
ARTICLE OPEN

High-elevation snowpack loss during the 2021 Pacific
Northwest heat dome amplified by successive spring heatwaves
Luke Reyes 1✉ and Marc G. Kramer 1

A heatwave in June 2021 exposed Pacific Northwest (PNW) snowpack to record temperatures, allowing us to probe seasonal
snowpack response to short-term heat extremes. Using high-resolution contiguous snowpack and temperature datasets (daily
1 km2 SNODAS, 4 km2 PRISM), we examined daily snowmelt in cooler, higher-elevation zones during this event, contrasted with the
prior 18 years (2004–2021). We found that multiple early season (spring) heatwaves, concluding with the 2021 heat dome itself,
resulted in dramatic early season melt including the most persistent fraction of PNW snowpack. Using longer-term station records
(1940–2021), we show that springtime +5 °C daily anomalies were historically rare but since the mid-1990s have doubled in
frequency and/or intensity, now potentially affecting typically cool La Niña periods (2021). Collectively, these results indicate that
successive heat extremes drive rapid snowmelt, and these extremes may increasingly threaten previously resilient fractions of
seasonal snowpack.
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INTRODUCTION
In late June 2021, an extreme heatwave associated with a “heat
dome” atmospheric pressure system exposed snowpack across
the Pacific Northwest (PNW) to record temperatures. Air tempera-
tures nearing 50 °C broke local records by several degrees and
caused a range of destructive social1–6 and ecological
impacts4,7–12. In British Columbia, this included severe floods in
multiple snow- and glacier-fed watersheds and a large rock
avalanche4,13,14. Snowpack loss during the heat dome was likely
substantial across the entire PNW4,13,15. While both direct and
indirect (stream discharge) measures of snowmelt have been
extensively studied in relation to seasonal temperature effects and
long-term climate trends16, impacts due to heatwaves are less
well-understood, particularly for the shortest extremes.
Previous studies on snowpack and heatwaves have tended to

focus on longer, more sustained events17–20. Season-length back-
to-back austral summer heatwaves drove early, rapid snowmelt in
New Zealand, for example, in 2017–2018 and 2018–201918. A
2-week cooler heatwave+ rain-on-snow period warmed perma-
frost down to 5m and caused slush avalanches during the 2012
high-arctic winter in Svalbard, with temperatures not much above
3 °C (notwithstanding this was ~18 °C above normal)17. For
glaciers, shorter-term heatwaves have been more studied. In
Europe and Canada, would-be streamflow deficiencies from low
rainfall and high evaporation during warm and dry 7+ day periods
are partially- to over-compensated for by increased glacial melt,
but this pattern is heavily dependent on antecedent conditions
such as accumulated snowpack and groundwater storage21. In the
PNW, days- and weeks-long late-summer heatwaves increase
glacial ablation and stream discharge4,22.
The increased melting during short-term heatwaves is consis-

tent with and potentially a sub-seasonal expression of well-
established decadal-scale trends of reduced snowpack levels in a
gradually warming climate. Over the last century, warming has
caused broad decline in western US peak annual snowpack
levels23,24. Spring seasonal warming is modest in magnitude
(+0.3–1.75 °C since pre-industrial times in the PNW25) compared

to shorter-term temperature anomalies during heatwaves, but
over seasonal scales it has substantial impact24. This general
negative trend shows little to no impact at higher elevations,
however. There, more modest declines or even increases are
observed26. Warming in these cooler areas may have been
insufficient, so far, to change snowpack accumulation and melting
patterns, especially if increasing PNW precipitation compen-
sates23–28. Although its influence on PNW precipitation may be
declining as westerly wind strength trends weaker29, orographic
lift’s combined impacts (colder temperatures, increased relative
humidity, increased precipitation) somewhat buffer annual
snowpack levels at higher elevations against decline from
incremental warming. Extreme short-term heatwaves might over-
whelm this buffer, but, in part because short-term events and
impacts are effectively obscured in annual snowpack metrics
analyzed over decadal scales, this is unclear.
In this study, we sought to better understand higher-elevation

snowpack and sub-seasonal heatwave impacts by probing how
the PNW’s higher-elevation snow responded to the 2021 heat
dome. To address the comparative shortage of observations
stations at higher altitudes, we used high-resolution (daily, 1 km2)
SNOw Data Assimilation System (SNODAS) data, which we
validated using an independent 9-year observational dataset of
snow depth at higher-elevations (1544 ± 422m; n= 28 stations;
see Methods “SNODAS validation”) and coupled with independent
gridded temperature data (PRISM)30,31. Our analysis centered on
the contiguous US between 41.88–49.065°N and 124.80–119.60°W,
which is the wetter, western half of the PNW and still held snow in
late June 2021. A persistent snow zone was defined functionally as
areas with ≥39mm (1.5”) of snow water equivalent (SWE) on all
April 1st’s in SNODAS’s record (2004–2022), excepting 2004, 2005,
and 2015 (n= 16; see “Methods”). We and others use April 1st to
reflect when, approximately, net SWE accumulation transitions to
net melting26,32. This defined a 51,235 km2 persistent snow zone
over the mid-high elevations of the Oregon and Washington
Cascade and Olympic Mountains (1555 ± 349m; mean ± s.d.).
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Using this zone, we set out to probe the response of higher-
elevation snowmelt to the 2021 heat dome.
The 2021 heatwave was the PNW’s most extreme temperature

event in recorded history. It was characterized by a “heat dome”
atmospheric phenomenon, wherein an exceptionally high-
pressure blocking system in the upper troposphere trapped lower
troposphere air in place over the PNW for several days beginning
June 26th, arresting typical circulation patterns33. An anomalously
strong cyclone-anticyclone system in the NE Pacific, associated
with an atmospheric river and large sensible and latent heat flux
convergence, led to the event34,35. Under the heat dome,
temperatures climbed as solar energy inputs accrued over several
days of near-peak annual insolation. All-time temperature records
were broken by several degrees in the region’s population centers
(Portland, OR; Seattle, WA), with temperatures peaking on June
28th. Peak temperatures were slightly later in the Cascades,
reflecting the slow eastward migration of the heat dome as large-
scale westerly circulation with cooler marine air gradually
displaced it36. Lower-elevation areas west of the Cascades cooled
first, then higher-elevation areas including the coast-adjacent
Olympic mountains by July 1st. Reflecting the heat dome’s onset
over the PNW on June 26th and large temperature anomalies over
the persistent snow zone extending to June 30th, we defined the
heat dome as June 26th–30th and first examined snowpack
behavior over these dates. While our motivation was initially to
focus on the impacts of this single event, our analysis found that a
longer-term dynamic was in play, of which the heat dome was
simply an extreme example.

RESULTS
Scale of warming during the 2021 heat dome
Mean daily temperature anomalies for the persistent snow zone
were greatest from June 27th–30th, when daily anomalies were
>11 °C above normal (average: +13.4 °C ± 1.6 °C). Absolute tem-
peratures were greatest (>25 °C) from June 28th–30th, bookended
with slightly cooler >20 °C days on June 27th and July 1st. The
single hottest day in the persistent snow zone was June 29th,
when the mean temperature was 26.5 °C, a +14.3 °C ± 1.6 °C
anomaly relative to a 30-year normal for this date (1991–2020)
(Fig. 1). Minimum temperatures were similarly greatest from June
28th–30th and reached a peak on June 29th (19.5 °C ± 3.3 °C;
average anomaly +13.2 °C ± 2.6 °C). Maximum temperatures also
peaked from June 28th–30th, with the absolute maximum
reached on June 30th (34.5 °C ± 2.4 °C; average anomaly
+16.5 °C ± 1.9 °C).
The warm temperature anomalies during the heat dome

affected the persistent snow zone relatively homogenously
(Fig. 1). What modest variation there was largely consisted of
Washington having slightly greater warm anomalies than Oregon.
Variation in anomalies primarily reflected variation in 30-year
normal reference temperatures, with greater anomalies near the
dependably cold heights of Mts. Olympus and Baker in
Washington and smaller anomalies in Oregon, where baseline
temperatures are generally warmer. This assessment is limited to
PRISM’s accuracy, which is well-supported for regional-scale
analyses37,38 but may not capture all local-scale temperature
anomalies from small-scale positive feedbacks39.

Snowpack response to the heat dome
The heat dome event rapidly melted most of 2021’s remaining
snowpack, all of which was contained in the higher-elevation
persistent snow zone (Fig. 2). This shifted a late-melting trajectory
characteristic of PNW La Niña periods (cooler, wetter) to an early
conclusion more typical for El Niño (warmer, dryer). From June
26th–30th, 5.47 km3 of snow water storage (9.7% of 2021’s
maximum SWE accumulation) was lost as SWE loss progressed

from 180 to 74mm (83.7% to 93.3% melted), averaged over the
persistent snow zone. By contrast, over the prior 18 SNODAS years,
this ~10% of SWE (between each year’s 84th–94th percentile)
melted 2–5 times slower, irrespective of El Niño, La Niña, or total
snowpack (Supplementary Fig. 1). The typically slower melt of this
fraction may be explained by the preferential persistence of
colder, more environmentally buffered (generally higher-eleva-
tion) snowpack. The heat dome undercut this persistence via a
large, relatively spatially uniform temperature anomaly, averaging
+12.3 °C from June 26th–30th. We found similar patterns in time
series of snow-covered area (at the SWE ≥ 5mm threshold) and
SWE loss rates (Supplementary Figs. 2–4). Snow-covered area in
the persistent snow zone fell from 27.5 to 11.8% during June
26th–30th, after which only the highest and wettest peaks in
Washington held any snow (Fig. 2b–d). On its face, absolute SWE
loss was unremarkable, reflecting the modest SWE volume present
in late June. Adjusted to snow-covered area, however (rather than
averaged over the entire persistent snow zone), SWE loss during
the heat dome was 470 mm from June 26th–30th, the greatest
5-day SWE loss total in SNODAS to date (daily melt rates average
−19.5 ± 14.9 mm day−1 over the main spring and summer melting
periods in the persistent snow zone from 2004–2021; Fig. 3).
As exceptional as the heat dome’s snowmelt impacts were, in

the context of 2021’s entire melting season, we found that they
were dwarfed by cumulative prior snowmelt. This was unexpected
given the strength of 2021’s La Niña, which was the strongest
since 2011, when nearly half (47.5%) of the year’s SWE persisted
on June 26th. Moreover, persistent snow zone April 1st SWE was
135% of normal for our 18-year SNODAS record (2nd, after 2012).

Fig. 1 Mean temperature anomaly in the study region on June
29th, 2021, relative to this day’s 30-year average from
1991–2020, per PRISM. The persistent snow zone is outlined in
black. The anomaly appears relatively spatially uniform, however,
some local-scale anomalies, particularly those related to positive
feedbacks and local topography, may not be accurately captured.
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This led us to probe what led to the unusually early melt of 2021’s
La Niña snowpack.

Temperature controls on snowpack loss
By comparing daily changes in SWE against daily temperatures,
we found that most of 2021’s snowmelt occurred during warm

periods prior to the heat dome. These periods ranged from
+3.8 °C (May 14th–17th) to +7.1 °C (June 1st–4th) and accounted
for an average of ~11–22mm of SWE lost per day over 3–6 day
periods, generally melting ~94mm of the year’s SWE (~5–10% in
2021) each episode (Figs. 2 and 3 and Supplementary Figs. 2–4).
The first occurred over 6 days in mid-April, as a +5.1 °C anomaly
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melted 57.6 mm SWE (2.95 km3, or 5.2% of the year’s SWE) to
begin Spring melting in earnest. May 14th–17th’s +3.7 °C anomaly
melted 87mm SWE (4.45 km3, 7.9%), followed by June 1st–4th’s
+7.0 °C anomaly which melted 126mm SWE (6.43 km3, 11.4%).
Two weeks later, a +6.1 °C anomaly over the 5 days prior to the
heat dome melted 105mm SWE (5.38 km3, 9.5%). Outside of these
warm anomalies, however, melting slowed or stalled. This is most
apparent during June’s cold anomaly, but also multiple times in
May and once in late April. This suggests that warm anomalies
drove most melting. The warmest days do account for the greatest
SWE loss (Fig. 3). In 2021, the 32 days with warm anomalies
≥+2.55 °C between April 1st and June 30th (91 days, with April 1st
being the first day of net melting in 2021) account for >50% of
2021’s melting. Daily SWE loss rates averaged −36.6 ± 29.5 mm in
the snow-covered areas of the persistent snow zone on these
32 days (or −1.57 ± 0.71% annual SWE day–1). Over the
2021 snowmelt period, four +3–+5 °C heatwave events occurred

prior to the heat dome. Cumulatively, this succession of anomalies
melted much of 2021’s snow, leaving relatively little to melt during
the heat dome.

Long-term increase in spring heatwaves
While the heat dome was extraordinary in magnitude and impact,
our results point to the amplifying effect of successive springtime
heat anomalies. To see how commonly these heatwaves occur, we
examined total daily mean temperature anomalies ≥+5 °C during
April, May, and June (AMJ) in the historical record. The PRISM
record shows that the combined sum of these daily anomalies
over the persistent snow zone has increased since the mid-1990s
at a rate of ~1.93 °C year−1 (from 1993, Fig. 4a). This rate of
increase translates into 1 additional +5 °C AMJ day every 3 years,
or 11 additional days over the 29-year trend. El Niño was
historically associated with the largest positive anomalies until the
2021 La Niña approached the extremes of 2015 and 2016. A

Fig. 2 Time-series and spatial patterns in PNW SWE loss. a Time series of daily SWE, averaged over the 51,235 km2 persistent snow zone, in
2004–2021 melt periods. SWE melt curves are colored by the predominant ENSO pattern of each spring and its preceding winter. This zone’s
2021 daily mean air temperatures are in solid red, over a 30-year climatological mean temperature (dashed). Periods in 2021 where daily
temperature anomalies exceeded +3, +5, or +10 °C are shaded in grey. SWE during 2021’s heat dome fell from an average of 180mm (16.3%)
to 74mm (6.7%) over 5 days, a loss of 5.47 km3 of water storage, melting faster than other years to prematurely end the melt season.
Successive prior heatwaves enabled this by episodically accelerating snowmelt, which stalled in their absence. 2021 was different than
previous La Niña years in: starting melt early, rapid melting episodes, and ending melt early. (b–d) SWE in the study region and persistent
snow zone (black outline) in 2021: b April 1st, when net SWE melting began for the persistent snow zone in 2021; c June 25th, just before the
heat dome; and d June 30th, the end of the heat dome. The heat dome melted most remaining snow, though its impacts were dwarfed by the
cumulative impacts of successive prior springtime heatwaves. Persistent snow zone April 1st SWE was 35% above-average, but snow-covered
area (SWE ≥ 5mm) fell to 31.2% (15,997 km2) of the persistent snow zone on June 25th and 11.8% (6022 km2) by June 30th. The SWE scale in
(b–d) is scaled to optimize contrast, however values at the peak of Mt Rainier (46.85°N, 121.8°W) exceed the maximum.

Fig. 3 Two forms of the negative relationship between temperature and the rate of daily SWE change. a Daily mean temperatures and
SWE change in mm for days from the annual maximum SWE date (2004–2021) to when SWE fell below 2% of that value, adjusted to snow-
covered area (Methods “Snowpack analysis”). Plotted trendlines reflect a linear model (slope: −2.5 mm day−1 per °C, p < 0.0001, R2= 0.794)
and generalized additive model (p < 0.0001, R2= 0.813). The GAM is applied to reflect a non-linear intensification in melt rates at the most
extreme high-temperatures. See Supplementary Fig. 4 for a time series. b Daily temperature anomalies and SWE percent change in April, May,
and June from 2004–2021 (Slope: −0.17% day−1 per °C anomaly; p < 0.01, R2= 0.364). Days with temperature anomalies ≥+5 °C are classified
as heatwave days. ENSO classification is based on the dominant pattern of the preceding winter. Melt rates and temperature are plotted with
3-day moving averages, instead of daily data, to highlight sustained anomalies and accommodate the mismatch in the time of day when SWE
and temperature are recorded.
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positive trend for this period is widespread over the PNW study
region and shows comparable trends in stations with longer
records (Fig. 4b and Supplementary Figs. 5–7; see Methods
“Historical record analysis” for further detail). While these
heatwaves historically occurred nearly every spring, rarely, our
results indicate their potential influence on melt dynamics has
grown.
The influence of these heatwaves on snowmelt may be

quantified using a multiple linear regression. In 2021, they melted
substantial snow, with only the fraction at the highest elevations
persisting past the heat dome. In the western US, the timing of
snow disappearance is also correlated with peak annual SWE, with
greater masses of snow disappearing later40. Perennial snow
patches in the persistent snow zone preclude complete snow
disappearance, so an analogous response variable might be the
Julian day when snow has disappeared from 95% (SD95) of the
persistent snow zone. To evaluate how well snow disappearance is
predicted by peak SWE and heatwaves, a multiple linear
regression is applied:

SD95 ¼ 177:9þ 0:03808 ´ Peak SWEð Þ þ �0:13984 ´HWð Þ (1)

where Peak SWE is the average maximum SWE of the persistent
snow zone (mm), HW is the sum of daily mean temperature
anomalies ≥+5 °C during AMJ (the cumulative heatwave metric

used in Fig. 4), and the intercept at Julian day 178 is June 27th in
non-leap years. The model and all terms are significant
(p= 0.00012, R2= 0.659; Supplementary Table 2). In 2021, the
model suggests that multiple heatwaves advanced SD95 by
20.5 ± 6.6 days, from July 28th to July 8th, with the heat dome
alone accounting for 9 of those days. If the +1.93 °C year−1 trend
in the heatwave metric (Fig. 4) continued, the model suggests AMJ
heatwaves would advance SD95 by ~1 day every 4 years, barring a
~15mm increase in peak SWE.

DISCUSSION
We found substantial melting of higher-elevation snowpack in our
study due, in part, to an intense heat dome coupled with multiple
earlier short-term (sub-weekly) spring heatwaves (Fig. 2). This
complements prior work on snowpack trends that focused on
snowpack loss in response to incremental annual or seasonal
temperature increases over multi-decadal periods. Typically
drawing on long-term station data and spatially contiguous
hydrologic models, these studies find warming caused the
greatest decline in western US snowpack at lower eleva-
tions23,24,26,28,41,42, with some also finding steeper declines in
warmer months23,24,43. While much work has gone into attributing
these long-term trends to climate warming23,24,28,41,44, daily-scale

Fig. 4 Daily anomalies ≥+5 °C totaled for the April, May, and June period each year. a PRISM record averaged over the persistent snow
zone. Since 1993 there has been a positive trend of 1.93 °C per year (p= 0.048, n= 29, R2= 0.105, 95% CI shown). b Portland Int’l Airport,
where this metric has increased by 1.91 °C per year since 1993 (p < 0.01, n= 29, R2= 0.293, 95% CI shown; see Methods “Historical record
analysis” for a sensitivity analysis). From 1938–1991, these anomalies occurred nearly every year, but infrequently. However, minimum
exposure in recent years (after 2015) now effectively matches the maximums of earlier decades. Moreover, the recent extremes of 2016 and
2021 are the greatest observed at this station, and 2021 is the first moderate La Niña year to show the high extremes that were previously
reserved for El Niño periods. See Supplementary Figs. 5 and 6 for additional analysis.
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drivers of snow loss have been less considered. On different time-
scales, however, the warming magnitudes differ substantially. In
our study, daily anomalies were +3–5 °C or +5–10 °C during the 3
heatwaves preceding the heat dome (Fig. 2a), but 30-day moving
average (i.e., monthly) anomalies centered on those periods were
within ±1 °C (Table 1). A loss of temporal granularity is likely
unimportant in more marginal snowpack environments (lower,
warmer elevations), as more heatwaves or incrementally warmer
baseline climates both translate to increased snowmelt. In areas
buffered by cooler temperatures and greater precipitation,
however, changes in SWE dynamics may only emerge when
events, like short-term heatwaves, overwhelm that buffer.
Importantly, those high-elevation sites generally receive the
greatest amounts of precipitation and are the areas where
meltwater contributions toward summer streamflows occur latest
in the year, when water supply deficits are greatest.
The body of research focused on short-duration heatwave

impacts to snowpack loss is limited. This is partially explained by
our results (Fig. 4), which show spring heatwaves were less
frequent in the historical record. So, until recently, their impacts to
snow ablation were materially smaller and less detectable. Smaller
heatwave anomalies even below the 0 °C threshold would still
diminish accumulated snowpack cold content, modifying subse-
quent snowmelt timing and rate, but, especially in colder high-
elevation areas where cold content presents a several times larger
threshold to melting than at lower elevations, these impacts are
relatively subtle45,46. Heatwave and snowpack research have each
also prioritized different seasonal periods. Snowpack trends over
decadal scales are typically derived over metrics that integrate
cool-season physical processes (e.g., maximum annual SWE, April
1st SWE, date of maximum SWE) to which spring heatwaves are
partially to completely invisible. Similarly, heatwave research
typically centers summer events, either by design or through
definitions based on exceeding absolute dry- or wet-bulb
temperature thresholds. While this is effective for capturing
historical trends and human impacts, it is less useful for capturing
impacts to snowmelt, which largely happens prior to extreme
summer temperatures. This might partially explain why the most
rigorous studies to date of heatwave cryosphere impacts have
focused on glaciers21,22. The recency of these studies (2021, 2022)
also suggests the growing recognition (and frequency) of alpine
heatwaves.
The El Niño–Southern Oscillation (ENSO) provides important

context for western US snowpack, but its relationship to snowmelt
is unclear. Depending on phase, strength, and interactions with
other teleconnections and climate change, it influences atmo-
spheric circulation and climate patterns globally47–52. In the PNW,
this manifests as a negative correlation between annual snowpack
accumulation and ENSO indices, with less snow during warmer,
dryer, positive-phase (El Niño) years, and more during cooler,

wetter, negative-phase (La Niña) periods53–57. The ENSO dipole is
strongest in winter, when it influences mid-latitude jet stream
strength and, thus, PNW precipitation. Over the cold months, this
influence integrates into a single metric, maximum SWE, which
exerts a physical control on snowmelt vis-à-vis minimum energy
requirements for spring melting. After this inflection point, ENSO
contributions to snowmelt are less clear. In 2021, multiple
heatwaves accelerated snowmelt and led to earlier and more
rapid seasonal melting, following a strong La Niña winter with
high snowpack (ENSO in the 2020–2021 winter was its most
negative since 2010–201158). However, La Niña is only weakly
associated with PNW summer heat extremes47,51 and had
arguably largely decayed by late spring, (La Niña persisted
through summer 2021 in the NOAA PSL’s Multivariate ENSO
Index59, but decayed in the NOAA NWS’s Oceanic Niño Index58). La
Niña, though, is broadly consistent with the heat dome’s
atmospheric dynamics, namely an unusually strong atmospheric
river landfall in Alaska and omega block over the PNW33–35,60, and
some have suggested it contributed to the heat dome61,62.
Summers prior to La Niña also have more extreme heat summer
days in certain northern mid-latitude regions, including the
western US prior to double La Niña periods63 (2021 preceded a
double La Niña from 2021–202358). We find little suggestion,
however, that El Niño influences spring snowmelt beyond its
typical influence on maximum SWE. Within our study, 2005 and
2015 (mild El Niño periods) had the slowest rates of absolute
snowmelt (mm day−1; Fig. 2a), despite high cumulative heatwave
exposure in 2015 (Fig. 4). This is consistent with prior work finding
warmer winter temperatures lead to less SWE and earlier timing of
maximum SWE, which, because available energy inputs are
smaller in winter/early spring, leads to reductions in snowmelt
rates and stream discharge53,64,65.
Net energy inputs control the rate of snowpack loss. We did not

study energy balance directly here, but previous work on
snowmelt controls (sensible and latent heat flux, net shortwave
and longwave radiation, ground heat flux, and advected heat of
precipitation), generally find that radiation and turbulent fluxes
(sensible and latent heat) dominate, including in the western US
and PNW66–70. Sensible heat flux likely plays a role via advection of
warm air from adjacent snow-free sites70,71. This would be
enhanced under heatwave temperatures, especially later in the
season as snow cover becomes increasingly patchy and concen-
trated in high-relief topography. In late spring and summer
heatwaves, net shortwave radiation would also be greater due to
lower-albedo wet snowpack and the clear skies of the high-
pressure conditions associated with these heatwaves. Occurring
within days of the summer solstice, the heat dome maximized this
effect. The lack of clouds somewhat mitigates net longwave
radiation, although a water vapor anomaly trapped under the dry
heat dome may have contributed to a greenhouse effect34,
increasing longwave radiation input in the absence of clouds, on
top of its inherent increase with air temperature. The remaining
energy balance factors warrant further study but are less likely to
play a major role in snowmelt during spring and summer
heatwaves. Sublimation could play a role, depending on wind
strength during high pressure ridging and the persistence of
katabatic winds, but it is more associated with low pressure,
freezing temperatures, and high wind speed66, which were not
characteristic of the heatwaves examined in this study. So, it
would seem unlikely that sublimation played a major role in either
snowpack mass or energy balance during these heatwaves. This
raises a question that future research might address: how do the
mechanics (e.g., high-pressure ridging, wind strength and speed)
and seasonal timing of heatwaves alter snowmelt energy balance?
In the persistent snow zone, melt rates are generally highest in
July and August (Supplementary Fig. 4), a generally hot, dry period
in the western US when seasonal energy controls resemble those
of extreme heatwaves, including higher sensible heat flux and

Table 1. Temperature anomalies during 2021 AMJ heatwaves prior to
the heat dome (June 26th–30th).

Heatwave
dates

Heatwave anomaly 30-day moving
average anomaly

April 16th–19th (4 days) +6.35 ± 0.80 °C +0.86 °C

May 15th–17th (3 days) +4.07 ± 0.70 °C –0.71 °C

June 1st–4th (4 days) +7.00 ± 1.62 °C –0.79 °C

Anomalies are compared between those of the events themselves
(mean ± s.d.) or a 30-day daily moving average centered on the event,
derived using mean daily temperature anomalies in the persistent snow
zone. Monthly-scale (30-day) metrics mask daily-scale extremes, potentially
even reversing signs.
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radiative inputs. That the heat dome caused record rapid melting
somewhat earlier than normal may be owed to: sensible heat flux
of extreme high temperatures, maximized shortwave radiation
near the solstice, and an amplifying effect of prior heatwaves that
shifted snowpack factors (e.g., albedo, smoothness, patchiness) in
the direction of enhanced energy absorption. By contrast, when
those factors are less present, such as during early spring or
winter, heatwaves would likely have less impact on snowpack loss.
Our results join others in finding increasing heat extremes in

recent decades, which are consistent with projections of increased
heat extreme frequency and severity in the future72–75. Our work
highlights the role of heatwaves as an increasingly important
driver of high-elevation snowpack loss. By focusing on these more
granular events that are the proximal causes of accelerated
snowmelt, rather than the incremental temperature increases
captured at seasonal or annual scales, our study uncovered a
positive heatwave trend undermining snowpack in the most
reliably seasonally snow-covered zones of the study region.
Particularly when these events occur at scale (e.g., 2003 European,
2010 Russian75, or 2020 Siberian heatwaves76), or with increasing
frequency (in the Alps, daily maximum temperature anomalies
≥+10 °C during winter have increased more than twenty-fold
between 1970–200077,78), and in succession (2021, concluding
with the heat dome), they may impact higher-altitude and
-latitude seasonal snowpack well before average climate warming
might suggest.
In 2021, a record-breaking heat dome amplified this pattern and

motivated our study, but we ultimately found that a larger pattern
of successive heatwaves dwarfed the impacts of this extreme
event. Subsequent research has suggested the heat dome’s
probability was miniscule79, and so insight drawn from solely this
event might be of limited use. The broader trend of increasing
heatwaves that we uncovered in the process of probing the heat
dome, however, is robust and in keeping with more established
warming trends25,73,75. In the coming decades, record-breaking
heat domes may continue to be rare, but the progression of a
heatwave trend and its interactions with normal interannual and
interdecadal variabilitys43,80,81 (e.g., ENSO, PNA, etc.) may serve
similarly well to accelerate high-elevation snowpack loss.

METHODS
Snowpack analysis
Snowpack was evaluated using SNODAS data in ArcMap (10.7.1)
and R (4.0.5). SNODAS data from October 2003–April 2022 (n= 18
complete water years, each from October–September of the
following calendar year), masked to the contiguous US with some
extension into southern Canada, was downloaded via ftp per
landing page guidance (https://nsidc.org/data/g02158). SWE
rasters were extracted from daily .tar files, imported into ArcMap,
and clipped to a PNW region within 41.88–49.065°N and
124.80–119.60°W. The Spatial Analyst extension was used to
process the imported rasters. Using all the April 1st rasters from
2004–2022, excluding 2004, 2005 and 2015 (leaving n= 16 April
1st rasters), the “persistent snow zone” was defined as all gridcells
within the region where at least 39mm (1.5”) of SWE was present
on April 1st for all these 16 years. April 1st, 2004 was excluded for
excessive missing and discontinuous values, while April 1st’s in
2005 and 2015 both had record low SWE for unusual climatology
and (in 2015) record season-length warmth26,44, and thus were
considered less representative for classification criteria. This
process identified and classified the “persistent snow zone” which
was subsequently analyzed in this study over the SNODAS period
of record through 2021 (n= 18 water years; 2004–2021, including
2004, 2005, and 2015). Zonal statistics were calculated for the
persistent snow zone for each day, including mean SWE. These

zonal statistics were tabulated and exported into a .csv form for
analysis in R.
Daily zonal statistics for the persistent snow zone over these 18

water years, alongside values from the attribute tables of the daily
rasters in ArcMap, are the basis for all reported descriptive
statistics and snowpack values in this study, including SWE and
snow-covered area. Mean SWE for the persistent snow zone is
plotted in Fig. 2a for all days following each year’s peak SWE date,
i.e., each year’s melting season. Normalized mean SWE was also
derived for each water year by dividing daily SWE within a year by
each water year’s maximum SWE value. These normalized SWE
values are plotted in Supplementary Fig. 2 and Fig. 3b, and
reported as percentages throughout this study to provide an
additional basis for comparison across years, though it integrates a
parameter not physically tied to heatwave-driven snowmelt: peak
SWE. Despite this caveat, we include it for several reasons. First, it
can help limit the influence of terrain heterogeneity when
comparing regional SWE, with given SWE quartiles sharing at
least some characteristics across years, as snowmelt first draws
from predominantly warmer, lower elevation snowpack before
progressively shifting to the highest alpine elevations. Addition-
ally, it offers relative ease of use in estimating daily snow water
volume loss (Fig. 3b) in needing only the annually fixed values of
peak SWE and watershed area as conversion factors. Finally, it may
be of potential interest to the hydrology and phenology
communities due to factors including the relationship between
relative snowmelt and runoff centers of volume82,83. Area-adjusted
melt rate was derived by finding the change in total SWE between
two consecutive days and dividing this value by the snow-covered
area of the earlier day. Snow-covered area was defined as gridcells
with ≥5mm of SWE on a given day. The 5mm minimum threshold
was implemented to minimize the potential of inaccurately
classifying snow-free cells as snow-covered. This follows
approaches used in other snow cover assessments84–86, which
also note no meaningful difference in snow-covered area by
specific minimum threshold <15mm. This lack of difference would
be doubly true in this study, as daily SWE melt rates averaged
nearly 4-times the 5mm threshold (−19.5 mm day−1) during
spring melting periods, meaning any inaccuracies should not
persist more than ±1 day. These daily melt rates are plotted for the
melting period from each year’s date of maximum SWE through
either August (Supplementary Fig. 4, as a time-series), or until the
date when SWE fell below 2% of its maximum annual value
(Fig. 3a, as a scatterplot). Linear models and plotted fitted lines
thereof (e.g., Figs. 3 and 4) were calculated using base R. The GAM
fitted line in Fig. 3a was derived using mgcv::gam() in R.
El Niño and La Niña years were defined using NOAA’s Oceanic

Niño Index (ONI)58. Five consecutive 3-month running means
above or below the ±0.5 °C threshold of sea surface temperature
anomalies in the Niño 3.4 region defines an El Niño (+) or La Niña
(−) period. The most extreme values held for 3 consecutive
periods within an El Niño or La Niña period were used to assign
the strength of the ENSO period (extremes of ±0.5–1=weak;
±1–1.5=moderate; ±1.5–2= strong; ±2+= very strong). NOAA’s
Extended Multivariate ENSO Index (MEI) (https://psl.noaa.gov/
enso/mei.ext/) was used identically to calculate ENSO status and
strength for years prior to 1950, as ONI does not extend earlier
than 1950. MEI and ONI are qualitatively similar despite small
deviations due to how the values are derived (bi-monthly
empirical orthogonal function of 5 variables versus 3-monthly
sea surface temperature anomalies). Additionally, the extended
MEI is normalized for each bi-monthly period over its 1871–2005
record, instead of being centered on more recent reference
periods. Characterizing years or melting seasons as El Niño or La
Niña, when both modes occurred over the window from
July–August–September of the preceding year until
June–July–August of each year, was done on the basis of which
pattern dominated during the 6 months prior to each year’s
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spring, when ENSO effects on snow accumulation and the
subsequent spring’s snowmelt patterns would be most expressed.
So, for example, 2010 was termed a moderate El Niño year in our
analysis due to values of +0.6–1.6 between June–July–August
2009–February–March–April 2010 period, despite strong La Niña
conditions emerging in the second half of the 2010 calendar year
(July–December 2010). In this example, however, the strong La
Niña characteristics over the last 6 months of 2010 were
considered immaterial to snowmelt during 2010’s AMJ spring
period. The ENSO paradigm for this spring, as in all PNW springs,
was predominantly established by snowfall between the preced-
ing October and April/May of each year, which is also when most
of each year’s precipitation falls in the Mediterranean climate of
the PNW.

SNODAS validation
An effort was made to validate the SNODAS dataset used in this
study using an independent observational dataset of snow depth
from 28 PNW stations over 9 years from October 2003–September
2012. This dataset consists of Northwest Weather and Avalanche
Center (NWAC) weather stations prior to 2011, in addition to a
small number of Western Regional Climate Center stations in
California. SNOTEL observations were not used here, as, along with
CADWR and NWS Co-op stations, they form the principal ground
data sources ingested into SNODAS as part of its assimilation
routines87. Thus, SNOTEL is not sufficiently independent for the
validation effort. Snow depth at the analyzed stations is monitored
using ultrasonic or laser depth sensors with either hourly or daily
datalogging. The distribution of elevations for these stations
(1544 ± 422 m, mean ± s.d.) closely aligned with the elevation
distribution in the persistent snow zone overall (1555 ± 349m;
range 400–4307m), with a reduced upper range (n= 4 stations
>2000m, overall range 605–2178m). Stations were also checked
for and found to be approximately representative of terrain, with
similar size subgroups of windward (36%), leeward (46%), and
neutral (18%) aspect, which has previously been a factor in local-
scale SNODAS accuracy due to unaccounted-for wind redistribu-
tion of snow88. Most stations are located in the Washington
Cascades, where most of the SWE in the persistent snow zone is
located, with another ~1/3rd of stations in the Olympics, Oregon
Cascades, and California Sierra Nevada (Supplementary Fig. 9).
Station observations of snow depth were compared with snow

depth as modeled in SNODAS. From SNODAS snow depth rasters,
daily values were extracted for cells where the observation
stations were located. Values underwent basic post-processing
correction to resolve missing or discontinuous/outlier values.
Where possible with hourly datalogger records (the majority of
cases) corrections consisted of replacing the 4 AM hourly data
used for daily data with that of a different AM hourly observation.
Infrequently, missing values were interpolated between adjacent
dates. Stations were omitted from analysis when the corrections
risked influencing the calculation of maximum annual SWE, the
date thereof, or included April 1st. Observed (stations) and
modeled (SNODAS) values were compared via linear regression
using annual-scale metrics of maximum snow depth (using a 15-
day moving average) and the date of that snow depth maximum.
Snow depth on April 1st was also selected for comparison
between modeled and observed values, by way of highlighting a
daily scale comparison during the typical snowmelt transition
period. Each of these annual metrics was pooled for all stations to
generate regressions for each year evaluated across all stations.
The assumptions of linear regression were tested for the

modeled versus observed regressions and found to generally hold
(Supplementary Fig. 11). Heteroscedasticity was assessed using
the Breusch-Pagan test (at the p < 0.05 level) and only found in the
date of maximum snow depth metric in 2004–2005 and
2009–2010. Heteroscedasticity-consistent standard errors were

thus implemented in those two instances (HC3, using
estimatr::lm_robust() in R). Spatial autocorrelation was
also evaluated and not found to play a major role in the strength
of the correlations, with regression values with and without close
neighbors not differing meaningfully (Supplementary Fig. 10 and
Supplementary Tables 3 and 5). At similarly sited stations, spatial
autocorrelation was expected to an extent (and the accuracy of
interpolations in data assimilation systems such as SNODAS
fundamentally rely on this pattern), but a review of observed snow
depth curves did not show autocorrelation at a level precluding
further analysis.
SNODAS was found to be in close agreement with observations,

with some caveats. A full table of the regression results which
includes the slopes, intercepts, and multiple-R2 of each set of
regressions is included as Supplementary Tables 3 and 4 and
discussed there. Overall, correlations for the 2003–2004 water year
were weakest, though agreement was still robust. The relatively
low correlations this year may reflect the same issue we identified
while defining the persistent snow zone, namely that April 1st,
2004 had more discontinuous SWE and empty cells than other
years, even when compared with exceptionally low-snow springs
(2005, 2015). The 2003–2004 water year is the first in SNODAS’s
operation, and SNODAS’ agreement with observations improves
notably in all other years. So, issues with 2003–2004 are likely
reflective of initial launch issues with the SNODAS model which
are subsequently resolved. Outside of this year, agreement
between SNODAS and station observations was quite high,
especially where models with the intercept constrained to the
origin were considered (Supplementary Table 4). In that formula-
tion, R2 averaged 0.95 over all 27 year x metric combinations, and
R2 > 0.87 in all years after 2003–2004. Maximum snow depth date
had the strongest agreement across years (average R2= 0.987),
which lends some support to our use of SNODAS for determining
the onset of the melt season each year in our study. Omitting
2003–2004, in the linear model formulation that left the intercept
unconstrained, models contained an intercept of 0 and a slope of
1 in a 95% confidence ellipsoid (car::confidenceEllipse()
in R 4.2.2) for all annual regressions except 2006–2007, 2008–2009,
and 2009–2010 maximum snow depth date, indicating no
significant statistical difference between observations and SNO-
DAS in the majority of regressions (Supplementary Table 3). The
data used for this analysis can be found with the data for
supporting the findings of the overall study at https://doi.org/
10.7910/DVN/BULLJL.

Temperature analysis
Gridded temperature data was obtained from the PRISM research
group (https://prism.oregonstate.edu/) and processed in ArcMap
and R. Daily mean temperatures at the 4 km2 resolution from
March 1981–September 2021, in .bil raster format, were down-
loaded and extracted. This 1991–2021 period was chosen to align
with the SNODAS record in this study (2003–2021), but also
extending further back through 1991 to enable a calculation of
daily normals using the same 30-year baseline as PRISM uses to
derive its monthly normals. Records going further back through
1981, the earliest daily records available in PRISM, were also used
to probe for longer term trends in the persistent snow zone. The
rasters that were downloaded were then processed in R. Zonal
statistics within the persistent snow zone were extracted using the
raster package, using a shapefile of this zone converted from its
original WGS 84 coordinate reference system (the SNODAS
orientation) to the NAD 83 orientation system used by PRISM.
Zonal statistics were calculated for all days from October
2003–September 2021, analogous to the snowpack analysis. Mean
temperatures were tabulated and exported to a .csv form for
further analysis in R. To calculate temperature anomalies, daily
normal mean temperatures were derived using a 30-year period
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from 1991–2020. These daily normals were calculated by
averaging for each day across this period from the raw PRISM
data, and then further smoothed using a 7-day moving average.
Using these derived normals, temperature anomalies were
calculated by finding the difference between them and the mean
temperatures in the persistent snow zone for each day. Daily
normal NetCDF rasters were also written, using the ncdf4 package
in R, for all days from April 1st–June 30th using the same
1991–2020 30-year reference period and 7-day moving average
smoothing. This process was repeated for maximum and
minimum temperature rasters from PRISM for the dates of the
heat dome (June 26th–30th). These daily normal rasters, the zonal
means extracted for the persistent snow zone for the heat dome
dates, as well as the attribute tables of daily rasters when
evaluated in ArcMap, were the basis for all temperatures reported.
The daily temperature anomalies in the persistent snow zone

were modestly smoothed with a 3-day moving average in figures
to account for potential misalignment between temperature and
SWE observation times (daily SWE represents a snapshot at 06:00
UTC, while PRISM mean temperatures are the average of daily
maximum and minimum temperatures, occurring at variable times
each day). This potential misalignment appears to be minimal,
however, as for any given year, we found only trivial improvement
in the degree of correlation between a day’s temperature anomaly
and the daily SWE change for that same day versus the day
immediately prior. Three-day moving averaging SWE also allowed
us to better highlight heatwaves, which are frequently defined as
persisting for an at least 3-day period, and to improve signal-to-
noise in our areal averaging, which on a 1-day scale may be more
defined by heterogeneity in SWE and temperature over the
persistent snow zone, but when smoothed over multiple days may
be more likely to represent a larger region-wide anomaly.

Historical record analysis
To examine long-term trends, daily mean temperatures were
compiled and analyzed for multiple stations as well as PRISM
records. For stations, daily mean temperature values, as well as the
normal values for each date (defined from 1991–2020) were
exported into a .csv for analysis in R. Daily temperature anomalies
during April, May and June (AMJ), which was used as an
approximation for the snow melting season each year, were
identified and used to estimate heat exposure ≥+5 °C for each
station’s period of record. Daily temperature anomalies for all AMJ
days where the anomaly was ≥+5 °C were summed for each year,
producing a single metric, analogous to a seasonal heating or
cooling degree-days sum referenced to a ±0 °C anomaly threshold,
that captured both intensity (how much ≥+5 °C each day was)
and frequency (how often ≥+5 °C days happened). Conceptually,
this integrates the tailed events of the daily temperature
distributions over each year’s AMJ period. Using the extracted
daily average mean temperatures in the persistent snow zone and
the daily normal temperatures derived in the above Methods
“Temperature analysis” section, the analysis was repeated for the
persistent snow zone over the PRISM period of record (1981–2021)
(Fig. 4a). Lastly, using the daily normal temperature rasters we
derived and the daily mean temperature rasters from PRISM, an
analysis was done which calculated at each grid cell the
temperature anomaly for every April–June day for years
1981–2021. Grid cells at each day where the anomaly was <
+5 °C were filtered out, and the ≥+5 °C values retained and then
pooled for the 91-day April–June window each year. From these
pooled ≥+5 °C anomaly rasters for each year, the raster.kendall()
function in the spatialEco package in R was used to calculate the
trend for each cell from 1993–2021 using a Kendall’s tau test and
Theil-Sen method for slope estimation. The Kendall tau statistic
was used to better address the temporal and spatial auto-
correlation concerns that would likely be an issue in an

interpolated grid product like PRISM. The raster.kendall function
includes in its output a raster of the tau statistic value for each grid
cell in the study area, included here as Supplementary Fig. 6 to
illustrate the level of positive correlation between the 1993–2021
time series and the more extreme temperature anomalies we
studied.
Global Historical Climatology Network (GHCN) Stations were

selected for analysis based on length and completeness of record
(>90% coverage to 1950 or earlier) and proximity to areas of
interest, generally either lower-elevation population centers in the
PNW or higher-elevation stations in proximity to the persistent
snow zone. Details on analyzed stations are included as
Supplementary Table 1.
A sensitivity analysis was performed to test how different

starting years affected the emergence of trends in the persistent
snow zone, the Portland International Airport, and additional
stations in the ≥+5 °C metric through 2021 (Fig. 4 and
Supplementary Fig. 5). Trends were derived in R using the simple
linear regression model: Y ¼ β0 þ β1X þ ϵ, where Y is the value for
the ≥+5 °C metric, X is the year of each AMJ period, and β0, β1,
and ϵ represent their traditional coefficient and error terms.
Heteroscedasticity-consistent standard errors were implemented
to address mild heteroscedasticity in the model (viz., recent
extremes in 2016, 2021) using lm_robust() with se_type=
”HC3” (appropriate for smaller sample sizes) in the estimatr
package. The slopes for all starting years from 1940–2010 are
shown in Supplementary Fig. 7. For the six locations with trends
calculated, except for a 1–4 year period in the mid-1980s in three
of the locations, all years and locations show a positive trend in
this metric for all starting years between 1940–2010. Across all
long-term station records measured, for starting years 2010 and
prior (see Supplementary Table 1 for record periods), 92% of
trends are significant at the p < 0.1 level, and 81% at the p < 0.05
level, with most significance failures confined to a window from
the late 1970s–early 1990s. The trend from 1993–2021 was chosen
for emphasis and plotting in Fig. 4 due to the relative strength and
significance of the trend from that year onwards, but similarly
strong trends could be initiated at any point in the mid-1990s.
Future research will be better equipped to ascertain this trend’s
robustness more definitively. Trend emergence in the mid-1990s
appeared relatively consistently, supporting the decision to fit a
trend to this period and highlight it in our analysis. A positive
trend in the intensity and/or frequency of extreme heat anomalies,
insofar as they would emerge with greater regularity in a warm-
shifted climate, is also better accounted for by the greater degree
of warm-shifting that has manifested in more recent decades.
Trend emergence in the mid-1990s is also more in agreement with
natural modes of variability. The decade prior to then was
unusually warm in spring due to what has been described as a
Pacific-North American-like teleconnection81, but which oscillated
in the mid-90s to its opposite phase that would typically
contribute to cooler spring temperatures. Instead, a positive
heatwave trend began in the opposite sign of this teleconnection
influence, suggesting factors besides natural variability (e.g., an
anthropogenic warming trend) emerged to dominate near this
inflection point. This rationale was also applied to derive the trend
in the PRISM record (Fig. 4b), although due in part to the greater
variability in temperature anomalies at altitude, as well as the
more limited time record (n= 40 years, 1981–2021), this trend is
much more sensitive to starting year, only demonstrating
significance at the p < 0.05 level in 1995, and at the p < 0.1 level
for most of the 1990s and post-2004.

Multiple linear regression
A multiple linear regression was evaluated to predict snow-
covered disappearance date as a function of peak annual SWE and
AMJ heatwaves. Peak annual SWE was identified from the
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extracted SNODAS values for the persistent snow zone, for each
spring in the study (2004–2021; Methods “Snowpack analysis”).
Cumulative AMJ heatwaves were quantified using the same
variable as in the historical record analysis, the sum of all daily
mean temperature anomalies ≥+5 °C during April, May, and June
(Fig. 4; Methods “Historical record analysis”). Because perennial
snow patches in the persistent snow zone preclude complete
snow disappearance, the model predicts the Julian day when 95%
of the zone’s snow-covered area has disappeared (SD95), rather
than a date of complete snow disappearance. The model was
derived using lm() in base R. No outliers were found upon using
Mahalanobis distance to screen for them. Diagnostic plots for the
linear model were used to check for violations of the assumptions
of normality, homoscedasticity, and linearity in the linear model,
with no violations found. The model and its terms were all found
to be significant, as detailed in Supplementary Table 2. It must be
noted that extrapolating from the model gives nonsensical
predictions at the lowest possible extremes of peak SWE. That
is, the intercept of 177.9 implies that 95% of snow-covered area
would persist until June 27th even with a complete absence of
snowpack (peak SWE of 0 mm). However, the model performs
normally to at least the two lowest observed extremes in the
dataset (270 and 331mm, 2005 and 2015, respectively), and the
persistent snow zone, as defined, always holds substantial SWE on
April 1st.

DATA AVAILABILITY
Open raster, vector and tabular data are posted on the Harvard Dataverse under a
CC0 Public Domain Dedication license that allows full and unrestricted global use of
the data generated during this research while giving proper citation to the original
author. These posted data allow for full replication, at the minimum mapping unit, of
the results generated during this analysis. The data that support the findings of this
study are available at https://doi.org/10.7910/DVN/BULLJL.

CODE AVAILABILITY
Code used for the analysis is available at https://doi.org/10.7910/DVN/BULLJL.

Received: 22 December 2022; Accepted: 8 November 2023;

REFERENCES
1. Bratu, A. et al. The 2021 Western North American heat dome increased climate

change anxiety among British Columbians: results from a natural experiment. J.
Clim. Change Health 6, 100116 (2022).

2. Henderson, S. B., McLean, K. E., Lee, M. J. & Kosatsky, T. Analysis of community
deaths during the catastrophic 2021 heat dome: early evidence to inform the
public health response during subsequent events in greater Vancouver, Canada.
Environ. Epidemiol. 6, e189 (2022).

3. Silberner, J. Heat wave causes hundreds of deaths and hospitalisations in Pacific
north west. Br. Med. J. Online 374, n1696 (2021).

4. White, R. H. et al. The unprecedented Pacific Northwest heatwave of June 2021.
Nat. Commun. 14, 727 (2023).

5. Gomez, M. B .C. heat wave ‘cooks’ fruit crops on the branch in sweltering Oka-
nagan and Fraser valleys. CBC News (2021).

6. Taylor, A., Farzan, A. N. & Coletta, A. ‘Lytton is gone’: accounts of death,
destruction in Canadian village that caught fire in record heat. Washington Post.
https://www.washingtonpost.com/world/2021/07/01/lytton-canada-evacuated-
wildfire-heatwave (2021).

7. Sloane, S. A., Gordon, A. & Connelly, I. D. Bushtit (Psaltriparus minimus) nestling
mortality associated with unprecedented June 2021 heatwave in Portland, Ore-
gon. Wilson J. Ornithol. 134, 155–162 (2022).

8. McElwee, P. Climate change and biodiversity loss: two sides of the same coin.
Curr. Hist. 120, 295–300 (2021).

9. Tabrizian, A. AROUND OREGON: Northwest trees sapped by Oregon and
Washington heat waves could be vulnerable to fire. Salem Reporter. https://
www.salemreporter.com/2021/07/15/around-oregon-northwest-trees-sapped-
by-oregon-and-washington-heat-waves-could-be-vulnerable-to-fire (2021).

10. Depinte, D. & Buhl, C. Detecting and mapping forest heat damage across the
Pacific Northwest. in Mini-Symposium on June 2021 Heat Dome Foliage Scorch
(College of Forestry, Oregon State University, 2021).

11. Klein, T., Torres-Ruiz, J. M. & Albers, J. J. Conifer desiccation in the 2021 NW
heatwave confirms the role of hydraulic damage. Tree Physiol. 42, 722–726 (2022).

12. Raymond, W. W. et al. Assessment of the impacts of an unprecedented heatwave
on intertidal shellfish of the Salish Sea. Ecology 103, e3798 (2022).

13. Menounos, B. et al. Cryospheric Response to the June, 2021 Heat Dome (AGU, 2021).
14. BC River Forecast Centre; Ministry of Forests, Lands, Natural Resource Operations

and Rural Development. Flood Watch—Lillooet River. http://bcrfc.env.gov.bc.ca/
warnings/advisories/FWT_2021_0626_1000_Lillooet_iss.pdf (2021).

15. Francovitch, E. Heat wave sends water pouring off Mount Rainier, exposing
glaciers to summer heat sooner. The Spokesman-Review https://
www.spokesman.com/stories/2021/jul/03/heat-wave-sends-water-pouring-off-
mount-rainier-ex (2021).

16. McCabe, G. J. & Clark, M. P. Trends and variability in snowmelt runoff in the
Western United States. J. Hydrometeorol. 6, 476–482 (2005).

17. Hansen, B. B. et al. Warmer and wetter winters: characteristics and implications of
an extreme weather event in the High Arctic. Environ. Res. Lett. 9, 114021 (2014).

18. Salinger, M. J. et al. Unparalleled coupled ocean-atmosphere summer heatwaves
in the New Zealand region: drivers, mechanisms and impacts. Clim. Change 162,
485–506 (2020).

19. Salinger, M. J. et al. The unprecedented coupled ocean-atmosphere summer
heatwave in the New Zealand region 2017/18: drivers, mechanisms and impacts.
Environ. Res. Lett. 14, 044023 (2019).

20. Ciavarella, A. et al. Prolonged Siberian heat of 2020 almost impossible without
human influence. Clim. Change 166, 9 (2021).

21. Van Tiel, M., Van Loon, A. F., Seibert, J. & Stahl, K. Hydrological response to warm and
dry weather: do glaciers compensate? Hydrol. Earth Syst. Sci. 25, 3245–3265 (2021).

22. Pelto, M. S., Dryak, M., Pelto, J., Matthews, T. & Perry, L. B. Contribution of glacier
runoff during heat waves in the Nooksack River Basin USA.Water 14, 1145 (2022).

23. Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M. & Engel, R. Dramatic declines in
snowpack in the western US. Npj Clim. Atmos. Sci. 1, 1–6 (2018).

24. Kapnick, S. & Hall, A. Causes of recent changes in western North American
snowpack. Clim. Dyn. 38, 1885–1899 (2012).

25. Abatzoglou, J. T., Rupp, D. E. & Mote, P. W. Seasonal climate variability and change in
the Pacific Northwest of the United States. J. Clim. 27, 2125–2142 (2014).

26. Mote, P., Hamlet, A. & Salathé, E. Has spring snowpack declined in the
Washington cascades? Hydrol. Earth Syst. Sci. 12, 193–206 (2008).

27. Rupp, D. E., Abatzoglou, J. T. & Mote, P. W. Projections of 21st century climate of
the Columbia River Basin. Clim. Dyn. 49, 1783–1799 (2017).

28. McCabe, G. J. & Wolock, D. M. Recent declines in Western U.S. snowpack in the
context of twentieth-century climate variability. Earth Interact. 13, 1–15 (2009).

29. Luce, C. H., Abatzoglou, J. T. & Holden, Z. A. The missing mountain water: slower
westerlies decrease orographic enhancement in the Pacific Northwest USA. Sci-
ence 342, 1360–1364 (2013).

30. PRISM Climate Group, Oregon State University. Parameter-elevation Regressions
on Independent Slopes Model (PRISM) Gridded Climate Data. https://
prism.oregonstate.edu, https://www.nature.com/articles/s43247-022-00662-
9#ref-CR19 (Accessed April 2022)

31. National Operational Hydrologic Remote Sensing Center. Snow Data Assimilation
System (SNODAS) Data Products at NSIDC, Version 1 [SWE] (National Snow and Ice
Data Center, 2004).

32. Montoya, E. L., Dozier, J. & Meiring, W. Biases of April 1 snow water equivalent
records in the Sierra Nevada and their associations with large-scale climate
indices. Geophys. Res. Lett. 41, 5912–5918 (2014).

33. Overland, J. E. Causes of the record-breaking Pacific Northwest heatwave, late
June 2021. Atmosphere 12, 1434 (2021).

34. Mo, R., Lin, H. & Vitart, F. An anomalous warm-season trans-Pacific atmospheric
river linked to the 2021 western North America heatwave. Commun. Earth
Environ. 3, 1–12 (2022).

35. Neal, E., Huang, C. S. Y. & Nakamura, N. The 2021 Pacific Northwest heat wave and
associated blocking: meteorology and the role of an upstream cyclone as a
diabatic source of wave activity. Geophys. Res. Lett. 49, e2021GL097699 (2022).

36. Philip, S. Y. et al. Rapid attribution analysis of the extraordinary heat wave on the
Pacific coast of the US and Canada in June 2021. Earth Syst. Dyn. 13, 1689–1713
(2022).

37. Daly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L. & Pasteris, P. A knowledge-based
approach to the statistical mapping of climate. Clim. Res. 22, 99–113 (2002).

38. Daly, C., Smith, J. W., Smith, J. I. & McKane, R. B. High-resolution spatial modeling
of daily weather elements for a catchment in the Oregon Cascade Mountains,
United States. J. Appl. Meteorol. Climatol. 46, 1565–1586 (2007).

39. Minder, J. R., Mote, P. W. & Lundquist, J. D. Surface temperature lapse rates over
complex terrain: lessons from the Cascade Mountains. J. Geophys. Res. Atmo-
spheres 115, D14122 (2010).

L. Reyes and M.G. Kramer

10

npj Climate and Atmospheric Science (2023)   208 Published in partnership with CECCR at King Abdulaziz University

https://doi.org/10.7910/DVN/BULLJL
https://doi.org/10.7910/DVN/BULLJL
https://www.washingtonpost.com/world/2021/07/01/lytton-canada-evacuated-wildfire-heatwave
https://www.washingtonpost.com/world/2021/07/01/lytton-canada-evacuated-wildfire-heatwave
https://www.salemreporter.com/2021/07/15/around-oregon-northwest-trees-sapped-by-oregon-and-washington-heat-waves-could-be-vulnerable-to-fire
https://www.salemreporter.com/2021/07/15/around-oregon-northwest-trees-sapped-by-oregon-and-washington-heat-waves-could-be-vulnerable-to-fire
https://www.salemreporter.com/2021/07/15/around-oregon-northwest-trees-sapped-by-oregon-and-washington-heat-waves-could-be-vulnerable-to-fire
http://bcrfc.env.gov.bc.ca/warnings/advisories/FWT_2021_0626_1000_Lillooet_iss.pdf
http://bcrfc.env.gov.bc.ca/warnings/advisories/FWT_2021_0626_1000_Lillooet_iss.pdf
https://www.spokesman.com/stories/2021/jul/03/heat-wave-sends-water-pouring-off-mount-rainier-ex
https://www.spokesman.com/stories/2021/jul/03/heat-wave-sends-water-pouring-off-mount-rainier-ex
https://www.spokesman.com/stories/2021/jul/03/heat-wave-sends-water-pouring-off-mount-rainier-ex
https://prism.oregonstate.edu
https://prism.oregonstate.edu
https://www.nature.com/articles/s43247-022-00662-9#ref-CR19
https://www.nature.com/articles/s43247-022-00662-9#ref-CR19


40. Heldmyer, A., Livneh, B., Molotch, N. & Rajagopalan, B. Investigating the rela-
tionship between peak snow-water equivalent and snow timing indices in the
Western United States and Alaska. Water Resour. Res. 57, e2020WR029395 (2021).

41. Mote, P. W., Hamlet, A. F., Clark, M. P. & Lettenmaier, D. P. Declining Mountain
Snowpack in Western North America*. Bull. Am. Meteorol. Soc. 86, 39–50 (2005).

42. Pierce, D. W. et al. Attribution of declining Western U.S. snowpack to human
effects. J. Clim. 21, 6425–6444 (2008).

43. Siler, N., Proistosescu, C. & Po-Chedley, S. Natural variability has slowed the decline
in Western U.S. snowpack Since the 1980s. Geophys. Res. Lett. 46, 346–355 (2019).

44. Mote, P. W. et al. Perspectives on the causes of exceptionally low 2015 snowpack
in the western United States. Geophys. Res. Lett. 43, 10,980–10,988 (2016).

45. Jennings, K. S. & Molotch, N. P. Snowfall fraction, cold content, and energy bal-
ance changes drive differential response to simulated warming in an alpine and
subalpine snowpack. Front. Earth Sci. 8, 186 (2020).

46. Jennings, K. S., Kittel, T. G. F. & Molotch, N. P. Observations and simulations of the
seasonal evolution of snowpack cold content and its relation to snowmelt and
the snowpack energy budget. Cryosphere 12, 1595–1614 (2018).

47. Loikith, P. C. & Broccoli, A. J. The influence of recurrent modes of climate varia-
bility on the occurrence of winter and summer extreme temperatures over North
America. J. Clim. 27, 1600–1618 (2014).

48. Cayan, D. R., Redmond, K. T. & Riddle, L. G. ENSO and hydrologic extremes in the
Western United States. J. Clim. 12, 2881–2893 (1999).

49. Higgins, R. W., Leetmaa, A. & Kousky, V. E. Relationships between climate variability
and winter temperature extremes in the United States. J. Clim. 15, 1555–1572 (2002).

50. Kenyon, J. & Hegerl, G. C. Influence of modes of climate variability on global
precipitation extremes. J. Clim. 23, 6248–6262 (2010).

51. Kenyon, J. & Hegerl, G. C. Influence of modes of climate variability on global
temperature extremes. J. Clim. 21, 3872–3889 (2008).

52. Geng, T. et al. Emergence of changing Central-Pacific and Eastern-Pacific El Niño-
Southern Oscillation in a warming climate. Nat. Commun. 13, 6616 (2022).

53. Beebee, R. A. & Manga, M. Variation in the relationship between snowmelt runoff
in Oregon and ENSO and PDO. J. Am. Water Resour. Assoc. 40, 1011–1024 (2004).

54. Tamaddun, K. A., Kalra, A., Bernardez, M. & Ahmad, S. Multi-scale correlation
between the Western U.S. snow water equivalent and ENSO/PDO using wavelet
analyses. Water Resour. Manag. 31, 2745–2759 (2017).

55. Brown, D. P. & Comrie, A. C. A winter precipitation ‘dipole’ in the western United
States associated with multidecadal ENSO variability. Geophys. Res. Lett. 31,
L09203 (2004).

56. Thakur, B. et al. Linkage between ENSO phases and western US snow water
equivalent. Atmos. Res. 236, 104827 (2020).

57. Patten, J. M., Smith, S. R. & O’Brien, J. J. Impacts of ENSO on snowfall frequencies
in the United States. Weather Forecast. 18, 965–980 (2003).

58. NOAA/National Weather Service, Climate Prediction Center. Oceanic Niño Index.
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/
ONI_v5.php (2023).

59. NOAA Physical Sciences Laboratory. Multivariate ENSO index. https://
www.psl.noaa.gov/enso/mei/ (2023).

60. Lin, H., Mo, R. & Vitart, F. The 2021 Western North American heatwave and its
subseasonal predictions. Geophys. Res. Lett. 49, e2021GL097036 (2022).

61. NOAA. What is a heat dome? National Ocean Service website. https://
oceanservice.noaa.gov/facts/heat-dome.html (2023).

62. Qian, Y. et al. Effects of subseasonal variation in the East Asian monsoon system
on the summertime heat wave in Western North America in 2021. Geophys. Res.
Lett. 49, e2021GL097659 (2022).

63. Luo, M. & Lau, N.-C. Summer heat extremes in northern continents linked to
developing ENSO events. Environ. Res. Lett. 15, 074042 (2020).

64. Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K. & Rasmussen, R. Slower snowmelt
in a warmer world. Nat. Clim. Change 7, 214–219 (2017).

65. Barnhart, T. B. et al. Snowmelt rate dictates streamflow. Geophys. Res. Lett. 43,
8006–8016 (2016).

66. Jackson, S. I. & Prowse, T. D. Spatial variation of snowmelt and sublimation in a
high-elevation semi-desert basin of western Canada. Hydrol. Process. 23,
2611–2627 (2009).

67. Marks, D. et al. Comparing simulated and measured sensible and latent heat
fluxes over snow under a pine canopy to improve an energy balance snowmelt
model. J. Hydrometeorol. 9, 1506–1522 (2008).

68. Mazurkiewicz, A. B., Callery, D. G. & McDonnell, J. J. Assessing the controls of the
snow energy balance and water available for runoff in a rain-on-snow environ-
ment. J. Hydrol. 354, 1–14 (2008).

69. Male, D. H. & Granger, R. J. Snow surface energy exchange. Water Resour. Res. 17,
609–627 (1981).

70. Marks, D. & Dozier, J. Climate and energy exchange at the snow surface in the
Alpine Region of the Sierra Nevada: 2. Snow cover energy balance. Water Resour.
Res. 28, 3043–3054 (1992).

71. Marsh, P. Snowcover formation and melt: recent advances and future prospects.
Hydrol. Process. 13, 2117–2134 (1999).

72. Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves.
Nat. Commun. 11, 3357 (2020).

73. Lopez, H. et al. Early emergence of anthropogenically forced heat waves in the
western United States and Great Lakes. Nat. Clim. Change 8, 414–420 (2018).

74. García-Martínez, I. M. & Bollasina, M. A. Identifying the evolving human imprint on
heat wave trends over the United States and Mexico. Environ. Res. Lett. 16,
094039 (2021).

75. Russo, S. et al. Magnitude of extreme heat waves in present climate and their
projection in a warming world. J. Geophys. Res. Atmos. 119, 12,500–12,512 (2014).

76. Overland, J. E. & Wang, M. The 2020 Siberian heat wave. Int. J. Climatol. 41,
E2341–E2346 (2021).

77. Beniston, M. Warm winter spells in the Swiss Alps: strong heat waves in a cold
season? A study focusing on climate observations at the Saentis high mountain
site. Geophys. Res. Lett. 32, 1–5 (2005).

78. Colucci, R. R., Giorgi, F. & Torma, C. Unprecedented heat wave in December 2015
and potential for winter glacier ablation in the eastern Alps. Sci. Rep. 7, 7090
(2017).

79. McKinnon, K. A. & Simpson, I. R. How unexpected was the 2021 Pacific Northwest
Heatwave? Geophys. Res. Lett. 49, e2022GL100380 (2022).

80. Musselman, K. N. et al. Projected increases and shifts in rain-on-snow flood risk
over western North America. Nat. Clim. Change 8, 808–812 (2018).

81. Abatzoglou, J. T. & Redmond, K. T. Asymmetry between trends in spring and
autumn temperature and circulation regimes over western North America.
Geophys. Res. Lett. 34, L18808 (2007).

82. Grogan, D. S., Burakowski, E. A. & Contosta, A. R. Snowmelt control on spring
hydrology declines as the vernal window lengthens. Environ. Res. Lett. 15, 114040
(2020).

83. Stewart, I. T., Cayan, D. R. & Dettinger, M. D. Changes toward earlier streamflow
timing across Western North America. J. Clim. 18, 1136–1155 (2005).

84. Dawson, N., Broxton, P. & Zeng, X. Evaluation of remotely sensed snow water
equivalent and snow cover extent over the contiguous United States. J. Hydro-
meteorol. 19, 1777–1791 (2018).

85. Tong, J. & Velicogna, I. A comparison of AMSR-E/Aqua snow products with in situ
observations and MODIS snow cover products in the Mackenzie River Basin,
Canada. Remote Sens. 2, 2313–2322 (2010).

86. Di Marco, N. et al. Comparison of MODIS and model-derived snow-covered areas:
impact of land use and solar illumination conditions. Geosciences 10, 134 (2020).

87. Carroll, T. et al. NOAA’s national snow analyses. in Proceedings of the 74th Annual
Meeting of the Western Snow Conference, Vol. 74, 14 (2006).

88. Clow, D. W., Nanus, L., Verdin, K. L. & Schmidt, J. Evaluation of SNODAS snow
depth and snow water equivalent estimates for the Colorado Rocky Mountains,
USA. Hydrol. Process. 26, 2583–2591 (2012).

ACKNOWLEDGEMENTS
Observational snowpack station data used in the independent validation was
provided by the US Forest Service in the Pacific Northwest. We would like to thank Dr.
Andrew Fountain for reviewing and providing constructive feedback on earlier
versions of this manuscript, and Brian Staab of the US Forest Service for reviewing
earlier versions of the manuscript. This work was financially supported by National
Research Initiative grant no. 2018-67020-2797 from the USDA National Institute of
Food and Agriculture.

AUTHOR CONTRIBUTIONS
L.R. and M.G.K. both conceived of and designed the study. SNODAS, PRISM and snow
station and all temperature data were analyzed using a combination of coded scripts
and R routines by L.R. L.R. wrote the manuscript, to which both authors contributed
substantial interpretation, discussion, and text.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41612-023-00521-0.

Correspondence and requests for materials should be addressed to Luke Reyes.

L. Reyes and M.G. Kramer

11

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2023)   208 

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://www.psl.noaa.gov/enso/mei/
https://www.psl.noaa.gov/enso/mei/
https://oceanservice.noaa.gov/facts/heat-dome.html
https://oceanservice.noaa.gov/facts/heat-dome.html
https://doi.org/10.1038/s41612-023-00521-0


Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

L. Reyes and M.G. Kramer

12

npj Climate and Atmospheric Science (2023)   208 Published in partnership with CECCR at King Abdulaziz University

http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	High-elevation snowpack loss during the 2021 Pacific Northwest heat dome amplified by successive spring heatwaves
	Introduction
	Results
	Scale of warming during the 2021 heat�dome
	Snowpack response to the heat�dome
	Temperature controls on snowpack�loss
	Long-term increase in spring heatwaves

	Discussion
	Methods
	Snowpack analysis
	SNODAS validation
	Temperature analysis
	Historical record analysis
	Multiple linear regression

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




