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Data driven models of the Madden-Julian Oscillation:
understanding its evolution and ENSO modulation
Nicolás Díaz 1, Marcelo Barreiro1 and Nicolás Rubido 2✉

Understanding the physical mechanisms of the Madden-Julian Oscillation (MJO) and its evolution is a major concern within the
climate community. Its main importance relies on its ability to act as a source of predictability within the intra-seasonal time-scale in
tropical and extratropical regions, therefore filling the gap between weather and climate forecasts. However, most atmospheric
general circulation models fail to correctly represent MJO’s evolution, and their prediction skills are still far from MJO’s theoretical
predictability. In this work we infer low dimensional models of the MJO from data by applying a recently developed machine
learning technique, the Sparse Identification of Non-linear Dynamics (SINDy). We use the daily-mean outgoing longwave radiation
MJO index (OMI) as input data to infer bi-dimensional climatological models of the MJO, and analyse the inferred models during El
Niño and La Niña years. This approach allows us to diagnose the MJO’s behaviour in OMI’s phase space. Our results show that MJO
can be most frequently represented by a harmonic oscillator, which represents the MJO’s eastward propagation and characteristic
period. Upon this basic oscillatory behaviour, we find that small non-linear corrections play a fundamental role in representing
MJO’s non-uniform speed of propagation, explaining its acceleration over the Pacific Ocean region. Particularly, we find that MJO’s
evolution is most frequently non-linear [linear] during El Niño [La Niña] years. Overall, our work shows that SINDy can robustly
model MJO’s evolution as a linear oscillator with small non-linear corrections, contributing to understand the MJO’s dynamics and
dependency on El Niño-Southern Oscillation.
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INTRODUCTION
The Madden-Julian Oscillation (MJO) is an atmospheric planetary-
scale phenomenon that exists over the tropical region1 but has a
global impact. It influences remote regions of the planet by means
of a tropical-tropical teleconnection—related to equatorially
traped Kelvin and Rossby waves—and a tropical-extratropical
teleconnection due to forcing of planetary Rossby waves. For
example, its effects include changes in precipitation2–4 and
temperature5,6, setting up conditions for marine heat-waves7,8,
modulating cyclo-genesis9,10, and interacting with monsoon
circulations systems11,12, to name a few. By extension, the MJO
is a key source of predictability within the intra-seasonal (IS) time-
scale, which is a challenging scale to predict atmospheric
behaviour since it falls in between the synoptic (≲10 days) and
longer climate time-scales (≳90 days)13,14.
The MJO is composed of two anomalous convective centres: a

wet centre, where anomalous precipitations occur, and a dry
centre, where precipitations are inhibited. These two centres are
coupled through large scale zonal baroclinic cells, with winds
converging [diverging] over the wet [dry] centre at lower levels
and diverging [converging] aloft1. This whole structure, which
usually initiates over the warm waters of the Indian Ocean, slowly
propagates eastward (particularly observed during the austral
summer) and presents a characteristic periodicity within the IS
time-scale. However, many aspects of the MJO need more
research or show large variability – such as its eastward speed,
which has been reported with values between 5.0 m s−1 and
10.0 m s−1 15,16. In particular, there are open questions regarding
its interaction with the Maritime Continent17 and its acceleration
beyond the Maritime Continent, as well as the impact on MJO’s
variability that El Niño Southern Oscillation (ENSO)18–21 or the

quasi-biennial oscillation22 can have. Consequently, advances in
understanding MJO’s dynamics and and its physical mechanisms
are needed. A comprehensive summary and comparison of MJO’s
main current theories can be found in ref. 23.
Here, we infer minimal models of the MJO from observed data

and the use of machine learning techniques. This allows us to
diagnose MJO’s behaviour according to the inferred models,
revealing its main kinematic characteristics, the relevance of non-
linear dynamics, and MJO’s dependency on ENSO.
Our data-driven modelling approach is based on applying the

Sparse Identification of Non-linear Dynamics (SINDy) method24 to a
random sample of the daily-mean Outgoing longwave radiation
MJO Index (OMI)25 for the 1979 to 2021 December to March (DJFM)
months–or a selection of years according to La Niña or El Niño years
(see Fig. 1 for a schematic representation of our methodology). The
resultant models describe the MJO’s behaviour from bi-dimensional
equations of motion (the OMI index is composed of two principal
component time-series), which we find have oscillatory character-
istics with periods within the expected range and a dependence to
the ENSO. Other works have modelled the MJO by constructing
minimal physical models26–28 or applied machine learning algo-
rithms to obtain reliable forecasts within the IS time-scale29,30. We
take both of these aspects into our approach in order to diagnose
MJO’s behaviour from the inferred minimal models. Hence, our
results contribute to understanding the MJO’s physical behaviours
and could contribute to operational forecasting.

RESULTS
Our results come from OMI daily data from 1979 to 2021 (42 years)
for the DJFM months. We infer models for the MJO’s behaviour
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from these OMI data by following the methodology represented
in Fig. 1. We start by taking m random samples without
replacement (panel a), then we fit these samples to a polynomial
set of dynamical systems using SINDy (panel b), which we lastly
filter according to the Akaike Information Criterion (AIC) to obtain
the minimal models (panel c)—see SINDy’s details in ‘Implement-
ing SINDy on MJO’ and AIC’s details in ‘Model Selection Through
Akaike Information Criterion’. We name the resultant data-driven
models as the climatological models. Moreover, in order to have
results with sufficient statistical power, we repeat this process for
N= 1000 independent realisation of the randomly sampled data
resulting in more than N (possibly different) climatological models.
For example, we obtain 1902 climatological models when
considering m= 28 samples per realisation.
In ‘Climatological data-driven models of the MJO’, we group the

1902 models according to their structure, analyse the trajectories
generated by the largest groups of climatological models, orbit’s
characteristic periods and speed, and model’s linear and non-linear
components. We also study the number and properties of the models
inferred with different m samples. In ‘Analysis of models according to
ENSO’s modulation’, we analyse the effects of ENSO on the MJO by
restricting the data to the corresponding 14 El Niño years and 15 La
Niña years that had been identified according to the NOAA’s Oceanic
Niño Index. Similarly to ‘Climatological data-driven models of the
MJO’, we analyse the resultant ENSO modulated MJO models.

Climatological data-driven models of the MJO
Here, we present the main characteristics of the subset of
climatological models that are linear when considering
m= 26, 27, 28, 29 or 210 samples. We find that irrespective of m,
the largest fraction of climatological models are linear oscillators
with a definite period (shown bellow). Therefore, we can
determine analytically the period for each oscillatory model (from
their trace and determinant31), finding that it falls within the IS
time-scale—as observed for the MJO. The distribution of periods
according to m are shown in Fig. 2.
We note that, regardless of the number of samples m, the

distributions of periods in Fig. 2 overlap around a mean value of
nearly 60 days (close to the median value), becoming narrower for
increasing m. This can be quantified by the standard deviation (sd)
or the distribution range. For example, sd= 5.8 days if m= 26

samples are used, progressively decreasing up to sd= 1.1 days

when m= 210 samples are used. Similarly, the range of the
distribution of inferred periods goes from nearly 45 days (91–46)
when m= 26 to 8 days (65–57) when m= 210. These results show
that the inferred linear climatological models become more
accurate in defining the period with increasing number of
samples; but as m grows, we get diminishing returns. Conse-
quently, in what follows we restrict our analysis to m= 28 random
samples per realisation to keep some variability.
Now, we analyse the set of 1902 climatological models inferred

from the 1000 realisations of m= 28 random data samples. The
statistics of the coefficients appearing in the models’ equations of
motion are summarised in Fig. 3.
On the top panel (a) of Fig. 3, we note that there are two

coefficients that occur with frequency= 1, meaning that these

Fig. 1 Schematic representation of the methodology. a OMI data (unfilled black circles) from the 1979 to 2021 December to March months,
where m= 28 points are randomly selected (filled red circles). b Sparse Identification of Nonlinear Dynamics (SINDy) method applied to m
randomly sampled OMI data (x and y components), which are used to construct the matrix with n= 18 polynomial predictors of the form xiyj

(with i, j= 0, 1, 2) and the velocity field ( _x; _y). SINDy solves an optimisation problem that promotes sparsity in the unknown coefficients by
using a threshold parameter λ in a sequentially thresholded least-squares algorithm (STLSQ). c We obtain 100 models for the m sampled data
by tuning λ−1 from 0 to 100 (with a step of 1) and then discard those with an Akaike Information Criterion (AIC) greater than 7 (values outside
the shaded green area).

Fig. 2 Distribution of periods I. Distribution of periods for the MJO
index obtained from sets of linear oscillatory models. Colour coded
distributions correspond to taking different number of random
samples (m) from all the available data to create the models. The
top-right table shows a summary of the statistics for each
distribution where #LM is the number of linear models, Min (Max)
is the minimum (maximum) period, and Mean and Sd are the mean
and standard deviation values).

N. Díaz et al.

2

npj Climate and Atmospheric Science (2023)   203 Published in partnership with CECCR at King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;



models have a non-null coefficient after the hard thresholding
procedure of SINDy is applied. These coefficients correspond to
the y term in the equation for _x —coefficient a01—and the x term
in the equation for _y—coefficient b10. As a result, all the inferred
climatological models share a common structure given by

_x ¼ a01 y

_y ¼ b10 x:

�
(1)

The mean value (and interquartile range) of all the possible
coefficients in the equations of motion appear in the bottom
panel (b) of Fig. 3, showing that the coefficients in eq. (1) have
definite signs (a01 < 0 and b01 > 0) with nearly the same mean
absolute value (~0.10).
Equation (1) can be written as €x ¼ �ω2

0x, which corresponds to
the canonical form of the harmonic oscillator with ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffija01b10j
p

the angular frequency. This model is conservative – the energy E ¼
_xðtÞ2=2þ ω2

0 xðtÞ2=2 is constant for all t—and holds circular orbits of
radius 2E if ∣a01∣= ∣b10∣ or ellipses in any other case (note that if
energy is written using the x and y variables of eq. (1), it takes
constant values whenever a201yðtÞ2=2E þ ja01b10jxðtÞ2=2E ¼ 1).
From the bottom panel (b) in Fig. 3, we note that the next more

frequently appearing coefficient corresponds to the _y equation—
coefficient b11—and has a positive sign. Next are the coefficients
that are a constant term in the equations for _x and _y— a00 and
b00, respectively. However, these constants have different signs
across the inferred models from the different realisations. This sign
variability could potentially determine whether a fixed point is
linearly stable or not, becoming a likely control parameter for the
model’s bifurcations; such as what happens in a saddle-node
bifurcation31. The remaining coefficients show frequencies below
0.05 and with characteristic mean values that are at least three
orders of magnitude smaller than the leading linear terms.
Figure 3 gives a statistical view of the coefficients across the

total set of 1902 inferred dynamical models (linear and non-linear)
and their values, but it leaves the structure of any given model
undefined, i.e., which are the specific non-null coefficients in each
model. By taking this into account, we group the 1902
climatological models into 76 classes, where any two classes

differ by containing models that have at least one non-null
coefficient, which is present in one class but not in the other.
Figure 4 shows the structure of the models with non-null

coefficients, where the structures define different classes. The 11
classes in Fig. 4 appear more than 1% of the time (i.e., fr > 0.01),
containing a total of 1712 models (namely, 90% of the 1902 inferred
models) sharing a basic structure of coefficients corresponding to
the harmonic oscillator, which is consistent with the results of Fig. 3.
The differences between these classes appear because of coeffi-
cients that skew the harmonic oscillator dynamics. Specifically, ~66%
of the inferred models in Fig. 4 are linear oscillatory models – C.M1,
C.M3, C.M4, C.M7, and C.M8—while the remaining ~24% are non-
linear oscillatory models—C.M2, C.M5, C.M6, C.M9, C.M10, and
C.M11. Consequently, these results show that the deterministic
component of the MJO – represented by OMI’s two principal
components – can be frequently modelled (i.e., at least 90% of the
time) by a linear oscillator with small non-linear corrections.
The first two classes in Fig. 4 contain 68% of the models. The

largest class, C.M1 (first row in Fig. 4), contains 53% of all
the models and corresponds to linear harmonic oscillators. The
following class, C.M2 (second row in Fig. 4), contains 15% of the
models, and it is a non-linear oscillator with the non-linear xy term
in the _y equation. These models are part of the Lienard family of
non-linear systems 31, and the xy term can be interpreted as an
‘energy-like’ source/sink (depending on the coefficient’s sign).
In order to have a representative climatological model for each

class, we use the average value of the coefficients for the models
in each class. For the classes C.M1 and C.M2, we get the following
representative models:

C:M1 :
_x ¼ ha01i y; ha01i ’ �0:108 days�1;

_y ¼ hb10i x; hb10i ’ 0:102 days�1;

�
(2)

where TC:M1 ¼ 2π=ω0 ¼ 2π=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijha01ihb10ij

p ¼ 2π=0:105 days�1 �
59:9 days is the resultant harmonic oscillator period and

C:M2 :
_x ¼ ha01i y; ha01i ’ �0:108 days�1;

_y ¼ hb10i x þ hb11i xy; hb10i ’ 0:102 days�1; hb11i ’ 0:015 days�1;

�

(3)

for the Lienard system.
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Fig. 3 Statistics of coefficients. a Frequency of coefficients found over the total set of selected models (linear and non-linear) for _x (blue
colour) and _y (green colour). The x-axis shows the polynomial terms over which we perform SINDy’s linear regression. b Statistics of the
coefficients found over the total set of selected models for each polynomial term. The blue and green colour correspond to the mean
coefficient values for the _x and _y equations, respectively, the black error bars to the interquartile range, and the red triangles to the minimum
and maximum coefficients values.
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We base our analysis of the C.M1 and C.M2 models on numerical
simulations from a set of pre-defined initial conditions. Specifically,
we obtain the trajectories for these representative models by
integrating Eqs. (2) and (3) from a set of uniformly drawn initial
conditions of y(t= 0) and fixed x(t= 0)= 0. Namely, the initial
conditions correspond to starting the MJO’s evolution at the end
of phase 2. Figure 5 shows the resultant trajectories which are
closed curves for both models—as seen from the black curves—
where the speed along any given orbit is given in colour scale.
We note that the C.M1 linear model on the left panel (a) of Fig.

5 shows elliptic trajectories with low eccentricity and nearly-
uniform speed – as expected from a harmonic oscillator with
∣a01∣~∣b10∣. Also, the period of this model is independent of the
initial condition, which explains the radial increase in speed over
the set of trajectories. On the other hand, the C.M2 non-linear
model on the right panel (b) of Fig. 5 shows egg-like shaped
trajectories with non-uniform speed and a period that depends on
the initial condition. In particular, we note that the slowest [fastest]
velocities happen when the trajectories are going through phases
1–4 [5–8], increasing their magnitude as the orbit’s amplitude is
increased, which corresponds to intense MJO events. Consistently,
both models have similar dynamics whenever the amplitude takes
small values (≲1).
Figure 6 shows the total time that each trajectory spends over

the different MJO phases according to C.M1 or C.M2 representa-
tive models. Given the models’ symmetry with respect to the y-
axis, we only evaluate these times for phases 3–4 and 5–6 (whose
symmetrical opposites across the vertical axis are phases 1–2 and
7–8, respectively).
From the top panel (a) of Fig. 6, we observe that the linear

model C.M1 (magenta colour) spends nearly 15 days over phases
3–4 (circles) and 5–6 (diamonds) irrespective of the initial
condition. This models an MJO with quasi-uniform speed over
different phases and a definite period of nearly 60 days, which can
be seen in the bottom panel of Fig. 6 (in accordance with Figs. 2
and 5).
On the other hand, Fig. 6 shows that the non-linear

representative model C.M2 (orange colour), has a slower
propagation over the phases 3–4 (circles) with respect to the
phases 5–6 (diamonds). In particular, both regions show a
dependency on the initial condition, with larger time differences
for trajectories starting further away from the origin. As a result,
C.M2 models an MJO with a slower propagation over phases 1–4
compared to phases 5–8, with time differences that range from
nearly 3 days for trajectories close to the origin to 7 days for
trajectories far from it.
Comparing the C.M1 and C.M2 models, we note that the non-

linear (orange) curves approach the linear (magenta) curves as the
initial condition gets smaller. The reason is that the non-linear
term gets vanishingly small with respect to the linear ones for

trajectories close to the origin, where the dynamics of both
models coincide. From the bottom panel (b), we also note that the
non-linear period is always larger than the linear one, which shows
that the non-linear term affects MJO’s mean global speed of
propagation by slowing it down.
Overall, the representative non-linear model shows an

enhanced asymmetry in its propagation characteristics—showing
a non-uniform behaviour across the different phases of the MJO—
and a larger period—which approaches the linear one for
trajectories close to the origin.

Analysis of models according to ENSO’s modulation
From the N= 1000 realisations of m= 28 randomly selected OMI
data during the 14 El Niño years and during the 15 La Niña years, we
get a total of 2894 and 2136 models, respectively. Similarly to the
models drawn from all the available data, a large fraction of these
ENSO-dependent models correspond to linear dynamical systems
with a definite period. Specifically, we find 1002 linear models out of
the 2894 for El Niño and 1834 linear models out of the 2136 for La
Niña. Their distribution of characteristic periods for these two types
of ENSO-dependent linear models are shown in Fig. 7.
We note that both distributions lie within the IS time-scale, with

La Niña distribution presenting a larger mean characteristic period
(~66 days) in comparison with El Niño (~58 days). Also, the La Niña
distribution of periods is wider, with a standard deviation of
Sd ~ 3.0 days against a Sd ~ 2.2 days for El Niño. We also note that
the climatological distribution of periods shown in Fig. 2 is located
between the El Niño and La Niña distributions. In particular, these
results show that La Niña years are characterised by a slower MJO
propagation with a larger variability around its mean period.
Similarly to ‘Climatological data-driven models of the MJO’, we

group all the inferred models for the El Niño and La Niña years
into classes, each class being characterised by a particular set of
non-null coefficients. The most frequent (fr > 0.01) classes of
models for El Niño (a) and La Niña (b) years are shown in Fig. 8,
where we can see that 8 and 9 classes account for nearly 92% and
93% out of the total models, respectively.
As for the climatological models, we find that all ENSO

modulated classes of models share a common structure: the
harmonic oscillator. Moreover, the harmonic oscillator is still the
most frequently inferred model in both ENSO phases (i.e., EN.M1
and LN.M1). We note that the remaining classes show models
containing small corrections to the harmonic oscillator. However,
the El Niño classes contain more non-linear models than linear
ones—57% of non-linear models (EN.M2 to EN.M8) versus 35% of
linear ones (EN.M1)—whilst the La Niña classes mostly contain
linear models—with 83% of linear models (LN.M1, LN.M2, LN.M3,
LN.M4, LN.M8 and LN.M9) against 10% of non-linear models (LN.M5
to LN.M7).

Fig. 4 Model’s structure I. Coefficient structure of the most frequently (fr > 0.01) found classes of models. Models C.M1, C.M3, C.M4, C.M7 and
C.M8 present only linear dependencies, while models C.M2, C.M5, C.M6, C.M9, C. M10 and C.M11 present at least one non-linear dependency.
For each class (row), the non-null coefficients are indicated by blue ( _x equation) and green ( _y equation) colours.
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In order to get a representative model for a given class, we take
the average value of the coefficients within that class. In particular,
we construct the representative models for the most frequently
appearing classes (aside from the harmonic oscillator). Namely,
models EN.M2 and EN.M3 (with frequencies fr= 0.34 and
fr= 0.16) for El Niño years and LN.M2 and LN.M3 (with frequencies
fr= 0.14 and fr= 0.12) for La Niña years. For the El Niño, these
representative models are defined by the following equations
(which follow from Fig. 8).

EN:M2 :
_x ¼ ha01i y; ha01i ’ �0:110 days�1

_y ¼ hb10i x þ hb11i xy; hb10i ’ 0:111 days�1; hb11i ’ 0:029 days�1;

�

(4)

EN:M3 :
_x ¼ ha01i y þ ha11i xy; ha01i ’ �0:111 days�1; ha11i ’ 0:017 days�1

_y ¼ hb10i x þ hb11i xy; hb10i ’ 0:111 days�1; hb11i ’ 0:029 days�1:

�

(5)

A set of trajectories obtained from numerical simulations of
these representative models of El Niño years are shown in the top

panels (a and b) of Fig. 9. We note that the EN.M2 has the same
structure as the non-linear climatology model (C.M2), but with a
larger non-linear coefficient (b11). This amplifies the non-linear
effects, as can be seen by comparing the orbits generated by
these models. Namely, the EN.M2 shows a more pronounced
asymmetry with respect to the x-axis, with lager amplitudes—
particularly over the phases 5 to 8—and a maximum speed which
approximately doubles the one shown in C.M2. This pronounced
asymmetry has a major role in the average time the MJO spends
on each phase (see Fig. 10).
The EN.M3 shares the same structure as the EN.M2 with an extra

(non-linear) polynomial term—the xy dependency on the _x
equation given by a11. We highlight that the average coefficient
〈a11〉 has the same order of magnitude as the non-linear
correction 〈b11〉 (although with a smaller value) and is the
symmetrical xy dependency. Consequently, this model shows a
more complex asymmetry of orbits, with the minimum (purple
colours) and maximum (orange colours) local speeds found over
the transition regions from phases 3–4 and 7–8, respectively.
On the other hand, the representative models during La Niña

years, LN.M2 and LN.M3, are linear dynamical systems defined by

LN:M2 :
_x ¼ ha01i y; ha01i ’ �0:096 days�1

_y ¼ hb10i x þ hb01i y; hb10i ’ 0:098 days�1; hb01i ’ 0:017 days�1;

�

(6)

LN:M3 :
_x ¼ ha01i y þ ha10i x; ha01i ’ �0:097 days�1; ha10i ’ �0:016 days�1

_y ¼ hb10i x; hb10i ’ 0:095 days�1:

�

(7)

Equations (6) and (7) have the structure of dissipative harmonic
oscillators, where the damping is controlled by the 〈b01〉 and 〈a10〉
coefficients, respectively. For the LN.M2 [LN.M3] representative
model, 〈b01〉 > 0[〈a10〉 < 0], thus giving trajectories that increase
[decrease] their amplitudes in time, as shown in the bottom
panels (c and d) of Fig 9.
We now analyse the local behaviour of the MJO according to

the set of selected models (i.e., EN.M1, EN.M2, EN.M3, LN.M1, LN.M2
and LN.M3). To do this, we subdivide the MJO cycle into 16 sub-
phases, each of length π/8, starting from the x-axis (horizontal

Fig. 5 Model’s trajectories I. Trajectories for the representative linear model from class C.M1 (a) and non-linear model from class C.M2 (b). The
set of trajectories are integrated for t= 65 days with a time increment of Δt= 0.01 and using initial conditions with x(t= 0)= 0 and a set of
y(t= 0) values from −1 to −3 with a step of −0.05. The colour-bar shows the local speed of each trajectory in days−1 and dashed lines show
MJO’s phase boundaries. The black curves represent an arbitrary highlighted trajectory for each model.

Fig. 6 Propagation times I. MJO’s propagation time according to
the C.M1 (magenta) and C.M2 (orange) average models. a The panel
shows the dependence on initial condition for the propagation time
across phases 3–4 (circles) and 5–6 (diamonds). b The panel shows
the models' period dependency on the initial condition.
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axis). We then calculate the time it takes for a given trajectory to
cross each of these sub-phases. Figure 10 shows the resultant
times for El Niño (a) and La Niña (b) models.
Firstly, we note that EN.M1 and LN.M1 (green solid lines)—being

harmonic oscillators—present an almost constant behaviour—as
we see for the climatology model C.M1. Also, the mean time for
EN.M1 representative model is below 4 days in each 1/16-th of its
cycle, while for the LN.M1 is above—consistent with the
distributions shown in Fig. 7.
Secondly, we note that for the El Niño representative models

EN.M2 (orange) and EN.M3 (purple), the times elapsed present two
local minima (which are fast regions) at π

4 and 7π
8 , and two local

maxima (which are slow regions) at 5π
4 and 15π

8 . Moreover, the
average time for phases between 0 and π is smaller than the
average time for the phases between π and 2π (approximately 25
and 33 days, respectively). This shows that, according to these
models, the MJO presents different speed of propagation over
phases 1–4 and 5–8. Specifically, if we consider the longitudinal
span of phases 5–8 and 1–4 over the Equator to be 240∘ and 120∘,

respectively, we find that the MJO presents a faster propagation
speed of nearly 12.4 m s−1 over phases 5–8 (from western Pacific
to Africa approximately) and a slower speed of nearly 4.6 m s−1

over phases 1–4 (Indian Ocean to western Pacific region). This
behaviour can also be appreciated from the top panels in Fig. 9.
The shaded areas in each (π/8) sub-phase of Fig. 10 represent

the minimum and maximum propagation times among the set of
initial conditions considered. This allows us to identify regions in
which the non-linearity has significant effects and in which
regions it is insignificant. We see that for EN.M2 and EN.M3 the
MJO’s behaviour depends weakly on the initial condition at π

2 ; π,
and 3π

2 approximately. However, there is a strong dependency on
initial conditions over π

4 ;
7π
8 ; 5π

4 , and
15π
8 . These strongly non-linear

regions coincide with the position of the local minima and
maxima, which could indicate that over these regions atmospheric
non-linear processes may be happening, ultimately defining the
MJO’s local speed of propagation; namely, where it accelerates
and decelerates.
Finally, we note that the La Niña representative models LN.M2

and LN.M3 show a well-defined oscillatory behaviour around the
time it takes for the LN.M1 to propagate across each sub-division
of MJO phases. Both models are basically in phase, presenting two
minima at π

4 and
5π
4 , and two maxima at 3π

4 and 7π
4 . In contrast to the

behaviour of El Niño models, we find that there is no distinction in
the characteristic times for phases 1–4 and 5–8 in La Niña models.

DISCUSSION
Our results show that the inferred climatological and ENSO-
dependent models can be grouped into distinct classes, where
each class contains models with the same structure of non-null
coefficients, while showing variability in the values taken by these
coefficients, ultimately determining the equations of motion.
Nevertheless, all models across these classes have a common
harmonic oscillator core dynamics. This harmonic oscillator
captures some basic and expected behaviours of the MJO’s
evolution, such as its eastward propagation and characteristic
time of evolution. In addition, each class contains models with
small linear or non-linear corrections to the harmonic oscillator
that account for other important and observed behaviours in
MJO’s evolution and its dependency on El Niño and La Niña years.
We discuss here, first the results obtained for the climatological

Fig. 7 Distribution of periods II. Same as Fig. 2 for the El Niño
(purple) and La Niña (turquoise) years.

Fig. 8 Model’s structure II. Structure of inferred models as in Fig. 4 but for (a) El Niño and (b) La Niña years.
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models, and then those corresponding to ENSO modulated
models.
By repeatedly applying SINDy to m random samples taken from

all the available data (i.e., the whole December to March period
from 1979 to 2021), we find that most inferred models are linear.
These linear dynamical systems are oscillators with periods within
the IS time-scale (see Fig. 2). In particular, the mean period from all
of the linear models we get from 1000 independent sampling
realisations (each with m samples) is approximately 60 days, which
is within the expectations for the MJO’s evolution. We show that
this result holds independently of the number m of random
samples taken to construct the climatological models, implying
that SINDy is a robust methodology to model MJO’s evolution. On
the other hand, the spread of the distribution of periods from the
linear climatological models depends on m, becoming narrower as
m is increased.
In order to fix m, one can attempt to follow ref. 32, where the

authors apply SINDy to synthetic signals from noiseless dynamical
systems and study the dependence of the inferred models (which

should recover the original system generating the signals) with
the number of random samples relative to the characteristic
period of the system. They show that for a sampling ratio of
fs= 26= 64 samples/period, one should measure nearly two
periods in order to correctly infer the underlying dynamical
system. In this work, we have daily data and the inferred
characteristic period of the models is close to 60 days, thus, our
sampling ratio is fs ≈ 26 samples/period. Since the underlying
dynamical system is unknown and it is noisy, we choose to have
m= 28= 256 random samples, which nearly covers four periods
of the MJO models.
From the results shown in Figs. 5 and 6, we note that the most

frequently inferred model structure is the harmonic oscillator,
C.M1. This is the most basic model that can account for MJO’s
fundamental behaviour: its eastward propagation and the IS time-
scale of evolution. However, to gain further insights about other
MJO behaviours, one needs to consider corrections to the
dynamics of the harmonic oscillator. For example, several
works3,33,34 have shown that the MJO’s speed has a non-uniform

Fig. 9 Model’s trajectories II. Same as in Fig. 5 for El Niño (top panels (a, b)) and La Niña (bottom panels (c, d)) years. For El Niño [La Niña], we
show the phase space of EN.M2 [LN.M2] on the left and EN.M3 [LN.M3] on the right.
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behaviour, with slow characteristic speeds over the Indian Ocean
region and fast speeds over Pacific Ocean region. The acceleration
– typically seen to the east of the Maritime Continent—can be
understood as a decopuling of the convective and circulatory
components of the MJO. The decoupling occurs due to the MJO
entering the cold waters of the eastern Pacific Ocean and a
corresponding reduction of the moist convergence to the east of
MJO’s convective centre15,16,28.
Figure 6 shows that according to the linear C.M1 model, the

MJO spends equal amounts of time (~15 days) over each pair of
phases, resulting in a characteristic global speed of 7.7 m s−1.
However, for the non-linear C.M2 model, the total time over each
pair of phases depends on the position: for the low phases 1–4,
the time averaged over initial conditions is ~32 days, while for the
high phases 5–8, it is ~28 days. Given that the phases are not
uniformly distributed along the zonal direction, this time
difference is more noticeable in their respective speeds. Con-
sidering a longitudinal span of 120∘ [240∘] for the phases 1–4 [5–8],
we get speeds of nearly 4.8 m s−1 and 11.0 m s−1 for the Africa to
Maritime Continent region and Western Pacific to Africa region,
respectively. This shows that, even though the non-linear
perturbation in C.M2 is small, it accounts for the MJO’s non-
uniform speed of propagation.
Overall, the non-linear model C.M2—which is the C.M1 model

with a small non-linear correction—adequately represents MJO’s
period, eastward propagation, and captures the local dependency
of MJO’s speed, showing large and small values over the Pacific
and Indian Ocean regions, respectively.
There is extensive literature reporting changes in the MJO’s

behaviour during El Niño and La Niña years18–21,34. It has been
shown that during La Niña years, the MJO has a more intense
convective centre over the Indian Ocean and Maritime Continent
regions, and a quasi-stationary behaviour with a slow eastward
propagation speed of nearly 1.5 m s−1 to 5.0 m s−1. On the other
hand, findings show that for El Niño years the convective centre is
weaker, the eastward speed of propagation is larger (with values
between 5.0 m s−1 to 8.0 m s−1 over the Indian Ocean), and there
is enhanced activity over the Central Pacific as a result of the MJO
being able to propagate further east beyond the Maritime
Continent. These changes are believed to be associated with the
sea surface temperature distribution and the corresponding
Walker Circulation low frequency variability15,16,20,21, which is
mainly controlled by ENSO.
From the set of linear models that we infer for the MJO during

ENSO years, we find that the distribution of periods (from the
different data realisations that generate the models) have a mean

characteristic period of 58 days for El Niño and 66 days for La Niña
years (Fig. 7). We find that the difference between these periods
and their variances is significant—we perform a two-tailed mean
difference test and a Leven’s test of variance homogeneity. The
corresponding mean global speed values are ~8.0 m s−1 and
~7.0 m s−1, which imply that the MJO is faster during El Niño years.
Although this difference in speed is not as large as some values
reported in the literature20,21,34, we highlight that it is still
captured here by low dimensional linear models, which can be
improved when including non-linear corrections.
The total set of MJO models conditioned to El Niño and La Niña

years carry important implications.
Firstly, we note that the number of models inferred for El Niño

years—and therefore the variability of models needed to describe
the MJO’s behaviour—is larger than the number of models
inferred for La Niña years: 2894 versus 2136. This implies that
MJO’s behaviour during El Niño years is more complex, hence,
more difficult (a priori) to predict. This complexity during El Niño
years can also be seen by analysing the fraction of linear vs non-
linear models: while we find that the MJO is predominantly non-
linear during El Niño (1892 non-linear models out of 2894), it
generally presents a linear behaviour during La Niña (1834 linear
models out of 2136). This distinction is crucial in determining the
non-uniform regional speed over the MJO’s phases during El Niño
years, compared to the uniform behaviour shown during La Niña
years (as shown in Fig. 10).
Secondly, we show (Fig. 8) that the MJO models during El Niño

and La Niña years can be grouped into 8 and 9 classes of models
(containing nearly 92% and 93% of the total number of models),
respectively. When comparing the two most frequently appearing
non-linear models for El Niño years (EN.M2 and EN.M3 classes) and
the corresponding linear models for La Niña years (LN.M2 and
LN.M3 classes), we note that all of them present corrections to the
harmonic oscillator’s basic structure that act as an ‘energy-like’
source/sink (Fig. 9), i.e., dissipative terms. The main difference is
that for the EN.M2 and EN.M3 models, these corrections are
position dependent, changing sign according to the location in
phase space. Specifically, they add and subtract equal amounts of
energy along a given trajectory, resulting in close trajectories. In
contrast, for La Niña models these source/sink terms have definite
signs. Therefore, they add energy in the LN.M2 class or subtract
energy in the LN.M3 class. This is inconsistent with MJO’s
behaviour, which is known to have an initiation, growth, and
decay life-cycle3,34.
We believe that the LN.M2 and LN.M3 classes represent the

growing and decaying stages of MJO’s evolution, but neither of

Fig. 10 Propagation times II.MJO’s time of propagation for El Niño (a) and La Niña (b) models. The mean time over initial conditions is shown
in solid line while the minimum and maximum times are represented with the shadow colour-bands. The time is calculated for each π/8 sub-
phase, and each sub-phase is identified through the usual polar angle measured from the x-axis. The corresponding MJO phase is shown on
top of each panel.
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them is valid over all phase space. In this sense, we note that the
number of models in each class is similar (with frequencies of
~0.14 and ~0.12, respectively), so it is possible that a combination
of them could create a self-consistent model valid over all phase
space. Moreover, a linear combination of LN.M2 and LN.M3 would
leave the characteristic times of propagation over each sub-phase
unchanged (as shown in the right panel of Fig. 10, both models
have near identical propagation times).
Finally, Fig. 10 shows two important results. The most relevant is

that MJO’s non-linear models during El Niño years present
different mean speeds over two large regions: a fast propagation
over the Pacific Ocean to Africa’s region and a slow propagation
over the Indian Ocean to Maritime Continent regions. This
regional difference is not seen during La Niña years, for which
LN.M2 and LN.M3 show the same mean time of propagation. This
acceleration is a known characteristic of MJO’s evolution, but
according to our models, it only occurs during El Niño years and
not during La Niña years.
The other result is that within these two large regions, spanning

from phases 5 to 8 and from 1 to 4, the non-linear models for El
Niño years show respectively two local minima and two local
maxima for the times of propagation (panel a in Fig. 10).
Moreover, the evolution over these regions is strongly dependent
on the initial condition, which implies that the system’s non-
linearity is significant over these locations. In particular, we note
that the first minima and maxima (located at π/4 and 5π/4) as well
as the second pair of minima and maxima (located at 7π/8 and
15π/8) are π apart from each other. Given that the MJO is nearly a
wavenumber 1 process – which is captured by using OMI’s first
two principal components – each of these pairs correspond to the
convective and dry centres passing through the same location.
The first pair, corresponds to the convective/dry centre passing
over the Maritime Continent region, while the second pair
correspond to the convective/dry centre passing over the South
America and Congo convective regions. We hypothesise that
when the MJO passes over these regions, its convective and dry
centres interact in opposite ways with the climatological
convective centres, giving rise to the fast and slow non-linear
behaviours.
On the other hand, the linear models for La Niña years show

(right panel in Fig. 10) one minima and one maxima over the 5–8
phases and 1–4 phases, respectively. However, these corresponds
to small departures from the mean value, and are related to the
shape of the trajectories of these linear models and not to a
possible interaction such as with the El Niño non-linear models.
We note that in order to assess the possible local interactions –
whether linear or non-linear—we would need to incorporate data
beyond OMI’s two principal components, since these mainly
represent the MJO’s large scale variability. Consequently, these
results leave open questions regarding the regional interaction
responsible for the acceleration and deceleration of the MJO
along its evolution, as well as the differences between the MJO
models we infer during El Niño and La Niña years. Future work
could also focus on finding how the closed trajectories generated
by our models relate to circumnavigating MJO events35–38.
To summarise, in this work we apply a recently developed

methodology (known as SINDy) in order to look for two-
dimensional data-driven models of the MJO and to diagnose its
evolution during the warm season of the Austral hemisphere, i.e.,
December to March. We consider an OMI data-set as SINDy’s
input, where the OMI is a principal component index based solely
on the outgoing longwave radiation field and serves as a proxy for
MJO’s convective activity. We then look for models of the MJO’s
evolution that best fit m random samples of the OMI data from
1979 to 2021 – which we name as climatological models—or the
years within that range which have El Niño events or La Niña
events—ENSO modulated models. In each case, a set of models is
constructed for the corresponding OMI data by taking N= 1000

realisations of the random samples, which ensures sufficient
statistical power to analyse the resultant model structures and
generated trajectories that represent the MJO’s evolution.
We show that both types of MJO inferred models—climatolo-

gical or ENSO modulated—can be grouped into disjoint classes
according to the structure of their equations of motion, i.e.,
according to their non-null coefficients. We also show that some
structures appear more frequently than others (Figs. 4 and 8),
focusing our analysis in the most frequent models, which are the
models most likely to be inferred by a random sampling of the
OMI data.
Our main results show that irrespective of the years considered,

the MJO can be robustly represented as a harmonic oscillator that
captures MJO’s eastward propagation and its characteristic time of
evolution. We find that these harmonic oscillators present periods
of 60, 58 and 66 days for the climatology, El Niño, and La Niña
models, respectively. This shows that the MJO is faster during El
Niño years compared to La Niña years, a behaviour which has
been previously found in the literature19–21,34.
The remaining models have other linear or non-linear terms

upon the basic structure of the harmonic oscillator, although these
new terms are at least one order of magnitude smaller. This means
that the MJO can be modelled as a harmonic oscillator with small
linear or non-linear corrections. Our results show that these
corrections allow the models to include other known behaviours
of the MJO, such as the varying local speed of propagation, whilst
maintaining the eastward propagation and characteristic time of
evolution (with small modifications). Particularly, during El Niño
years, we find that the MJO is most frequently (65%) modelled as a
non-linear oscillator, while during La Niña years, it is most
frequently (86%) modeled as a linear oscillator. We believe that
this difference could be a consequence of the different mean
states through which the MJO propagates during El Niño and La
Niña years. That is, during La Niña years, the mean state is
characterised by an intensification of the Walker Cell and the
convective activity over the Maritime Continent, whilst for El Niño
years, this structure is shifted eastward resulting in a more
noticeable perturbation of the climatological mean-field. Never-
theless, further research is needed in order to clarify the reason
behind the different dynamics.
For the climatological models, the next most frequently inferred

model – aside the harmonic oscillator (C.M1)—is a non-linear
oscillator (C.M2) belonging to the family of Lienard’s systems.
From numerical simulations, we see that this model has self-
sustained oscillations near the phase space’s origin, where the
non-linear term injects and subtracts the same amount of energy
over different regions of the phase space, resulting in close
trajectories and a varying speed of propagation. The representa-
tive model for the C.M2 class of models, presents a larger period
than the representative harmonic oscillator (C.M1 class of models)
that depends on the initial conditions (contrary to the linear
models), and a non-uniform speed of propagation, with faster
propagation (11.0 m s−1) over the Pacific Ocean region (phases
5–8) and slower (4.8 m s−1) over the Indian Ocean region (phases
1–4). This acceleration of the MJO when it passes the Maritime
Continent has been reported before refs. 3,33,34.
For the El Niño models, the most frequent non-linear models

EN.M2 and EN.M3 have almost identical evolution as the non-
linear climatological model CM.2. They also present a region over
the phase space with a self-sustained oscillatory behaviour
characterised by a non-uniform speed of propagation, which
results in fast and slow regions of propagation when the MJO’s
convective centre is located over the Pacific and Indian Oceans,
respectively. However, the non-linear term is stronger in these
models than in the CM. 2 models. As a result, MJO’s acceleration is
larger for the EN.M2 and EN.M3 models, with characteristic speeds
of 4.6 m s−1 and 12.4 m s−1 over the slow and fast regions.
Moreover, we find that these models present two slow regions
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over the Indian Ocean (maxima in Fig. 10), and two fast regions
over the Pacific Ocean (minima in Fig. 10) where the first minima
and maxima, and second minima and maxima, are separated by π.
We interpret this behaviour to be the result of a non-linear
interaction between the convective and dry centres of the MJO
with—possibly—the climatological convective centres located
over the Maritime Continent region, and over the South America
to Africa region.
For the La Niña models, LN.M2 and LN.M3 are dissipative linear

oscillators that increase or decrease their amplitudes as they
evolve. These behaviours can be interpreted as the growing and
decaying stages of the MJO, respectively. However, we note that
neither of these models are suitable to describe MJO’s evolution
by themselves. Consequently, we believe that a combination of
them is required in order to get a reasonable model for MJO’s
evolution over any region of the phase space.
Finally, we note that our work sets the grounds for this type of

approach to be further investigated either for the MJO or other
climate system phenomena.

METHODS
Dataset
To characterise the time evolution of the MJO convective centres,
we use the outgoing longwave radiation (OLR) MJO index (OMI)
introduced by ref. 25. The index is defined via the first two
principal components (PC1 and PC2), which results from project-
ing the 20–96 days filtered OLR field onto the spatial patterns of
the first two empirical orthogonal functions of the 30–96 days
filtered OLR field with only eastward propagating wave numbers.
The OMI index resulting from these procedures shows a more
regular and smoother behaviour than the typical Wheeler and
Hendon index39; this smoother behaviour benefits SINDy method
as it looks for the deterministic component of the system under
study. Also, the use of OMI is advisable when MJO’s convective
centres are the focus of interest25. We analyse MJO’s behaviour
through the OMI index for all days from December to March
(DJFM), within the period from 1979 to 2021.

Sparse identification of nonlinear dynamics
Sparse identification of non-linear dynamics (SINDy) is a method
recently introduced in ref. 24 which addresses the problem of
seeking the fundamental dynamics of a system from empirical
data. It iteratively solves a multiple regression problem with a
sparsity promoting hard thresholding procedure.
Consider an autonomous dynamical system of dimension d with

the general form,

_XðtÞ ¼ fðXðtÞÞ; (8)

where XðtÞ; _XðtÞ 2 Rd represents the state of the system at time t
and its corresponding velocity, and f : Rd→ Rd is the function
defining the dynamic and time evolution of the system.
Suppose that m observations of the state variables X are

collected over a set of times t1, t2,…tm and that the corresponding
velocities can be either numerically estimated, or directly
measured. The SINDy method, as well as other methodologies
that seek for data driven models 40–42 of the form of eq. (8), relies
on the fundamental hypothesis that the function f allows for a
sparse representation over an -a priori- unknown base of real
functions. In order to find this representation, suppose that we
introduce a set of n candidate functions,

ΘðXÞ ¼ ½1;X;X2; ¼ ; sinðXÞ; cosðXÞ; ¼ �; (9)

over which we expand linearly the function f. We refer to this set
as a dictionary, and its definition can be subjected to the specific
knowledge of the system under study. Using the collected
empirical data to evaluate each function in the set, and with the

linear expansion of f over the n functions in Θ, we can express eq.
(8) at each time ti as,

_XðtiÞ ¼ ΞðXðtiÞÞζ; (10)

where ζ∈ Rnd is an array conformed, for each of the d state
variables, by a vector of n coefficients corresponding to the linear
expansion. Note that Ξ corresponds to the evaluation at any time
of the set of functions Θ. Eq. (10) can be written in matrix form as,

_X ¼ ΞðXÞζ; (11)

which corresponds to a multiple linear regression with Ξ[X] inputs,
_X outputs, and ζ as the array of coefficients to be found.
Generally, linear systems like the one in eq. (11) do not have a

unique solution, or more yet, not even one; optimisation methods
like least-squares are then needed in order to find an approximate
solution to the problem. To avoid overfitted solutions, and in the
spirit of findings simple parsimonious and interpretable dynamical
systems, l1-norm regularisation schemes like those in ref. 40,41,43

are employed. In order to deal with this, SINDy introduces a hard
thresholding procedure in which a cutoff parameter λ is used. The
method seeks, iteratively, the least square solution of eq. (11) and
sets to zero every coefficient found with an absolute value less
than λ; this reduces, at each iteration, the dimensionality of the
space of functions in which to look for the least square solution.
The algorithm has been proved to converge to a sparse-like
solution44, and more detail and advancements on the subject can
be found in a vast literature24,45–48.

Implementing SINDy on MJO
In order to apply SINDy to MJO data we introduce the variables
x= PC2 and y=−PC1 as input data for eq. (11), and calculate
-numerically- the corresponding velocities _x and _y as output data.
The change of variables is made so that MJO’s phases,
ϕ= atan(−PC1/PC2), are in agreement with the usual geographical
location of the convective centres when the Wheeler and Hendon
index is used25.
We work with a polynomial dictionary conformed by functions

of the form xiyj, with i and j taking the integer values 0, 1, 2. This
gives a total of 9 functions for each dimension, that goes from the
constant function one as the one with smaller order, to x2y2 as the
function with higher order. As a result we look for models of the
general form,

_x ¼ P2
i¼0

P2
j¼0

aijxiyj

_y ¼ P2
i¼0

P2
j¼0

bijxiyj

8>>><
>>>:

(12)

The selected dictionary is based on the fact that we will search
for 2-dimensional dynamical systems which can have, as the most
complex behaviour, a Hopff bifurcation, which is a structural
change of the dynamics of the system from a limit cycle to a set of
fixed points (or vice versa); the normal form of this type of
bifurcation can be represented by the set of functions included in
our dictionary.
We applied SINDy algorithm to MJO by taking m number of

randomly sampled data without replacement. As a first approach
to finding a dynamical system, we do this taking samples from all
DJFM years, and by repeating the process N= 1000 times. We test
the sensibility of our results allowing m to take the values
26, 27, 28, 29, 210. As a second approach, we divide the period in El
Niño and La Niña years, and repeat the former procedure with
m= 28 random samples for each realisation.
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Model selection through Akaike information criterion
The threshold parameter λ introduced by SINDy needs to be explored
in order to evaluate the models found by the algorithm. If λ is small
enough, then no regressed coefficients will be set to zero and the
solutions will coincide with the overfitted least square solution. If, on
the other hand, λ is large enough, all coefficients from the regression
would be set to zero and no dynamical system would be found.
To take this into account, we explore the possible models

obtained at each realisation allowing λ−1 to take integer values
between 1 and 100. In order to select a parsimonious model (or set
of models) that better fits the data, we make use of the Akaike
Information Criterion (AIC)49. AIC is an estimate of the Kullback-
Leibler Information50, and it represents the expected relative
distance between the fitted model and the unknown true model.
For a linear regression problem like that in eq. (11) with independent
and identically normally distributed residuals, and considering a
finite sample of observations, AIC can be calculated as ref. 51

AICc ¼ m logðRSS=mÞ þ 2k þ 2kðk þ 1Þ
m� k � 1

; (13)

where AICc denotes AIC corrected for finite sample, RSS is the
residual sum of squares, and k is the total number of parameters
of the model (including the residual’s variance).
Given that the true model is unknown, we look for the fitted

models with the smallest possible value of AICc. Introducing AICc
differences with respect to the minimum value,
ΔAICi

c ¼ AICi
c � AICc;min, allow us to rank the relative support of all

models with respect to the minimum (ΔAICc= 0 is the model with
most support). Following the rule introduced in ref. 51, models with
ΔAICc between 0 and 2 have substantial support, between 4 and 7
have less support, and with values larger than 10 have essentially no
support. Based on this rule, for each data realisation, we keep all
models with ΔAICc < 7 that are bi-dimensional. As a result, it is
possible to select more than one model for each random sampling.

DATA AVAILABILITY
OMI data is available at the National Oceanic and Atmospheric Administration Physical
Science Laboratory (NOAA PSL) webpage [https://psl.noaa.gov/mjo/mjoindex/].

CODE AVAILABILITY
A MatLab code for SINDy algorithm is available in ref. 24. The underlying code for this
study is available in [https://github.com/NikoDN87/SINDyMJO.git].
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