models better. Better understanding
and constraining the sensitivity of land vegetation models to
climate forcing will have several important benefits:

1. Reduction of the carbon budget imbalance. For the current
estimations of CO2Land, the GCB used outputs from several
land-vegetation models forced with the same atmospheric
reanalysis. The improvement of the land vegetation models
sensitivity improve the CO2Land estimations and thus reduce
the carbon budget imbalance.

2. As mentioned before, GCB has the limitation of working only
as a backward check of the global CO2 emissions. To move
beyond this approach, the GCB could use near-term climate
predictions. An improvement of the land-vegetation models
sensitivity could induce an upgrade of the near-term future
CO2 predictions, which could be used by GCB as a forwards
verification of the implementation of the Paris Agreement
implementation.

3. Finally, it will also have important benefits for the future
climate scenarios. The fact that different land-vegetation
models present different sensitivities to the same climate
conditions introduces a large spread in the response of
CO2Land to climate conditions32 and on the future evolution
of the atmospheric CO2 concentration, and therefore on the
climate changes for a given emission scenario.

METHODS
The main objective of our study is to evaluate the performance of
the CMIP6 class ESMs in simulating the temporal changes of the
observed amount of atmospheric CO2 and its associated drivers.
In particular, we focus on the variability of the year-to-year rate of
change of the atmospheric CO2 amount, which is directly linked
to the sum, over a year, of the CO2Emissions and of the CO2Ocean and
CO2Land (see Eq. (1)).

Observation estimates (dCO2dt , CO2Land, CO2Ocean, CO2Emissions)
We use as reference dataset the observed estimate of global mean
monthly mole fraction of CO2 at the surface air from the historical
Greenhouse Gases dataset39 which was used to force CMIP6
historical simulations (cf. input4MIPs: https://esgf-node.llnl.gov/
projects/input4mips/). To estimate the observed rate of change of
the atmospheric CO2 amount, dCO2

dt , we converted those surface
values from parts per million of CO2 to kg of Carbon by
multiplying them by 2:124:1012 kgC.ppm−1, following16. By
computing the differences among consecutive December–January
means we get an estimation of the annual rate of change in the
global atmospheric CO2 quantity (in kgC/s). We compute this
observed dCO2

dt over the period 1850-2013 as the original observed
estimate dataset of surface atmospheric CO2 concentration only
covers the period January 1849 to December 2014.
Analogously, CO2Emissions are taken from the annual sums of the

anthropogenic emissions from the Community Emissions Data
System (CEDS) dataset from Hoesly et al (2018) used in CMIP6.
CO2Ocean is based on the monthly atmosphere-ocean CO2 flux

data of Watson40 and the 7 Global Carbon Budget 2021
observation-based Data Products (cf. Table 4 in ref. 41): CSIR-
ML642, NIES-NN43, JMA-MLR44, OS-ETHZ-GRaCER45, CMEMS-LSCE-
FFNNv246, Landschützer47,48(MPI-SOMFFN) and Rödenbeck49

(Jena-MLS). The monthly values from these products are globally
integrated and annually averaged. The common period to all the
ocean fluxes data products spans 1986–2020. However, given that

the observed estimate of the dCO2
dt is only available until 2013, our

period of study is limited to 1986–2013.
CO2Land is estimated as a residual of the sum of the three other

terms of Eq. (1) as there are no observational-based global
measurements of the atmosphere-land CO2 fluxes. Since 8
observation-based products of the atmosphere-ocean CO2 fluxes
exist (see above), we compute and use 8 different globally
integrated atmosphere-land CO2 fluxes in this article.
We note two caveats in our estimate of dCO2

dt . Due to the
temporal resolution of the original data, the annual rate of change
is not estimated here from differences of instantaneous values
taken on the 1st of January at 00:00 but from December–January
mean values. Using an emission-driven esm-piControl simulation
performed with the EC-Earth3-CC models (cf. Supplementary
Table 1), for which daily data are available, we quantified that this
approximation leads to a ~4% error on average in our annual rate
estimate, which translates into an under estimation of 0.6% of the
annual rate standard deviation. Second, the conversion of
atmospheric CO2 concentration from input4MIPs into global
atmospheric Carbon mass is based on a well-mixed atmosphere
hypothesis (Ballantyne et al 2012). This assumes that variations of
CO2 concentration in the marine boundary layer (where the
observed measurements are located) are representative of the
horizontally and vertically integrated atmospheric CO2 changes.
Using an emission-driven esm-hist simulation of EC-Earth3-CC, we
compared the globally integrated atmospheric CO2 mass with the
atmospheric CO2 concentration at the ocean surface converted
into CO2 mass following the same conversion as for the observed
values. We find a correlation of 0.99 between the annual rate of
atmospheric CO2 computed from the two variables. And, the
standard deviation of the annual rate computed from the surface
CO2 concentration overestimates only by 0.8% the standard
deviation computed from the atmospheric CO2 mass.
Additionally, we stress that by estimating CO2Land as a residual,

this term is by construction compensating for any imbalance in
the observed carbon budget raising from error existing in the
observed dCO2

dt , CO2Emissions and CO2Ocean.

Numerical simulations
A list summarizing the ESMs and simulations used in this study is
provided in Supplementary Table 1. We use the so-called historical
simulations of the CMIP6 ESMs to evaluate the performance of
those models in simulating the interannual variability of observed
surface CO2 fluxes. In the historical simulations, the climate
components of the ESMs (atmosphere, ocean, land surface, sea-
ice) are freely interacting with each other, and the external
forcings (also known as boundary conditions; cf. “Removal of the
externally forced variability in Observation”) are following the
observed ones over the period 1850–2014. We only used one
member per model of those historical simulations (see Supple-
mentary Table 1).
To gain more insights into the role of the interannual variability

rising from intrinsic climate fluctuations, we also analyze the
piControl simulations of the CMIP6 ESMs. Those simulations are
similar to the historical ones, but the boundary conditions are kept
fixed at their pre-industrial values. Comparing historical and
piControl simulations allows quantifying the contributions to the
total variability of the Earth system of the variability driven by
changes in the external forcings and the variability driven by
internal climate interactions (cf. “Removal of the externally forced
variability in observation”).
We also use the land-hist simulations of the Land Use Model

Intercomparison Project (LUMIP; Lawrence et al 2016). In those
simulations, the land vegetation component of different ESMs
participating in CMIP6 is forced with the same observation-based
atmospheric conditions derived from the Land Surface, Snow and
Soil moisture Model Intercomparison Project50 (LS3MIP) over a
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period covering at least 1850–2014. The land use is evolving as in
the historical ESM simulations51. For the same land vegetation
model, any differences in CO2Land between land-hist and historical
simulations can therefore be attributed to the difference of
atmospheric forcing received by the land.
As stated above, the historical and land-hist simulations cover

the period from January 1850 to December 2014. However, we
limit our analysis to the period 1986-2013, which is the longest
overlapping period between those simulations and the observa-
tion records. For the piControl simulations, we consider the full
length of the simulations.

Estimation of the annual atmospheric dCO2
dt in simulations

As already stated in the previous section, we use in this study the
historical and piControl simulations of the CMIP6 ESMs. These
simulations are driven by prescribed atmospheric CO2 concentra-
tion (also called concentration-driven). This implies that the
balance between the terms of Eq. (1) is broken in those
simulations as the surface fluxes (CO2Ocean + CO2Land) cannot
drive the rate of change of the amount of atmospheric CO2 (dCO2dt ).
Using the esm-hist and esm-piControl simulations of the CMIP6
ESMs, which are CO2 emission-driven simulations, would have
allowed working in a framework respecting Eq. (1) balance.
However, on the Earth System Grid Federation (ESGF) nodes, there
are less models providing land and ocean surfaces CO2 fluxes for
both esm-hist and esm-piControl simulations (a total of 11) than
models providing those fluxes for both historical and piControl
simulations (a total of 20). To quantify as precisely as possible the
inter-model spread in the representation of the surface CO2 fluxes,
we opted to focus on the concentration-driven simulations.
Because of this choice, we need to diagnose the compatible

rate of change of atmospheric CO2. This is achieved here by
computing dCO2

dt for the historical and piControl simulations as the
annual sum of anthropogenic emissions and the globally
integrated ocean and land fluxes, i.e. CO2Emissions + CO2Ocean +
CO2Land from Eq. (1). The CO2Emissions used here is the same as for
the observations (cf. “Observation estimates (dCO2dt , CO2Land,
CO2Ocean, CO2Emissions)”). CO2Ocean and CO2Land are computed from
the simulation outputs called “fgco2” and “nbp”, respectively.
Those fluxes are defined positively when pointing into land/ocean.
By adopting this procedure, we are omitting the possible

feedback that changes in the atmospheric CO2, driven by surface
fluxes, can have on the surface fluxes themselves (i.e. the carbon
feedback). Comparing 10 historical and 10 esm-hist simulations of
EC-Earth3-CC over the period 1986-2013, we find that not
accounting for this carbon feedback leads to an underestimation
of ~15% (p value < 0.01) of the interannual standard deviation of
the CO2Ocean. However, this has no significant impact (p value >
0.1) on the interannual standard deviations of CO2Land and dCO2

dt . In
fact, in this study, we find that the inter-model spread is almost
exclusively coming from the land CO2 flux variability, for which
the inter-model variance dominates by a factor of 50 that of the
ocean CO2 flux variability (cf. “Global atmospheric CO2 growth
rate interannual variability”). The underestimation of the variability
of the ocean surface CO2 flux has, therefore, negligible
consequences on the results and conclusions of this study.

Interannual variability and inter-model spread
As mentioned before, for the observations and model simulations,
we use the interannual variance (noted σ2

t ; where the subscript “t”
indicates the variance is computed over the time dimension) as a
measure of the variability of the year-to-year rate of change of the
atmospheric CO2 and of its drivers, which we note σ2

t;dCO2dt
, σ2

t;Land ,

σ2t;Ocean , and σ2
t;Emissions for

dCO2
dt , CO2Land, CO2Ocean and CO2Emissions,

respectively.

In addition, we quantify the inter-model spread in simulating
those interannual variance by computing their variance across

models (noted σ2
m; “m” for model), that is to say: σ2

m σ2
t;dCO2dt

h i
,

σ2m σ2
t;Land

h i
, σ2

m σ2
t;Ocean

h i
. We stress that there is not inter-model

spread in the interannual variance of the CO2Emissions (i.e.,

σ2m σ2
t;Emissions

h i
¼ 0) as all the model simulations were virtually

forced by the same human CO2 emissions.

Removal of the externally forced variability in observation
To focus on the internal variability in Observation, we detrend the
observed estimates by removing the multi-model mean from the
historical simulations (βt , cf. “Decomposing the sources of inter-
model spread”), which we consider as our best estimate of the
externally forced variability.

Decomposing the sources of inter-model spread
In the observations and the historical simulations, the variability in
the surface CO2 fluxes and in the rate of change of atmospheric
CO2 can be driven by changes in the boundary conditions of the
Earth system. In our framework, those boundary conditions, also
known as external forcings, include incoming solar radiation, the
volcanic eruptions, the Land Use changes and the atmospheric
CO2 concentration. However, without changes in those external
forcings, the Earth system can also experience variability due to its
chaotic behavior: the internal variability. Therefore, the variability
of dCO2

dt , CO2Land and CO2Ocean could be decomposed into two
components: externally and internally driven variability. More
generally, to account for the inter-model spread in the historical
simulations, the temporal variability of a variable x from a model
m can be decomposed into the sum of:

xmt;historical ¼ βt þ εmt þ γmt (2)

where the subscripts m and t refer to a given model and time step,
respectively; βt is the temporal variations of the multi-model
average, which we consider as our best estimate of the externally
forced variability (cf. “Removal of the externally forced variability
in observation”); εmt is the externally forced response of model m
that deviates from the multi-model mean externally forced
response (βt); and γmt represents the pure internal variability (cf.
more details in Supplementary Methods).
To focus on the sources of the inter-mode difference, we

detrend all historical simulations subtracting the common
externally forced signal βt and we call those residuals the
historical_DT simulations. In the historical_DT simulations, the
temporal variability of a variable x is therefore:

xmt;historicalDT ¼ εmt þ γmt (3)

Moreover, we note that the temporal variability of a variable x in
the piControl simulations is:

xmt;piControl ¼ γmt (4)

Following Eqs. (3) and (4), the temporal variance of x of a model
m (σ2

t xmð Þ) in the historcial_DT and piControl simulations are equal
to:

σ2
t xm;historical DT
� � ¼ σ2

t εmð Þ þ σ2
t γmð Þ þ 2covt εm; γmð Þ (5)

σ2
t xm;piControl
� � ¼ σ2t γmð Þ (6)

V. Martín-Gómez et al.

8

npj Climate and Atmospheric Science (2023)   206 Published in partnership with CECCR at King Abdulaziz University



And the inter-model variances of the temporal variance of x
(σ2

m σ2
t xð Þ� �

) are equal to:

σ2
m σ2

t xhistorical DTð Þ� � ¼ σ2
m σ2

t εð Þ� �þ σ2
m σ2

t γð Þ� �þ σ2
m 2covt ε; γð Þ½ � þ 2covm σ2

t εð Þ; σ2
t γð Þ� �

þ2covm σ2
t εð Þ; 2covt ε; γð Þ� �þ 2covm σ2

t γð Þ; 2covt ε; γð Þ� �

(7)

σ2
m σ2

t xpiControl
� �� � ¼ σ2m σ2t γð Þ� �

(8)

From Eqs. (7) and (8), we see that comparing the inter-model
variance of σ2

t xð Þ between piControl and historical_DT simulations
allows us to quantify the relative importance played by the
different representation of the internal variability among models
in the inter-model variance of the historcical_DT simulations (see
also more details in Supplementary Methods). Finally, this work, x
represents each one of the variables: dCO2dt , CO2Land, CO2Ocean.

The Niño4 index as a proxy for ENSO
In this study, we use as a proxy for ENSO the Niño4 index, which is
the SST averaged over the equatorial Pacific region [5°N-5°S;
160°E-150°W]. We obtain one Niño4 value per year by averaging
over October to March, that is, the season during which ENSO
anomalies are peaking in observations and in most of the models.
Compared to a more common annual average between January
and December, this definition of Niño4 has the advantage of not
mixing signals from potentially different ENSO states between the
beginning and the end of a calendar year.

Sub-tropical regions and local drivers of σt;Land

In our analysis, we find that four tropical regions are contributing
the most to CO2Land: Amazonian [280°E-320°E,10°N-30°S], South
tropical Africa [10°E-40°E, 35°S-5°N], southeast Asia [115°E-
155°E,10°S-35°S] and Oceania [80°E-125°E,6°N-31°N] (see boxes
on Fig. 3a). To explore their contribution to the inter-model
spread of σLand , we further decompose the global land CO2 flux
into their sum and a residual (Res): CO2Land ¼ CO2Land�Amazonian þ
CO2Land�SouthtropicalAfrica þ CO2Land�SoutheastAsia þ CO2Land�Oceaniaþ
CO2Land�Res (see also Supplementary Results 3).
We also estimate the sensitivity of the precipitation (α) and

surface air temperature (ρ) fields to Niño4 by computing the
regression maps of Niño4 index normalized onto these two fields.
Regression coefficients are averaged over each one of the key
regions, representing the sensitivity of each one of those regions
to ENSO. Note that, as the Amazonian region shows positive and
negative regression coefficients in the precipitation fields (Fig. 4c),
when averaging, they can cancel out each other. Thus, for this
case, we repeat our analysis splitting the Amazonian region into a
northern ([280°E-320°E,10°N-10°S]) and a southern ([280°E-
320°E,10°S-30°S]) region.
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