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Enhanced surface temperature over India during 1980–2020
and future projections: causal links of the drivers and trends
Rahul Kumar1, Jayanarayanan Kuttippurath 1✉, G. S. Gopikrishnan1, Pankaj Kumar 1 and Hamza Varikoden2

The Earth’s surface temperatures have increased significantly since the beginning of industrialisation. The high emissions of
greenhouse gases have contributed to global warming and climate change, which is expected to continue. Here, we investigate the
long-term trends of surface temperature in India using surface, satellite and reanalysis data for the period of 1980–2020, and assess
the influence of geophysical drivers on temperature change using the causal discovery. The highest mean surface temperatures are
observed in the southern India and the lowest in Himalaya in accordance with the incidence of solar radiation. Causal discovery
reveals the relative influence of atmospheric processes, aerosols and specific humidity on surface temperature. We observe a
positive trend in temperature during pre-monsoon (0.1–0.3 °C dec−1) and post-monsoon (0.2–0.4 °C dec−1) seasons in the
northwest, northeast and north-central India. The analysis exposes high annual (0.22 ± 0.14 °C dec−1) and monsoon
(0.24 ± 0.08 °C dec−1) warming in the northeast India. Post-monsoon season shows a positive trend in the entire India, where the
highest value is estimated for the western Himalaya (0.2–0.5 °C dec−1) and northeast India (0.1–0.4 °C dec−1). Analyses with the
Coupled Model Intercomparison Project 6 (CMIP6) results show that temperature can increase up to 1.1–5.1 °C by year 2100 under
the Shared Socioeconomic Pathways (SSP5)–8.5 scenario. The increasing trend of temperature in India is a big concern, which calls
for adaption and mitigation measures to alleviate adverse effects of accelerated warming and regional climate change.
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INTRODUCTION
Surface temperature is the key component of the Earth’s energy
balance, and its change decides weather and climate of a region1.
Human-caused greenhouse gas (GHG) emissions have increased
significantly since the pre-industrial era, causing earth’s atmo-
sphere to warm2,3. The global surface temperature is expected to
increase up to 1.4–5.8 °C by the end of twenty-first century, which
would likely to increase the magnitude and frequency of extreme
events such as heat waves, droughts, increased precipitation and
wildfires3,4. Several studies have already been conducted to
examine the impact of climate change and its influence on
extreme weather events5,6.
The study of temperature variability requires special attention

since the warming is not uniform across the latitudes7,8. During
the twentieth century, the worldwide mean surface air tempera-
ture has increased by around 0.5 °C3,9,10. Analysis and monitoring
of air temperature on global and regional scales have attracted a
lot of attention in recent decades due to apparent indicators of
widespread warming and climate change. As a result, much
importance has been given to regional temperature change as
that would affect the weather and climate of the regions2.
According to previous studies, India’s surface temperature has

significantly increased during the past two decades7,11,12. The
annual minimum temperature shows a rise in most parts of India
at 0.24 °C dec−1 from 1980 to 201013, demonstrating a significant
exacerbation in surface temperatures14,15. A positive trend in the
diurnal range of temperature has been observed over India from
1901 to 20037,16. South India shows relatively more warming17,
which is contributed by the rising maximum (1 °C 100 yr−1) and
minimum (0.3 °C 100 yr−1) surface temperatures during the period
1901–2007. Many studies on the surface urban heat island
intensity suggested that urbanisation can be a reason for the rise

in temperature in Indian cities18,19. Dimri20 also reported a notable
warming in India and its sub-regions by using gridded data from
the India Meteorological Department (IMD) and reanalysis
data sets.
According to Kothawale and Kumar7, the average annual

maximum temperature has increased by around 0.07 °C dec−1

from 1901 to 2003, whereas the minimum temperature showed
no change. Srivastava et al.21 examined decadal changes in
surface temperature of India, and found widespread cooling and
warming in the southern and northern India, respectively.
Although the trends in mean temperature over India were
identical to hemispheric and global trends, Rupa Kumar et al.22

noted that the diurnal asymmetry of surface temperature across
India varied significantly from that recorded elsewhere in the
world. Krishnan and Ramanathan23 assert that surface tempera-
ture from January to May decreased up to 0.3 °C in India during
the period 1968–1997, after excluding the impact of GHGs and
natural variability from the data. According to Kothawale and
Rupa Kumar7, India’s annual minimum and maximum tempera-
tures have also increased significantly in 1971–2003. As analysed
by Kothawale et al.8, the all-India mean, maximum and minimum
temperatures have increased by 0.51, 0.71 and 0.27 °C per 100
year, respectively, from 1901 to 2007, with an accelerated
warming during the period of 1971–2007.
Causal discovery has emerged as a prevalent approach in recent

studies to understand the teleconnections among different
climate parameters. For example, Runge et al.24 revealed causal
relationship between geophysical drivers and land air temperature
in specific regions like British Columbia. They found that the causal
discovery well detected the teleconnection between monthly
climate index Niño (3.4 region) and temperature variability in
these regions at a significance level of 5% within a maximum lag
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of 6 months. Furthermore, Chu et al.25 employed the structure
learning techniques to identify the causal relationships among the
geospatial indices concerning sea surface temperature and
pressure. This study concentrated on improving the conventional
causal discovery approach, such as the Peter and Clark (PC)
algorithm introduced by Spirtes and Glymour26. The objective of
these studies is the development of causal models based on
nonlinear time series data, which are more helpful in under-
standing the cause-effect relationships underlying geophysical
drivers and temperature dynamics. Therefore, due to the dearth of
studies on temperature variations across the Indian subcontinent
for the past decade, we examine the surface temperature in India
for the period of 1980–2020 using surface, satellite, model
projections and reanalyses data by applying a suite of statistical
tools, including casual discovery.

RESULTS AND DISCUSSION
Climatology of surface temperature
The climatology of mean temperature over India is found from the
surface measurements of IMD and reanalysis data for the period of
1980–2020. The mean temperature over India from the Indian
National Satellite System (INSAT)-3D measurement is also
estimated for the period 2014–2020 (Fig. 1). We use the IMD
measurements as the reference, in order to assess the robustness
of our analysis (Supplementary Fig. 1). Furthermore, the gridded
surface data are validated using IMD station measurements from
Bangalore, Indore, Silchar and Pune, as demonstrated in
Supplementary Figs. 2 and 3. Surface measurements from IMD
show a temperature range of about 15–30 °C in India (Fig. 1a).
Parts of East Coast (EC), Interior Peninsula (IP) and West Coast (WC)
show a higher mean temperature of 30 °C, whereas Western
Himalaya (WH) shows a lower value of 15 °C. The Northwest (NW),
North Central (NC) and Northeast (NE) regions show a similar
temperature range of 21–26 °C. INSAT-3D shows that the west and
south of India have warmed more than the rest of the country, as
it represents the average surface temperature for the past decade
(Fig. 1b). The EC, IP, WC and NW regions show a higher mean
temperature of 31 °C in the satellite measurements. This difference
between INSAT-3D and IMD can be due to the different time
period and spatial resolution. Therefore, we regridded the data to
1° × 1° by using bilinear interpolation, as IMD measurements are
taken as the reference data (Supplementary Figs. 4–6). We
compare the temperature measurements for the common time
period, as shown in Supplementary Fig. 7. The reanalysis data

show similar temperature distribution throughout India. Tempera-
tures in most parts of NC, NE and NW range from 10° to 30 °C, as
found in Fig. 1c–e. The reanalyses data show a range of 24–30 °C
in WC, consistent with that of IMD. Some parts of EC show a
temperature range of about 25–30 °C in the reanalysis, as shown
by the IMD data. The reanalysis data show lower values in some
regions of WH. Shifts in equipment, measurement altitude and
position can affect observation precision and consistency, and are
the reasons for the differences27.

Seasonal distribution of surface temperature
Figure 2 shows the surface temperature distribution for the post-
monsoon (October–November; ON), monsoon (June–July–Au-
gust–September; JJAS), winter (December–January–February;
DJF) and pre-monsoon (March–April–May; MAM) seasons as
derived from the IMD and reanalyses data. In winter (Fig. 2m),
surface temperature from IMD shows a range of 4–32 °C across
India, with lower temperature in the hilly regions. The NC, NW and
NE regions show temperatures from 15 to 24 °C in this season, as
observed from the IMD measurements. Most of the NC, NE and
NW regions show similar temperature range (10–22 °C) as
analysed from IMD and all other data sets. In contrast to NW,
NE, NC and WH, the IP and coastal regions of EC and WC show
higher temperature variability in winter. The pre-monsoon season
shows high temperature (24–32 °C) in South India (Fig. 2a). The
temperatures in EC show about 28–32 °C in this season. The
coastal regions and parts of NC and NW show a higher mean
surface temperature of 36 °C. In monsoon season, parts of NW
show high values of about 32 °C as found from the IMD
measurements, which is smaller than the reanalysis data by
2–3 °C (Fig. 2e). Parts of EC show a high mean surface
temperature of 26–30 °C as found from the IMD data, which is
in agreement with all reanalysis data. In post-monsoon season,
parts of NC, NE and NW show similar temperature variation
(15–25 °C) in IMD and other data sets (Fig. 2i). Reanalysis data
show similar temperature variation, in accordance with the IMD
measurements, as demonstrated in Fig. 2 (second, third and
bottom panels from top).

Inter-annual variability in surface temperature
Figure 3a–h shows the temperature anomalies derived from IMD,
INSAT-3D and reanalysis data with respect to their respective
climatological mean for the period 1980–2020. As observed from
the IMD data, India experienced relatively higher temperature in

Fig. 1 Mean surface temperature distribution. Climatology of mean surface temperature over India derived from the a IMD (1980–2020),
b INSAT (2014–2020), c ERA-5 (1981–2020), d MERRA-2 (1980–2020) and e NCEP (1980–2020) data.
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2009, 2010, 2015 and 2016. This may be attributed to the short-
term variability induced by El Niño events28,29. The drop in
temperature from 1982 to 1983 in India may be attributed to the
volcanic eruption of El Chichon and associated aerosols in the
atmosphere30. A similar situation is observed from 1991 to 1992 in
India, after the eruption of Mount Pinatubo. Among the regions,
WH (Fig. 3a) shows high anomaly in surface temperatures from
2015 to 2016 followed by the NE region (Fig. 3f), which could be
due to the effect of El Niño during the period. The five warmest
years in the past 15 years on record are 2016, 2009, 2017, 2010
and 2021 and thus, these years show relatively higher tempera-
ture anomalies. Although there are spatial differences, all regions
show an increase in mean surface temperature from 1980 to 2020.
NC and NE show similar temperature changes from 1980 to

2020. A positive temperature anomaly is observed during the
super El Niño years 1997–1998 and 2015–2016, particularly in EC,
IP, WH and NW (Fig. 3). A relatively higher temperature anomaly
during these events is also observed in other parts of the world
like East Asia and Western Pacific31,32. The rise in temperature in
2002, 2003, 2009 and 2010 can be due to the El Niño events33.
According to National Oceanic and Atmospheric Administration
(NOAA), the year 2016 with El Niño was the warmest34. The years
2019 and 2020 were the seventh and eighth warmest on the
record until 2020 (IMD Press release, 2020). Some major extreme
events, such as heat waves in Maharashtra (western India), Bihar
and Jharkhand (eastern India) also occurred in 2019 and 2020.
Similar variability is also found in other data sets, as in IMD, across
all regions (e.g. the anomalies in volcanic eruption and El Niño
periods).

Long-term trends in surface temperature
We have also estimated the trends in temperature using the IMD
and reanalysis data, and are shown in Fig. 4a–p. In general, IMD

data reveal consistent and statistically significant temperature
trends across the distinct regions and seasons (Fig. 4a, e, i, m).
Specifically, in pre-monsoon, post-monsoon and winter seasons,
NW, NE, WH, WC and IP show positive trends within
0.1–0.2 °C dec−1. During monsoon (Fig. 4e), NE shows a consistent
warming with positive trends of 0.1–0.2 °C dec−1. There are
significant annual warming trends of 0.22 ± 0.12 °C dec−1 within
NE, and these patterns persist during monsoon with values of
about 0.25 ± 0.03 °C dec−1. However, in monsoon season, signifi-
cant trends in temperature emerge across various regions, such as
the east and west coasts, at about 0.08 ± 0.06 and
0.09 ± 0.06 °C dec−1, respectively. Furthermore, we observe that
the pre-monsoon temperature trends (Fig. 4a) exhibit the highest
values in NW (0.34 ± 0.22 °C dec−1), whereas the lowest in EC
(0.09 ± 0.1 °C dec−1). Additionally, during post-monsoon (Fig. 4i),
NW experiences the most pronounced warming of about
0.24 ± 0.16 °C dec−1, but EC exhibits the lowest of about
0.16 ± 0.08 °C dec−1. These findings further emphasise the regio-
nal variability and distinct warming patterns prevalent during
different seasons; contributing to a nuanced understanding of
temperature trends across India.
In a similar study, Kothawale et al.8 analysed the trends in

surface temperature based on the IMD station data for the period
of 1971–2007, and our results are in accordance with their analysis
for all seasons. For example, they found statistically significant
positive trends in the homogeneous regions such as NW
(0.034 °C yr−1), NC (0.025 °C yr−1), NE (0.027 °C yr−1), WC
(0.027 °C yr−1), EC (0.020 °C yr−1), WH (0.068 °C yr−1) and IP
(0.018 °C yr−1) for winter and NE (0.018 °C yr−1) for monsoon
season. Our findings are consistent with these results and the
differences in trend values are mainly due to the differences in
time period and horizontal resolution of data sets.

Fig. 2 Seasonal surface temperature distribution. Mean surface temperature over the period 1980–2020 in India as analysed using India
Meteorological Department (IMD) measurements, NCEP, MERRA-2 and ERA-5 reanalyses data for a–d pre-monsoon (MAM), e–h monsoon
(JJAS), i–l post monsoon (ON) and m–p winter (DJF). Here, MAM is March–April–May, JJAS is June–July–August–September, ON is
October–November and DJF is December–January–February.
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According to National Centers for Environmental Prediction
(NCEP) and Modern-Era Retrospective analysis for Research and
Applications (MERRA)-2 reanalysis data, the WC and IP regions
show a significant warming of 0.1–0.3 °C dec−1 in monsoon
season. MERRA-2 data reveal a significant negative trend of about
−0.2 ± 0.14 °C dec−1 in NW, which can be attributed to the water
added to land during monsoon that shifts the Bowen ratio from
sensible to latent heating, and thereby cooling the land sur-
face35,36. In NCEP, a significant warming of about 0.1–0.3 °C dec−1

is estimated in monsoon season across most regions in India,
which is in contrast to the IMD data.
In pre-monsoon season, the European Centre for Medium-

Range Weather Forecasts (ECMWF) Re-Analysis (ERA)-5 data show
an increase in temperature in parts of WH, NW, WC and NE, which
are in agreement with the IMD measurements (Fig. 4b). MERRA-2
data show significant warming in some areas of WC, NW and NE.
IMD and ERA-5 data also show a similar trend in monsoon season.
In winter, the ERA-5 data in IP, NE and coastal regions show a
warming trend, which is 0.1–0.2 °C dec−1, slightly higher than that
of IMD measurements (Fig. 4n). Also, a negative trend of −0.2 to
−0.4 °C dec−1 is estimated in parts of NE, IP and EC from the
MERRA-2 data. The post-monsoon season accounts for much of
the warming in India, and the highest warming is observed in WH,
NC and NE, as analysed from the ERA-5 and NCEP data. The IMD
and reanalysis data exhibit a significant warming
(0.1–0.4 °C dec−1) in NE in this season.

We have also looked at the temporal evolution of surface
measurements of IMD for the past four decades (1980–2020) and
the previous three decades (1990–2020) and found a statistically
significant surge in Tmin, Tmax and Tmean across India during
1990–2020 as compared to that in 1980–2020. The trends
estimated from the all-India averaged annual and seasonal surface
maximum temperature (Tmax), minimum temperature (Tmin) and
mean temperature (Tmean) data are listed in Supplementary
Table 2. In addition, we have examined the decadal changes in
Tmax, Tmin and Tmean trends from the IMD measurements for the
period 1980–2020, and are shown in Supplementary Table S3.
As found with Tmean, a similar variation is also observed in Tmin

and Tmax over India for the period 1980–2020, as shown in
Fig. 5a–h. For instance, high values of Tmax and Tmin in 1997, 2002,
2003, 2009, 2010 and 2016 in all regions can be attributed to the El
Niño events in those years. The drop of Tmin and Tmax in 1982 and
1991 is due to the aerosols loading from the El Chichon and
Mount Pinatubo eruptions, respectively. During the volcanic
eruptions, huge amount of sulphate aerosols is emitted into the
atmosphere. Due to the scattering nature of these particles, they
reflect the incoming solar radiation, hence, cool the earth
surface37,38. Other than the annual variability, a gradual increase
in Tmin and Tmax is observed in all regions since 1995. The rate of
rise in Tmin is very high in NW (0.27 ± 0.10 °C dec−1), WC
(0.15 ± 0.06 °C dec−1), NC (0.17 ± 0.06 °C dec−1) and NE
(0.23 ± 0.14 °C dec−1) in the past four decades, which is higher

Fig. 3 Temperature evolution over the homogenous regions. a–h Temperature anomalies averaged over the homogeneous regions for the
period of 1980–2020. The anomalies are computed with respect to the baseline period of 1980–2020 from IMD, ERA-5, MERRA-2 and NCEP/
NCAR data. The INSAT-3D data are analysed from 2014 to 2019. The vertical dashed lines represent the rise in temperature due to the warmest
years of 2009, 2010, 2017 and 2019, which are second, third, fourth and seventh warmest on record, respectively, until 2020. The trend (per
decade) values of each time series are denoted in numeric (statistically significant at the 95% CI). The linear trend values are shown in the
same colour text in the respective panels. The statistically significant values are marked with a star sign. Here, NW is Northwest, WH is Western
Himalaya, NC is North Central, NE is Northeast, EC is East Coast, WC is West Coast and IP is Interior Peninsula. The super El Niño years (1997/98
and 2015/16) are shown in grey stripes and the volcanic years are shown in coloured stripes.
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than the rate of increase of Tmax; indicating the slow background
warming in India. Similarly, the rate of rise of Tmax is higher than
the Tmin in EC, IP and WH; suggesting the impact of rise in
humidity and henceforth, temperature in those coastal and hilly
regions.
There are seasonal differences in the temporal evolution of Tmin

and Tmax over the regions, as can be observed from Supplemen-
tary Fig. 11 to 14. During pre-monsoon, a gradual decrease in both
Tmax and Tmin is found in NC, NW, WH, NE and all India, particularly
after 2010. In winter, all regions show a rise in Tmin and Tmax in the
past four decades, with a high rise of Tmin in NW
(0.3 ± 0.16 °C dec−1) and WC (0.18 ± 0.08 °C dec−1). On the other
hand, the rate of increase of Tmax is higher in IP
(0.25 ± 0.12 °C dec−1), WH (0.23 ± 0.20 °C dec−1) and EC
(0.23 ± 0.08 °C dec−1) as compared to that of Tmin. During post-
monsoon, the difference in rate of rise in Tmin and Tmax is very high
in NW (0.31 °C dec−1) and NC (0.15 °C dec−1). In monsoon, more
pronounced rise in Tmax (0.24 ± 0.08 °C dec−1) and Tmin

(0.21 ± 0.06 °C dec−1) is observed in NE, in contrast to other
regions. Also, the rate of rise in Tmin in NW (0.17 ± 0.08 °C dec−1)
and NC (0.12 ± 0.06 °C dec−1) is significantly higher as compared
to that of Tmax [NW (0.001 ± 0.16 °C dec−1) and NC
(0.08 ± 0.16 °C dec−1)]. In brief, the regional and seasonal assess-
ment of temporal evolution of mean, maximum and minimum
temperature for the period 1980–2020 suggest a gradual rise in
surface temperature in India.
Increased GHG emissions are causing global warming, as shown

by rising global mean surface temperatures39. However, due to
changes in the land use and cover, such as urbanisation36,40,41,
regional surface temperature may have varying trends27,42. Our
analyses find significant warming in India in most seasons and
regions, which is consistent with a previous study for the period
1901–2003 by Pal and Al-Tabba11. Surface temperature of India
has increased during past four decades across the regions, and

thus, it can have large implications on extreme events like heat
waves. Rohini et al.15 found that the frequency, duration and
intensity of heat waves have increased in India during the period
1961–2013. Pai et al.43 have found that the frequency of heat
waves in India has enhanced during 1961–2010. Sharma and
Mujumdar44 observed an increasing frequency of heat waves in
NW, IP, NE and some parts of west central India during the period
1951–2010, and their frequency was higher in 1981–2010 due to
the global warming. As per the CMIP5 projections, heat waves
happen during March–June in India would be more frequent with
increased intensity and prolonged duration, and may occur earlier
in the year45. Krishnan et al.29 reported that the mean duration of
summer heatwaves in India under the RCP8.5 (Representative
Concentration Pathway 8.5) scenario is significantly longer than
that projected under RCP4.5, with approximately 25 and 35
heatwave days per season by the mid and end of twenty-first
century, respectively. These findings are in agreement with the
CMIP5 model results46.

Multiple linear regression of mean surface temperature
We have also used a Multiple Linear Regression (MLR) model to
find the trends of surface temperature in different regions of
India47. The normalised predictors used in the model are Aerosol
Optical Density (AOD) at 550 nm derived from MERRA-2, El-Nino
Southern Oscillation (ENSO) index, solar flux (SF), specific humidity
(SH) and Tropopause Height (TPH) from MERRA-2, Dipole Mode
Index (DMI) to find the influence of Indian Ocean Dipole (IOD) and
cloud cover from ERA-5. We have also given an additional lag of
3 months for ENSO and solar flux. Supplementary Fig. 15 shows
the correlation matrix of different predictors used. We have
computed the Variation Inflation Factor (VIF) to find the variance
of these proxies and their correlation. The VIF values vary between
1 and 1.57, which indicate that the predictors used are not highly

Fig. 4 Long term trends. Mean surface temperature (Tmean) trends over India for the period 1980–2020 as analysed using India
Meteorological Department (IMD) measurements, NCEP, MERRA-2 and ERA-5 reanalyses data for a–d pre-monsoon (MAM), e–h monsoon
(JJAS), i–l post monsoon (ON) andm–p winter (DJF). The hatched areas represent statistically significant trends at the 95% confidence interval.
Here, MAM is March–April–May, JJAS is June–July–August–September, ON is October–November and DJF is December–January–February.
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correlated to each other. Supplementary Fig. 16 shows the
normalised MLR fit of temperature at different regions of India for
the period 1980–2020. The regressed time series fits the observed
temperature data with high R2 values (>0.7), except for IP and NC
(about 0.5). The trends computed with MLR are in agreement with
those by the linear regression using the IMD data and are within
0.05–0.25 °C dec−1 in all homogenous regions (Fig. 5). The trends
estimated using MLR are about 0.16 °C dec−1 for the coastal
regions (EC and WC) and 0.15 °C dec−1 for NW and NE regions.

Causal discovery of geophysical drivers of surface
temperature
The causal analysis shows distinct difference in the impact of
various processes on the surface temperature among the regions
(Fig. 6a–g). For instance, precipitation and SH impact positively,
whereas Heat Flux (HF) affects temperature negatively in real time
in EC and NC with a cross-correlation greater than 0.4. Similarly, SH
and precipitation are positively cross-correlated to temperature in
NW and IP, with a conditional-correlation greater than 0.4. Water
vapour is one of the most abundant GHGs in the atmosphere that
can enhance the temperature48, which can be the reason for the
direct association of SH to temperature in these regions. In
addition, the rise in temperature influences SH through evapo-
transpiration, where temperature impacts SH in real time. ENSO
affects TPH positively in all regions, except in WH. Similarly, TPH
affects temperature positively in WH, with a cross-correlation of
about 0.3 (Fig. 6g). This can be due to the higher altitudes, where
tropopause height directly influences temperature. No direct
relation is observed between ENSO and temperature in any
region. DMI influences precipitation in WC, which indirectly affects

the temperature with positive correlation of 0.8 (Fig. 6f).
Furthermore, precipitation and temperature are positively corre-
lated in all regions, with a coefficient of about 0.8. This suggests
that higher temperature owing to global warming and climate
change can lead to extreme precipitation events49,50. HF
influences temperature negatively in NC (−0.3) with lag of
3 months (Fig. 6c). Some regions also show a direct relation of
precipitation with SH, e.g., NC, NE and WH have a positive
correlation, as shown in Fig. 6. It can be elucidated by the process
of cloud formation, wherein moisture condenses, resulting in
precipitation. Conversely, precipitation contributes a substantial
volume of water to the Earth’s surface and consequently increases
atmospheric moisture through evaporation and evapotranspira-
tion driven by temperature51. The edges without arrow in causal
analysis imply an association between the drivers. Nevertheless,
there could potentially exist an instantaneous causal relationship,
which depends on the available measurements to establish a
statistical relationship between the drivers. Note that, this
connection might not have deemed to be unequivocally causal.

Projection of surface temperature by CMIP6 models
Here, the selection of models is based on their data availability for
the historical (1980–2014) and three Shared Socioeconomic
Pathways (SSP) scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5 from
2015 to 2099) along with their performance over India in the
present climate against the IMD observations. For the projected
changes of temperatures in future, the period 2015–2099 is
divided into near (2030–2049), mid (2060–2079) and far
(2080–2099) future. From the CMIP6 models, we selected 3
models (Model for Interdisciplinary Research on Climate (MIROC) 6

Fig. 5 Minimum and Maximum temperature changes. a–h Annual averaged maximum (Tmax), temperature (Tmin) and mean (Tmean)
temperature from the IMD data in the temperature homogenous regions and entire India from 1980 to 2020. The numbers at top of each
panel represent the temperature trends (°C per decade) and the star indicates that values are statistically significant at the 95% CI. Here, NW is
Northwest, WH is Western Himalaya, NC is North Central, NE is Northeast, EC is East Coast, WC is West Coast and IP is Interior Peninsula.
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Japan; Community Earth System Model (CESM) 2 USA and
Community Integrated Earth System Model (CIESM) China) on
the basis of least mean bias error (MBE) against the IMD
observations.
We have compared the CIMIP6 model results with IMD

measurements for the present climate period 1995–2014 and
estimated the bias between the data sets. The lowest MBE is
shown by MIROC6 (−0.16 °C) followed by CESM2 (0.57 °C) and
CIESM (1.01 °C), but CNRM-CM6-1HR shows the highest MBE of
4.95 °C. Figure 7a–f illustrates the change of temperature in India
during the twenty-first century with near (2030–2049), mid
(2060–2079) and far (2080–2099) future scenarios with respect
to the climatological mean for the baseline period of current
climate (1995–2014). The IMD observations are also presented
together with historical simulations (1995–2014). The CESM2
(Fig. 7b) and CIESM (Fig. 7c). models show similar changes in
temperature with a warming of 1.3–3.5 °C in mid-future and
1.1–5.1 °C in far future periods. As illustrated in Supplementary
Table 4, the annual mean temperature in India is projected to
increase by 1.02–3.3 °C by the end of twenty-first century in all the
three scenarios, as simulated by MIROC6 (Fig. 7a). Chaturvedi
et al.52 showed the mean warming over India under the
RCP8.5 scenario to be 3.3–4.8 °C by the 2080s as analysed using
18 CIMIP5 models. The enhanced warming in mid (1.5–2 °C
warming world) and far future (more than 3–4 °C warming world)
poses a serious threat to the glaciers in Himalaya, and is also likely

to affect the frequency of flash floods, heat waves and wildfires,
and thereby making the people more vulnerable to climate
change. Therefore, it is crucial to understand and evaluate the
changes of temperature in India for improved climate policy
decisions.
In sum, a high warming trend is observed in NE during winter

and post-monsoon seasons, but pre- and post-monsoon seasons
in WH (about 0.3 °C dec−1). The warming in these ecologically
sensitive hilly regions is a great concern for snow-melt and water
bodies there. The NW region in monsoon season shows a positive
trend of 0.34 ± 0.22 °C dec−1 in pre-monsoon. Furthermore, post-
monsoon season accounts for much of the warming in India,
ranging from 0.1 to 0.5 °C dec−1. The trends computed using the
MLR also yield similar results and are in the range of
0.05–0.25 °C dec−1 across the homogenous regions of India. The
causal discovery reveals that atmospheric processes, aerosols and
water vapour influence the variability of surface temperature,
depending on regions. For instance, specific humidity influences
the temperature directly in EC, IP, NW and WC regions, but heat
flux affects the temperature in most regions (except EC, IP, NW
and WH). The mean temperature in India has increased since 1980,
with a significant enhancement in the maximum
(0.14–0.21 °C dec−1) and minimum (0.1–0.23 °C dec−1) tempera-
tures. In addition, the future projections reveal that the annual
mean surface temperature in India is projected to increase by
1–5 °C with respect to the current climate by the end of this
century. The rising temperature will likely to increase the
frequency and severity of the extreme weather events and
snow/glacier melt in the Himalaya and other hilly regions, which
will have adverse effect on human health and agriculture of a
region with more than 1.4 billion people.

METHODS
Data
The IMD maintains about 550 surface observatories nationwide,
where measurements of daily surface air temperature are
recorded in °C. The National Data Centre (NDC) compiles, digitises,
quality-controls, and archives these data. Daily temperature data
from IMD are available on a 1° × 1° resolution. The mean monthly
surface temperatures of IMD are derived from daily mean
temperatures. Daily precipitation data are available at
0.25° × 0.25° resolution, which are converted to mean monthly
precipitation. INSAT-3D (Indian National satellite system) is a
multipurpose geosynchronous satellite with major meteorological
payloads, including an imager and a multi-channel sounder. The
INSAT-3D surface temperature data are available at a resolution of
0.1° × 0.1° from 2014 to 202053.
The monthly average surface temperature data from the ERA-5,

MERRA-2 and National Center for Environmental Prediction/
National Center for Atmospheric Research (NCEP/NCAR, hereafter
NCEP) from 1980 to 2020 are also considered. Reanalysis data sets
use robust techniques to combine a variety of land and marine
observations, creating a comprehensive data set that encompass
both space and time54. In regions where in situ measurements are
scarce, reanalysis data can be beneficial12,55.
The GEOS-5 atmospheric model and data assimilation system

and the three-dimensional variational data analysis (3DVAR)
Gridpoint Statistical Interpolation meteorological analysis scheme
are used to produce MERRA-256,57. The MERRA-2 data have 42
pressure levels from 1000 to 0.01 hPa. The monthly temperature
data at a resolution of 0.625° × 0.5° from MERRA-2 are considered
for our analyses. ERA-5 is the most recent ECMWF reanalysis, that
provide hourly, daily and monthly data on many atmospheric, sea-
state and land-surface parameters from 1950 onwards, along with
uncertainty estimates58 for 37 vertical pressure levels from surface
to 1 hPa. The monthly temperature data at a resolution of

Fig. 6 Causal discovery of surface temperature. a–g Causal
discovery of surface temperature with its drivers for different
homogeneous regions of India with maximum allowable lag of
3 months at the 95% CI. Here, NW is Northwest, WH is Western
Himalaya, NC is North Central, NE is Northeast, EC is East Coast, WC
is West Coast and IP is Interior Peninsula. The drivers are shown in
the solid circles (e.g. EHF is eddy heat flux, SH is specific Humidity, P
is precipitation and T is temperature).
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0.25° × 0.25° from ERA-5 reanalysis are used. The NCEP reanalysis
project provides atmospheric fields for scientific analyses59,60.
Data assimilation is carried out using the historical data from 1948
to date, based on a state-of-the-art model59 on 17 pressure levels
from 1000 to 10 hPa. It includes daily and monthly temperature
measurements from 1948 onwards. Here, we use the monthly
averaged surface (0.995 sigma level) temperature data at a
resolution of 2.5° × 2.5° for the period 1980–2020. The NCEP/DOE
reanalysis II provided by NOAA PSL, Boulder, Colorado, USA is
available at https://psl.noaa.gov.
In this study, we employ various surface temperature data sets,

but IMD measurements are taken as the reference to assess the
robustness and reliability our analysis (Supplementary Fig. 1). Our
comparison shows that the reanalyses data are in good
agreement with IMD measurements in all regions, except WH
and NE. We also observe a strong positive correlation between the
IMD measurements and reanalysis data, with its coefficient >0.85.
However, the correlation is relatively weak for EC, IP, NC and NE in
winter, which is about 0.75. For instance, correlation of above 0.85
is found between ERA-5 and IMD in EC, IP, NC and NW regions in
all seasons. Similarly, correlation between MERRA-2 and IMD is
above 0.75 in EC, IP, NW, NC and WC in pre-monsoon and post-
monsoon seasons.
We use the IMD station-based measurements from: Bangalore,

Indore, Silchar and Pune (Supplementary Figs. 2 and 3). We
compare both Tmin and Tmax data throughout the observation
period of these stations. The data exhibit a good correlation with
the IMD gridded data, and the correlation is relatively high for
minimum temperature, which is greater than 0.96 for all stations.
The correlation is slightly small for maximum temperature, within
the range of 0.85–0.96. The Root Mean Square Error (RMSE) for
maximum temperature lies within the range of 1.4–2.8 °C, whereas
it is within 0.9–3.36 °C for minimum temperature.

Causal discovery
To find the influence of different geophysical drivers on surface
temperature (represented as T, 1° × 1° resolution from IMD)
distribution, we have considered the following data or indices
for representing the respective process in causal analyses. These
drivers are the solar flux (SF), Oceanic Nina Index (ONI) for El-Niño
Southern Oscillation (ENSO), Eddy heat flux (EHF), Precipitation
(represented as P, 0.25° × 0.25° from IMD), Tropopause height
(TPH), Dipole mode index (DMI) and Aerosol optical depth (AOD).
These data are publicly available from the National Oceanic and
Atmospheric Administration Climate Prediction Center
(NOAA CPC).
The CMIP661 model results analysed in this study are listed in

Supplementary Table 1. The CMIP6 data set is obtained from the
Copernicus climate data archive where monthly gridded projec-
tions of near surface temperatures for integrated Shared Socio-
economic Pathway (SSP) represented by SSP1-2.6, SSP2-4.5 and
SSP5-8.5 are analysed for the period 2015–2099. We have also
analysed the CMIP6 historical data from 1980 to 2014.
Based on the spatio-temporal variability of surface air tempera-

tures throughout the country, India has been conceptually divided
into seven temperature homogenous regions for this analysis: east
coast (EC), interior peninsula (IP), west coast (WC), north-central
(NC), northeast (NE), northwest (NW) and western Himalaya (WH).
Trends are estimated using a linear regression method7.
We perform the Peter Clark momentary conditional indepen-

dence (PCMCI) algorithm24 to understand the causal relation
between geophysical drivers and temperature in each region. This
algorithm comprises: (i) a condition selection step based on PC
algorithm to determine the parents of respective drivers, which
perform an iterative conditional independence test by evaluating
the partial correlation between two-time series while accounting
for other confounding variables with different time lags. In a

Fig. 7 Future projections of surface temperature. a–c The grey, black, red, orange and green curves represent the historical, observation
(IMD), and the model projections with respect to the Shared Socioeconomic Pathways SSP5–8.5, SSP2–4.5 and SSP1–2.6 scenarios,
respectively. The anomalies are calculated by subtracting each future year value from the climatological mean of the historical period
(1995–2014). d–f The boxplots represent changes in observation (IMD), near, mid and far-future with respect to the climatological mean for
the baseline period of present climate (1995–2014), from all three scenarios of the MIROC6 (Japan), CESM2 (USA) and CIESM (China) model
simulations. The numeric 1, 2 and 3 in (d–f) represent the near (2030–2049), mid (2060–2079) and far (2080–2100) future time periods of
the SSPs.
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causally sufficient condition, it also employs the Markov condition
and Faithfulness criteria to construct a range of possible causal
links62, and (ii) Using the momentary conditional independence
(MCI) test, the statistical significance of causal linkages is
evaluated before their strength is assessed using a multiple linear
regression (MLR).
The PCMCI approach uses a variety of statistical tests, such as

Gaussian process regressions and distance correlation (GPDC),
conditional mutual information (CMI) and linear partial correla-
tions (ParCorr) to infer causal relationships. The nonparametric test
CMI is based on a closest neighbour estimate of conditional
mutual information, whereas GPDC is ideal for nonlinear
dependency models with additive noise, and is based on Gaussian
process regression and a distance correlation test on the residuals.
Here, we employ PCMCI, which can also detect contemporary
causal links using ParCorr. The PCMCI method has two parameters
that can be selected by the user: significance level and maximum
time delay, which govern the allowable amount of false-positive
link discovery. Detailed discussion on PCMCI can be found in
Kumar et al.63. Here, stationarity of time series is evaluated using
Augmented Dickey–Fuller (ADF) and the
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test before performing
causal discovery using PCMCI, and the required time series is
made stationary by first order differencing. To account for the
impact of climate modes on temperature in Indian regions, we
selected 3 months as the maximum allowable time lag. These
indices represent mostly the natural forcing with long-term
variability, which can influence the surface temperature for a
period from a few weeks to several months. For example, during
an El Niño, warm sea surface temperature in the tropical Pacific
can influence the weather patterns in India, within a time lag of
3 months64,65.

DATA AVAILABILITY
MERRA 2 data are available at https://disc.gsfc.nasa.gov/. ERA 5 data are available at
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data.ncep.reanalysis.html. IMD data available at https://www.imdpune.gov.in/
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able at https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/. ENSO MEI index is available
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to read and visualise INSAT data sets (https://github.com/gopikrishnangs44/pyINSAT),
and pyMLR for MLR analyses (https://github.com/gopikrishnangs44/pyMLR) available
online via github. All relevant data are available on request.
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