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Leveraging global climate models to assess multi-year
hydrologic drought
Michael J. F. Vieira 1✉ and Tricia A. Stadnyk 2

Global climate models (GCMs) offer value for assessments of future water supply and multi-year hydrologic drought. Leveraging
GCM data, we develop and analyze global scenarios of mean annual runoff over a span of 640 years. Runoff data from eighteen
GCMs are evaluated for skill and bias-adjusted to reflect observations. Unprecedented projections of mean runoff, drought severity,
and drought duration are found for 37%, 28%, and 23% of analyzed global land area, respectively, with regions on all continents
presenting a risk of a drier future. Conversely, northern latitudes show evidence of increasing runoff, less severe, and shorter-
duration droughts. Outside these regions, projections are either indistinguishable from internal climate variability or unreliable due
to conflicting signal-to-noise ratios and ensemble agreement. Our analysis contributes to a global gap in understanding future
multi-year hydrologic droughts, which can pose significant socio-economic risks.
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INTRODUCTION
Understanding water supply reliability and the occurrence of
drought is important from social and economic perspectives.
Droughts are often categorized as meteorological, agricultural,
hydrological1, and socio-economic when moisture deficits affect
daily life or cause financial burdens. Impacts associated with all
drought types can be devastating to human health2,3 and broader
global sustainable development goals4. From an economic
perspective, prolonged drought can impact electricity prices3,5,6

and cost billions of dollars7–9.
Climate models are valuable tools to support assessments of

future water supply10,11 and various drought types12–15. Compared
to earlier models, finer spatial resolutions16, improved representa-
tion of land surface hydrology17, and the availability of multi-
century simulations18 increase the appeal of Global Climate
Models (GCMs) for hydrologic analyses. Although the opportunity
for improvement remains19–21, leveraging available GCM data can
provide meaningful information, especially in data-sparse regions.
Future streamflow assessments typically use calibrated hydrologic

models driven by climate model-derived temperature and precipita-
tion for a region22,23. This approach incorporates fine hydrologic
detail but can be computationally prohibitive at the global scale.
Global Hydrologic Models (GHMs) and Land Surface Models (LSMs)
facilitate analysis of larger domains24–26 but may be subject to
limited observations, exclusion of fine hydrologic detail, and less
rigorous calibration20. GHMs have been used to project future
changes in sub-annual hydrologic drought27–29 without extension to
multi-annual events. Beyond temperature and precipitation, climate
models simulate runoff through physics-based representation of
land surface processes which is important for modeling land-
atmosphere energy exchange and freshwater discharge to
oceans13,30. Direct use of climate model runoff has the benefit of
preserving dynamically simulated atmosphere, ocean, and land
surface feedbacks, which play an important role in climate
development31 and drought intensification32.
Advances in land surface representation within climate models

have spurred the direct use of climate model runoff as an

alternative or complementary approach to traditional streamflow
projection development10,12,15,17,33–35. While existing studies
provide useful climate change analyses for sub-annual hydrologic
patterns in specific regions over common time horizons (usually
≤30 years); there remains a gap in projecting multi-year
hydrologic drought at the global scale.
We combine pre-industrial control (piControl), historic, and

future GCM simulations to explore patterns of runoff change in
1460–2100. GCM skill is evaluated against pseudo-observed runoff
products known as LORA36 and GRUN37 over 1980–2012, where
LORA is also used for bias adjustment. Projected changes (signals;
2021–2100 versus 1941–2020) are compared against internal
climate variability (noise; 1460–1940) and interpreted alongside
ensemble agreement to demonstrate the pragmatic use of mean
annual runoff scenarios to assess multi-year hydrologic drought.
Runoff scenarios are analyzed globally (1° resolution) and within
sixteen river basins (>600,000 km2), chosen to provide wide
coverage and include regions with notable water management
infrastructure (Fig. 1). When future emissions scenarios RCP4.5 and
RCP8.5 are viewed as equiprobable, unprecedented change in
mean annual runoff (MAR), mean drought severity (SEV), and
mean drought duration (DUR) is found for 37%, 28%, and 23% of
global land area, respectively. Projections outside these regions
are characterized as unreliable or indistinguishable from internal
climate variability, which can still offer value for long-term
planning.

RESULTS
Climate model skill
Evaluating skill informs practical applications of GCMs by
providing insight regarding model abilities, shortcomings, and
effectiveness of bias adjustment, and reminds users that models
and observations are imperfect. Even among common variables
like temperature and precipitation, GCMs exhibit errors in space
and time38–40 and we recognize that skill in one variable may
correlate with skill in other variables27,40–42. Skill dependency may
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have an undesired effect if errors in one water balance component
influence or compensate for errors in another component21, but
here we look exclusively at GCM skill in simulating runoff patterns.
Figure 2 ranks skill for eighteen GCMs (listed in Supplementary

Table 1) based on relative RMSE (RMSER) in 22 regions for an
aggregated measure of six indices (see Methods). Supplementary
Figs. 1–4 and Supplementary Tables 2 and 3 present error
magnitudes and demonstrate that bias adjustment successfully
reduced error in most indices. Comparing results against an

alternate pseudo-observed runoff dataset revealed only minor
differences in global ranks. However, for some regions, models,
and indices, Supplementary Table 2 reveals that GCMs can exhibit
similar or better RMSE compared to an alternate pseudo-observed
runoff product which is consistent with another study of GCM
runoff skill43.
At the global scale, MPI-ESM-LR, MPI-ESM-MR, and CMCC-CMS

rank 1, 2, and 3 (respectively) and are among the best-performing
GCMs across all six indices (Fig. 2; Supplementary Fig. 1). Top

Fig. 1 Land mask. Sixteen large river basins overlain on a merged global land-sea mask (1° latitude by 1° longitude resolution), showing land
grids that are consistent among all global climate models and the pseudo-observed datasets (see Methods). Brown points show 7250 dams
from version 1.3 of the Global Reservoir and Dam Database (GRanD101).

Fig. 2 Ranked skill by global climate model and region. GCM skill ranked by relative RMSE computed as the average of six runoff indices
(RMSER-All; see Methods). Rows represent spatial domains as Global (GL), NA (North America), SA (South America), AF (Africa), EA (Eurasia), AU
(Australia), and 16 river basins shown in Fig. 1. Columns represent the GCM simulations (prior to bias adjustment). Each cell is divided
diagonally to show rank with respect to two pseudo-observed datasets (LORA36 as the upper left portion of the cell and GRUN37 as the lower
right portion of the cell). A value of 1 indicates the best-performing model. Numeric ranks are shown for GL (top row) as a reference for colors
in subsequent rows.
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performing GCMs at the global scale tend to perform well at the
continental and river basin scales. Reasonable global skill can
coincide with poor skill within more localized regions, however,
and poor global skill can occasionally be influenced by poor
performance in a specific region(s). In general, we find that RMSE
and RMSER metrics are, in some cases, sensitive to exceptionally
poor performance in a small number of grids (e.g., see
Supplementary Discussion).
RMSE is computed grid-by-grid and measures a GCM’s ability to

capture spatial patterns. Interpretation of RMSE is complemented
by visual comparison of skill indices (maps; Supplementary Fig. 2),
providing a spatially distributed view of GCM performance. GCMs
broadly replicate wet and dry regions, but there are nuances at
the individual grid scale, specifically, the size and location of wet
and dry areas are imperfect. Interestingly, we find that NorESM1-M
(ranked last) outperforms MPI-ESM-LR (ranked first) with respect to
spatially averaged global mean, minimum, and maximum runoff
(Supplementary Fig. 2), but has less skill in capturing global spatial
patterns.
We demonstrate a range of runoff skills within the GCM

ensemble and find that, overall, GCMs are capable of broadly
capturing runoff patterns, including wet and dry regions. Our
findings are generally consistent with GCM MAR skill evaluated at
the continental scale10; however, it should be recognized that
findings can be sensitive to selected skill indices, metrics, and
reference datasets43. Through bias adjustment, GCM runoff errors
in four of six annual runoff indices (mean, minimum, maximum,
and coefficient of variation) are drastically improved, but errors in
lag-1 autocorrelation and the average number of cumulative dry
years remain (Supplementary Fig. 3, Supplementary Fig. 4,
Supplementary Table 3). Reducing error through bias adjustment
improves the utility of GCM runoff data for practical evaluation of
hydrologic characteristics, but future work is needed to explore
bias adjustment techniques that improve other skill indices
relevant to drought analysis.

Continental hotspots with unprecedented projections
Figure 3 shows that future projections of MAR, coefficient of
variability (CV), SEV, and DUR for most grids are either: indistinguish-
able from internal climate variability (most GCM signals lie within the
noise) or unreliable (most GCM signals exceed noise but disagree on
direction of change). While these findings can provide meaningful
information for practitioners, we focus primarily on remaining
regions that combine strong signals with good ensemble agreement
on the direction of change and are herein classified as unprece-
dented. Unprecedented changes are common among MAR, SEV, and
DUR but quite rare for CV. Regions with unprecedented change in
one variable, however, do not always align with unprecedented
change among other variables (e.g., increasing MAR may not align
with decreasing SEV). Limited regions exhibiting unprecedented
change underscore uncertainties and challenges in using GCMs for
climate adaptation planning, but our analysis highlights regions
where practitioners may benefit from greater confidence in
projections.
Wetter conditions emerge for higher latitudes and portions of

western and eastern North America, which may be a continuation
of observed climatic changes such as glacier melt and increasing
precipitation14,44. For water management facilities in northern
Quebec (Fig. 1), gradual runoff increases (Supplementary Fig. 5
panel a) lead to reduced drought. Some southern U.S. States and
portions of Mexico show evidence of a drier future consistent with
the “drier in dry, wetter in wet” paradigm45. In these arid regions
where natural variability already includes extreme drought
events8, gradual runoff reductions (Supplementary Fig. 5 panel
b) coupled with increasing temperature could amplify impacts.
Isolated regions in South America are projected to dry, with

some areas also projecting increased inter-annual runoff

variability. Near Buenos Aires, there is evidence of increasing
runoff, coupled with drought changes that are indistinguishable
from internal climate variability. Gradual runoff declines in the
Patagonia region (Supplementary Fig. 5 panel c) may result from
reductions in precipitation46 combined with changes in vegeta-
tion47 and possibly exacerbated by continued depletion of ice
fields44.
Regions in North and South Africa are projected to dry, broadly

following historic “dry gets drier” patterns48. Notably, these
regions, which are particularly vulnerable to drought9, overlap
future hot spots for increased meteorological drought14,49.
Projections for east-central Africa show increasing MAR, which
deviates from some published drying patterns48; however,
coinciding unreliable projections of drought make for a complex
interpretation of future drought risk15. Projected wetting in this
arid region may be, in part, attributed to vegetation changes
resulting in runoff gains47.
Two predominant patterns emerge within Eurasia: Northern

regions are projected to become wetter, and west-central regions
are projected to dry. This dry hotspot is consistent with
projections of precipitation16, sub-annual drought9,15, and multi-
year meteorological drought49, which may exacerbate existing
drought risk50. Looking jointly at MAR and SEV, we find additional
northern regions projected to become wetter and an expanded
west-central Eurasian region projected to become drier. Looking
exclusively at unprecedented changes in MAR, the ensemble
projects wetter conditions for some regions in southern Eurasia
but with no associated unprecedented change in drought.
Unprecedented signals in regions with dense populations and
water management infrastructure pose opportunities and chal-
lenges depending on adaptive capacity. Drought risk challenges9

may be especially relevant for humid regions previously thought
to be less susceptible to the notion of dry getting drier45,48.
Among continents, Australia has the smallest fraction of grids

exhibiting unprecedented change. Projections for four hydrologic
characteristics are predominantly within the range of noise due to
internal climate variability, which may be a testament to the wide
range of natural variability in Australian drought6. Runoff time
series from individual GCMs reveal an ensemble dichotomy where
some models simulate more stationary, linear patterns, and others
show lower frequency signatures of high and low runoff
(Supplementary Fig. 5 panel i). Multi-decadal periodicity creates
challenges in bias adjustment to a relatively short (33-year) period
and demonstrates the importance of interpreting climate change
signals alongside internal climate variability.
Regional patterns and magnitudes of change found herein (e.g.,

wetting of northern latitudes, drying in central Eurasia) generally
agree with earlier studies of annual runoff indices11,35,51, sub-
annual low flow indicators27,28, and sub-annual drought
indices12,14,15. Our findings confirm previously established projec-
tions and show that unprecedented areas of wetting and drying
patterns generally extend to multi-year hydrologic drought
events.

A practical perspective to leverage runoff and drought
projections
For water resource planning in large watersheds, grid-scale
changes may be less relevant than projections at the river basin
scale. This is especially important for institutions responsible for
water management infrastructure located on main stems at
outlets of large rivers.
Figure 4 illustrates time series of bias-adjusted runoff in sixteen

large river basins. In all basins, the ensemble median of mean
runoff was relatively stationary up until 1941, with some trends
emerging post-1941. Trends in projected mean runoff changes are
most obvious for the Yukon, Mackenzie, Ob, Lena, and Ganges-
Brahmaputra (increasing) and Danube (decreasing) river basins
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Fig. 3 Projected change in hydrologic characteristics. Ensemble median (RCP4.5 and RCP8.5) projected change (Δ) in mean annual runoff
(MAR; panel a), coefficient of variation (CV; panel b), mean drought severity (SEV; panel c) and duration (DUR; panel d). Colors represent the
magnitude of change and are shown for the 2021–2100 period relative to the 1941–2020 baseline. Hatching distinguishes regions with
evidence of unprecedented change, white grids demark water, masked areas, or regions with unreliable projections, and other colored
regions show areas where the projected change is indistinguishable from internal climate variability. See Methods for further information.
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from 1941 to 2100. Patterns in the other nine basins are less
(visually) apparent due to greater variability in the GCM ensemble
regarding the direction of future change. Signal-to-noise ratios
(SNRs) and ensemble agreement help distinguish results for
individual basins (Table 1, Supplementary Table 4).
In all 16 river basins, projected changes in MAR were mostly

found to be either unprecedented or unreliable. CV projections are
mostly indistinguishable from internal climate variability, and
projected changes in drought characteristics (SEV and DUR) are

reported as either unprecedented, unreliable, or indistinguishable.
Climate change adaptation decisions become more complex
when projection information is unreliable or indistinguishable
from internal variability, but identification of such regions with
higher uncertainty can support cases for stress testing or further
research. For example, in the presence of unreliable projections,
practitioners may be inclined to undertake more detailed, finer-
resolution hydrologic modeling studies to better grasp uncertain-
ties. When projections are indistinguishable from internal

Fig. 4 Mean annual runoff time series. Time series of simulated runoff in sixteen river basins (shown in separate panels a–p). Light and dark
gray bands show the 5th to 95th and 25th to 75th percentile ranges, respectively, from all bias-adjusted GCM simulations. The blue line shows
the GCM ensemble median computed from all bias-adjusted simulations, while the orange and red lines represent the RCP4.5 and RCP8.5
ensemble median, respectively. The black dotted line shows the LORA (pseudo-observed) data which is complemented with GRDC mean
annual runoff observations (streamflow divided by gauged drainage area). All panels share the same x-axis (time), but y-axes (mean annual
runoff ) are independent for each panel.
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variability, practitioners may be inclined to invest in a more
comprehensive understanding of historical variabilities, such as
through paleo-studies.
In some regions, careful decisions regarding climate adaptation

may be supported by the presence of unprecedented projections.
For example, water managers and planners with interests in the
Yukon, Mackenzie, Ob, and Lena river basins may find assurance in
projected declines in multi-year hydrologic drought-related risk.
Water managers and planners operating near the outlets of the
Zambezi and Danube rivers may similarly take measures to
address increasing risk9 associated with water availability and
drought, such as the development of early detection, real-time
monitoring, and forecasting initiatives. We find that projected
changes for larger areas are dampened compared to individual
grids, which may result from wet grids compensating for dry grids
or be an artifact of performing bias adjustment independently for
each grid. This feature is illustrated in Fig. 3, which shows ensemble
median projections exceeding a 3-year change in DUR, and SEV
increases on the order of 100%, meaning that the average future
drought could be twice as severe as the average drought defined
by the 1941–2020 period. However, projections at the river basin
scale (Table 1; Supplementary Table 4) are less alarming. In many
cases, we also find that a future with greater atmospheric
greenhouse gas concentrations (i.e., RCP8.5) corresponds to higher
magnitude changes that are unprecedented over broader regions
(Supplementary Table 6; Supplementary Fig. 8).
Methods were repeated using 40-year time periods (e.g.,

2061–2100 vs. 1981–2020), which may be more representative of
observational records available to practitioners in some regions
and less susceptible to non-stationarity. At the global scale,
magnitudes of projected change resemble those derived from 80-
year periods but with lower SNRs resulting in fewer grids exhibiting
unprecedented change (Supplementary Table 6; Supplementary
Fig. 9). Reduced detection of signals among noise may be
influenced, in part, by criteria set in our definition of categorical
SNRs where the climate change projection must exceed all
changes calculated using piControl simulations (see Methods).
Such criteria are subjective and the use of alternate criteria34 may
have a different effect on the consistency between 40- and 80-year
periods, however, this was not tested. Nonetheless, we see greater
magnitudes and more unprecedented change for the latter
segment of the century (2061–2100) compared to an earlier
segment (2021–2060). We also postulate that the use of longer

records, when available, is favored among many practitioners for
drought planning in high-risk circumstances.
Methods were also repeated to explore projected changes in

the most severe and longest-duration droughts (denoted as SEVx
and DURx; see Supplementary Discussion). Due to the rare nature
of these events, results must be interpreted with extra caution but
may be of special interest to water managers and planners.
Projections (Supplementary Fig. 7 and Supplementary Table 5)
illustrate similar spatial patterns to mean drought (SEV and DUR)
but correspond to smaller areas with unprecedented change. In
cases where projections are indistinguishable from internal
climate variability, one should keep in mind that it is not
uncommon to find droughts twice as severe or five years longer
than those in the 1941–2020 period simply due to internal climate
variability. In these cases, a future projection that is indistinguish-
able from internal variability may still be of special relevance. The
ensemble interquartile range of future projections (Supplementary
Table 4; Supplementary Table 5) helps reveal a portion of
uncertainty.

DISCUSSION
Multi-century simulations and improved land surface representa-
tions in CMIP5 GCMs create opportunities to explore changes in
future multi-year hydrologic drought and to compare those
changes against internal climate variability. Using 640-year
scenarios of simulated runoff derived from an ensemble of
eighteen GCMs, two future emissions scenarios, pseudo-observed
runoff products, and a common bias adjustment technique, we
provide a global reference that can support adaptation discus-
sions, inclusive of regions that may otherwise be data sparse.
Furthermore, our analysis provides a basis for future work in
understanding climate change projections of multi-year hydro-
logic drought.
Results show that GCM skill in reproducing observed runoff

conditions varies by model and region but is less variable among
multiple simulations from the same institution. Furthermore,
GCMs can perform comparably to an alternate pseudo-observed
runoff product suggesting that work remains in resolving
observational uncertainties. Quantile mapping (QM) effectively
reduces bias in the mean and distribution of GCM simulated
runoff, but biases in autocorrelation and the average number of
cumulative dry years remain. Repeating our approach without QM

Table 1. Ensemble median projected changes (Δ; 2021–2100 vs. 1941–2020) for four hydrologic characteristics in sixteen large river basins.

Yuk Mac Nel Clm Clr Mis Ama Par Con Zam Dan Ob Len Gan Yan Mur

ΔMAR (%) Alla 21.4b 9.9b 5.9b 4.7b −9.5c −2.3c −1.4c 2.6c 1.1c −8.2c −8.8b 8.5b 15.8b 5.4b −0.2c −8.9c

RCP4.5 15.4b 7.5b 5.9b 3.4b −9.5c −2.3c −0.9c 3.1c −1.2c −8.2c −5.2b 7.9b 12.3b 3.7b 0.8d −5.2c

RCP8.5 26.6b 12.3b 5.3c 5b −12b −0.8c −2.9c 1.5c 2.6c −8.9c −8.9b 10.2b 20.4b 8.8b −2.3c −11.1c

ΔCV *102e Alla 2.1b 1.3d 1.4d 1.4d 4d 1.7d 0.4d 0.8d 1.3b 3.9d 1.9b 1.4d 0.8d 0.7d 1.7d 6.8d

RCP4.5 0.9d 0.9d 1.4d 1.3d 4d 1.7d 0.3d 0.8d 0.3d 2.4d 1.1d 0.7d 0d 0.3d 1.7d 4.9d

RCP8.5 4.5b 2.3b 1.5d 1.6d 3.8d 1.5d 0.5d 0.7d 3.2b 6.4b 2.7b 1.6b 1.8d 1.2d 1.5d 8.3d

ΔSEV (%) Alla −59.3b −45.6b −25.5d −22d 99.7b 15.1c 15.5c −10.6d 8.3c 60.4b 86b −38.7b −60.1b −31.7d 9.6b 53.2c

RCP4.5 −59.4b −45.6b −25.5d −25.2d 61d 15.1d 10.1c −14.2d 10.6c 56b 64.9b −38.7b −58.5b −25.2d −0.5d 48.9c

RCP8.5 −59.2b −45.2b −25.4c −20.3d 131.2b 16.4c 59.6c −4.6d 3.2c 66.3b 101.6b −40.9b −62.6b −36.3d 24.2b 53.4b

ΔDUR (years) Alla −1b −0.7b −0.5d −0.6d 1.1d 0.2d 0.1c −0.2d −0.1c 0.8b 1.3b −0.7b −1b −0.3d 0d 0.8c

RCP4.5 −1b −0.6b −0.5d −0.6d 0.7d 0.2d 0.1d −0.3d 0.1c 0.7b 0.5d −0.8b −1b −0.3d 0d 0.6c

RCP8.5 −1b −0.7b −0.4d −0.6d 1.9b 0.1c 0.2c −0.1d −0.2c 1b 1.5b −0.6b −1.1b −0.5d 0c 0.9b

aEnsemble median projection for the entire ensemble, including both RCP4.5 and RCP8.5.
Projected change is characterized as unprecedentedb, or unreliablec, indistinguishabled.
eCV values are multiplied by 102 to reduce the display of decimal places.
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reveals similar spatial patterns but with slightly stronger signals
(Supplementary Fig. 6), suggesting that the bias adjustment
process did not wildly influence findings.
Results identify wetting and drying regions that are consistent

with previous studies of sub-annual to annual runoff but provide a
multi-year drought perspective which can be important for water
managers and long-term planning. Spatial patterns in changing
MAR generally align with spatial patterns in changing SEV and
DUR, but areas with unprecedented changes in mean runoff do
not always align with unprecedented changes in drought. For
example, over portions of India, unprecedented increases in MAR
correspond to decreases in SEV and DUR that are classified as
indistinguishable (from internal climate variability) due to lower
SNRs.
For regions with unreliable or indistinguishable projections, our

work provides a basis to inform limits for scenario planning and
sensitivity analyses and identifies areas where a fulsome under-
standing of internal variability (e.g., through paleoclimate studies)
may be of value. In regions with unprecedented projections, our
findings may contribute evidence in support of climate adaptation
decisions, such as adjusting reservoir operating rules or increasing
turbine efficiency52–54. We also find fewer and lower magnitude,
unprecedented hydrologic changes by avoiding a future with
greater greenhouse gas emissions.
Following a similar framework, additional datasets (hydrologic

model ensembles, reference products), along with more advanced
bias adjustment techniques and different indices (skill and
drought), can provide additional evidence to support adaptation
considerations. Future studies may also examine outputs from
more recent climate models (CMIP655) that incorporate improved
hydrologic representations in their LSMs19, however, results may
not wildly deviate from CMIP5 findings15,43. A further look into
GCMs during severe drought periods may shed light on what
drives multi-year hydrologic drought to persist in time (e.g.,
oceanic teleconnections, radiative forcing, or feedback loops). This
study omits stochastic approaches for drought risk analysis,
however, the 640-year scenarios generated could complement
stochastic methods56 and help researchers understand how non-
stationarity impacts drought risk estimation. Utilization of longer
time series from GCMs (past1000 experiment18 or large ensem-
bles57–59) may help reduce sampling uncertainty.
Our study neglects the impacts of routing and anthropogenic

effects (e.g., reservoir regulation, diversions, land use change, and
water demands), which can ease or exacerbate drought impacts,
are embedded in observational runoff datasets, and contribute to
challenges associated with non-stationarity60. Some anthropo-
genic effects, such as reservoir regulation, are typically pertinent at
sub-annual time scales61 but can play an important role in
managing multi-year drought risk. Other anthropogenic effects,
such as human water consumption for growing populations and
agricultural withdrawals, only intensify societal impacts, especially
in more vulnerable developing countries62. Incorporation of
anthropogenic effects, such as reservoir regulation, would require
runoff inputs with finer temporal resolution (i.e., sub-annual) and
the development of demand, routing, and regulation models
either offline or directly coupled in future generations of climate
models63. Although such considerations were not incorporated
herein, we recognize that anthropogenic factors can have a
compounding influence on local drought impact assessments and
are a topic for further study. Uncertainty remains (even for regions
with unprecedented change) and further work is required21 prior
to the establishment of climate model runoff as a high-confidence,
design-suitable variable. However, we recognize that lower
confidence variables can still offer pragmatic value for adaptation
planning and risk analysis64.

METHODS
Pseudo-observed gridded runoff data
Monthly gridded runoff derived using the Linear Optimal Runoff
Aggregate method (LORA36) was selected as the observed
reference data for GCM evaluation and bias adjustment. Data
were available from 1980 to 2012 globally at a 0.5° grid and
represent a merging of eleven gridded runoff products65,
weighted by performance. LORA performed better than ten
individual hydrologic model products66 and the variable infiltra-
tion capacity (VIC) global gridded runoff data67. Monthly LORA
data were aggregated to annual runoff by calendar year and
upscaled (by averaging four 0.5° grids) to a 1° grid for closer
comparison with GCM data. No routing was performed, given the
focus of our study was on MAR.
Runoff from GRUN37 and the Global Runoff Data Center

(GRDC)68 datasets were also used in a complementary fashion.
GRUN achieves an extended time period (1902–2014) by coupling
meteorological forcing with machine learning and was upscaled
to a 1° grid to serve as a second gridded runoff dataset for
evaluation of model skill. GRDC provides streamflow observations
and spatially averaged runoff climatologies derived from the
combination of streamflow records and a water balance model.
GRDC streamflow observations are used to aid the visual
comparison of bias-adjusted runoff time series. However, since
time series of GRDC gridded runoff are not available, these data
were not applicable for skill evaluation or bias adjustment.
Individual models, on which LORA is based, provide monthly
estimation of the global terrestrial water budget but may utilize
shorter time periods (e.g., 1984–201067) and were outperformed
by LORA36. Runoff data from reanalysis products were considered
but found to propagate precipitation errors into hydrologic errors,
have imperfect physical representation69, and have poor perfor-
mance when compared to terrestrial biosphere models70. The
National Oceanic and Atmospheric Administration’s 20th-century
reanalysis with 1° global resolution is attractive for its long
duration (1836–2015)71, but its runoff output has yet to be fully
evaluated.

GCM runoff data
Total runoff (surface and sub-surface; mrro) data were obtained
from GCMs contributing to the Coupled Model Intercomparison
Project Phase 5 (CMIP5). GCMs were included if they contained
monthly runoff data for a historic simulation (1861–2005), future
simulations (2006–2100) driven by two atmospheric forcing
scenarios (RCP4.5 and RCP8.5)72 and a pre-industrial control
simulation (piControl)18 containing at least 500 years of data
under idealized stationary atmospheric composition. The avail-
ability of multi-century time series plays an important role in the
sampling of droughts and identification of climate signals, which
is discussed later.
Eighteen GCMs met these criteria (Supplementary Table 1);

seven of which had archived runoff data for multiple runs in the
historic and future periods representing different GCM initial
conditions. Multi-run ensembles were included to sample GCM
internal variability, but a one-model-one-vote approach was used
for ensemble statistics to help maintain a democratic ensemble73

and to avoid skewing ensemble statistics toward GCMs with
multiple runs.
GCMs are comprised of components that simulate different

aspects of the Earth’s environment. Typical components include
the atmosphere, the ocean, an LSM, sea-ice, as well as atmo-
spheric chemistry and carbon cycling for Earth System Models74.
The LSM represents land cover, soil, and vegetation and is
important for computing the flux of energy and water between
the atmosphere and land. LSMs are similar to hydrologic models
but follow a more physically-based approach by solving both
water and energy balances25,66. It’s important that the LSM is
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dynamically coupled as latent heat fluxes can affect atmospheric
conditions, and freshwater can affect oceanic conditions. Some
GCMs have special names for their LSM, while others simply lump
the land surface scheme with the atmospheric model (Supple-
mentary Table 1).
LSMs vary in complexity19 and can influence future projec-

tions75. Generally, each grid is characterized by one or more land
cover types which may include bare soil and vegetation76, snow-
covered77, and glacier, wetland, lake, and urban78. Vegetation may
be further categorized by plant function type (PFT), including
coniferous trees, deciduous trees, grasses, crops, shrubs, and
rainforests. PFTs are important hydrologically (e.g., they influence
water retention in the vegetative canopy, temperature, and
evapotranspiration) and biologically as vegetation interacts with
atmospheric carbon. Snow is typically modeled by one of four
schemes ranging in complexity from a simple approach that
uniformly distributes snow within a grid to a more sophisticated
scheme that resolves sub-grid snow cover and allows multiple
snowpack layers79. Beyond vegetation and snow, LSMs vary in
how they handle lakes, lake ice, soil properties, drainage, routing,
and other processes. It is easy to saturate in individual LSM detail
(see literature cited in Supplementary Table 1), but a sample of
CMIP5 GCMs80 shows that LSM configuration can range from 3 to
20 soil layers, representing 3–47.3 m depths and utilize 5–15 PFTs.
Since GCMs operate with individual spatial resolutions and land

masks, a common grid and land mask were derived to provide a
consistent basis for evaluation and inter-comparison. GCM land
masks and runoff data were re-gridded to correspond with the
upscaled LORA 1° grid using the nearest neighbor approach,
which helps preserve the GCM’s original ‘coarseness’ of land
features and total runoff volume. For large basins, different
interpolation techniques have little effect on analyses35. Land
masks can be binary or mosaic. In our study, mosaic land masks
are replaced by 100 when the grid is ≥50% land and 0 otherwise.
The final mask is produced by selecting common land grids
among all 18 GCMs and upscaled LORA data. Excluding Antarctica
(not included in LORA), the final mask contained 11,939 land grids
(approximately 108,817,028 km2), or ~85% of the total land area
available in LORA. The result is a coarse world map (Fig. 1)
resulting from different land mask-resolution combinations used
across the GCM ensemble. Several geographic features are notably
distorted (e.g., Great Lakes) or are completely removed (e.g., the
Italian Peninsula).

Skill evaluation
Skill evaluation focused only on GCM mean annual runoff and was
evaluated against LORA and GRUN data across a 33-year period
(1980–2012). Papers cited in our results and Supplementary
References provide additional context on other related variables.
Six indices were selected to evaluate GCM skill. Four common

volume-based indices include MAR (mm), minimum of mean
annual runoff (MIN; mm), maximum of mean annual runoff (MAX;
mm), and coefficient of variation of mean annual runoff (CV;
unitless; standard deviation divided by MAR). One-year lagged
autocorrelation (AC1; unitless) and the average number of
cumulative dry years (CDY; years) are included as two additional
indices to provide context beyond typical statistical properties81.
Collectively, these six indices provide information relevant to
drought definition (MAR), simulation of individual extreme dry/
wet years (MIN and MAX), the variability in year-to-year runoff
(CV), how well persistence is simulated (AC1), and whether a
model is capable of simulating extended periods of dry conditions
(CDY). Comparison of time series correlation (model vs. observed)
was not meaningful since GCMs are not designed to model
observed sequences of events.
Established statistical metrics38 were adopted herein to provide

an overall indication of GCM skill in space, however, we do not

integrate skill monthly. Instead, a single (annual) value was
computed for each index to evaluate GCM skill on an annual
climatology as opposed to sub-annual cycles39. Root mean square
error (RMSE) was used to gauge skill and was supplemented with
relative RMSE (RMSER) to provide a closer look at a model’s
performance with respect to the median performing model in the
ensemble. RMSER-All (mean of RMSER for all six indices) was
computed as an overall score for each GCM simulation: The best
(worst) performing simulation, overall, will have the lowest
(greatest) RMSER-All.
While skill was assessed for all GCM simulations, results were

shown for one run per model (plus additional perturbed physics
runs for GISS models). Because skill is evaluated for a period
spanning two GCM experiments (historic up to 2005 and RCP8.5
after 2005), skill evaluation merged 26 years from the GCM historic
simulation and 7 years from the RCP8.5 simulation. Using one RCP
provided a more concise summary and, in most cases, did not
dramatically impact model skill. Special consideration was made
for two cases to avoid unrealistic representation of skill: (1) GCM
grids with a MAR of zero were assigned a CV of zero to avoid
division by zero; and (2) GCM grids with equal runoff over the
entire 1980–2012 period (occurs in some GCMs over dry areas, like
northern Africa), AC1 and CDY were assigned a value of zero.

Bias adjustment
A common univariate QM approach was used for bias adjustment
that was analogous to the daily translation82, QMv1a83, and
1Dqm84 methods. A single QM (transfer function) was developed
for each GCM grid in a simulation by comparing GCM simulated
runoff to the LORA reference data. QMs, derived from two non-
parametric cumulative distribution functions (CDFs), were gener-
ated and then applied to correct the entire GCM simulation.
Although bias adjustment has been most often performed on
temperature and precipitation, it has been applied to other
climate model variables42,85–87 and has been used in streamflow
forecasting to improve forecast skill88. The application of QM to
climate model runoff89,90 is not widely published but is a practical
extension of existing methods to adjust the volume bias of annual
runoff estimation.
The application of a year-round QM can be suitable for annual

data91 and aligns with our objective of exploring multi-year
hydrologic drought. While finer temporal scales and a larger
number of transfer functions (e.g., one per month or one per day
of the year) are common for the bias adjustment of meteor-
ological variables82,84, this adds unnecessary complexity to
our study.
QMs were derived from 33 data points (i.e., one for each year,

1980–2012), and adjustment values were assessed at 33 fixed,
equally spaced percentiles. Adjustments were linearly interpolated
between fixed percentiles and held constant for GCM runoff
values beyond the minimum and maximum GCM values84 in the
1980–2012 period. The computational process first set all
occurrences of negative runoff to zero, then applied additive
adjustment, and reset residual negative runoff to zero once again.
This process aligned with physical consistency in the LORA dataset
(i.e., runoff bound at zero) and avoided exaggerated multiplicative
adjustments that emerge when near-zero values are present in a
GCM’s reference time series and absent from the LORA dataset.
The entire simulation (piControl, historic, and future data) is

bias-adjusted using the same QM. Steps to preserve the original
climate model trend are performed in some studies, but there is
no consensus regarding this step92,93. Others84,91 removed, then
reapplied temperature regression after QMing to preserve the
climate model’s long-term signal but did not use this procedure to
force preservation of precipitation trends. Since runoff trends may
be quantile dependent, and a uniform approach to account for
trends (e.g., linear or polynomial) may not be applicable for every
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grid in our domain, no trend preservation procedure was applied
herein. This remains a topic for future exploration. Compared to
alternate bias adjustment approaches such as the delta method83,
our selected approach improves the preservation of the GCM’s
original sequencing of events, which is an important feature for
assessing changes to multi-year drought events.
Special attention was paid to LORA and GCM grids with ≥75%

repetitive runoff values during the 1980–2012 period. This
condition, found in dry regions, can cause issues with the rank-
based ordering in the QM scheme, which applies small, random
perturbations (on the order of 1−12 mm/year) to avoid singularities
in CDFs. These grids were flagged and bias-adjusted with a single
mean adjustment rather than a quantile-dependent adjustment.
At any grid, no more than eight GCMs exhibited such conditions.
Without special attention, these conditions could unintentionally
allow random perturbations (purely stochastic) to influence GCM-
simulated droughts. Steps to address special cases may somewhat
limit analysis in affected regions as only the mean state is bias-
adjusted rather than the entire distribution. Special considerations
are common to account for distinct circumstances. For example,
parameter checks have been used to fix unrealistic (e.g., negative)
values42.

Assessing changes in multi-year hydrologic drought
We use bias-adjusted MAR time series to compare droughts in
different time periods (i.e., piControl, historic, and future;
Supplementary Table 7). PiControl years are arbitrarily assigned
nominal dates such that the end of the piControl period aligns
with the beginning of the historic period, but in accordance with
methods to quantify model agreement, the first 100 years are
omitted34. PiControl (1461–1860), historic (1861–2005), and future
(2006–2100) experiments are assessed in time slices of 80 years.
Projected changes (deltas; Δ) compare values in a future time slice
(2021–2100) to a reference time slice (1941–2020). The remaining
years (1461–1940) are used to quantify internal climate variability
and designated “PR” (precede the reference time slice). For
piControl years (1461–1860), a moving window is used to sample
321 80-year time slices. This moving window captures drought
sequences that may have otherwise been missed when using
discrete time slices. Because of potential discontinuity between
CMIP5’s piControl and historic experiments, 1861–1940 is included
as a discrete-time slice for a total of 322 PR time slices.
Four hydrologic characteristics were explored. Changes in MAR

and CV are indicative of average annual water supply and year-to-
year runoff variability. Change in SEV represents the accumulated
volume of water deficit (difference between threshold runoff and
simulated runoff) experienced in a typical drought, summed for all
years of each drought. SEV is expressed as a positive value with
larger numbers representing greater water deficits. Finally, change in
DUR provides information regarding the temporal extent to which
drought conditions may persist for a typical event. DUR is expressed
as the count of years where simulated runoff is below the threshold
runoff. Droughts of similar severity can coincide with different
duration, which can result in distinct socio-economic circumstances.
The shortest possible drought duration was one year, in which case,
duration (1) and severity are assigned to that year. For multi-year
events, duration and severity are assigned to the first year of the
drought, and if a drought spans multiple discrete time slices, one
drought event is recorded per time slice instead of one large event.
Following the theory of runs94, a drought begins and then ends

when MAR crosses a threshold defined as the GCM’s MAR during
1941–2020. Our time slices exceed the typical period (≤30 years)
used in climate change studies but are selected to better suit the
assessment of multi-year events95 and reduce sensitivity to low-
frequency climate variability1, which could result in multi-decadal
periods of relatively wet or dry conditions. In regions subject to
non-stationary hydrologic conditions, we caution that future

projected changes may not be representative of conditions near
2021 and 2100. To help interpretation of our findings, methods
were repeated using 40-year time slices (Supplementary Discus-
sion, Supplementary Fig. 9, and Supplementary Table 6). For
global analysis, droughts were analyzed grid-by-grid. For river
basin analyses, annual runoff in all grids within the basin was
averaged and hydrologic characteristics were computed on the
basin-aggregated runoff time series.
Ensemble median projections, categorical SNR, and agreement

on the direction of change were used to summarize the results.
These three pieces of information provide evidence that separates
the lack of significant signal from the lack of agreement on the
sign of the signal96. For GCMs with multiple runs and physics
experiments, the intra-model median projection is first deter-
mined, and then ensemble statistics (e.g., median) among all
GCMs are computed. This approach avoided skewing ensemble
statistics towards GCMs with multiple runs. For the assessment of
future projections, RCP4.5 and RCP8.5 were evaluated together as
equiprobable scenarios (i.e., one ensemble consisting of 18 GCMs
and 2 RCPs for a total of 36 simulations) as well as independently.
Categorical SNRs identify future projections (signals) that fall

beyond simulated internal climate variability (noise). For each
GCM simulation, grid/basin, and hydrologic characteristic, deltas
(Δ) were computed for the future time slice and for the 322 PR
time slices relative to the reference time slice (e.g., ΔMARPR1=
MARPR1−MARReference). From the 322 PR deltas, the maximum
and minimum were computed (ΔMARPR_MAX and ΔMARPR_MIN) for
comparison against ΔMARFuture. This process is similar to other
approaches97–100. For each GCM simulation, SNR is assigned a
value of 1 when ΔMARFuture is beyond ΔMARPR_RANGE [ΔMARPR_MIN;
ΔMARPR_MAX] and 0 otherwise. For GCMs with multiple runs and
physics experiments, an intra-model median SNR is computed.
Ensemble agreement and SNRs were interpreted together:

Findings are characterized as unprecedented when >50% of the
projections have SNR of 1 and 80% or more of those projections
agree on the direction of change (shown with color and hatching
on maps). An unreliable finding is associated with >50% of
projections having an SNR of 1 but <80% of those agreeing on the
direction of change (shown in white on maps). Projections are
characterized as indistinguishable from internal climate variability
when 50% or more of projections have an SNR of 0 (shown in color
on maps). While similar interpretations have been described using
the term robust34,96, we’ve selected alternate terms to cautiously
avoid an overprescription of confidence in projected changes.
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