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Downscaling and bias-correction contribute considerable
uncertainty to local climate projections in CMIP6
David C. Lafferty 1✉ and Ryan L. Sriver 1

Efforts to diagnose the risks of a changing climate often rely on downscaled and bias-corrected climate information, making it
important to understand the uncertainties and potential biases of this approach. Here, we perform a variance decomposition to
partition uncertainty in global climate projections and quantify the relative importance of downscaling and bias-correction. We
analyze simple climate metrics such as annual temperature and precipitation averages, as well as several indices of climate
extremes. We find that downscaling and bias-correction often contribute substantial uncertainty to local decision-relevant climate
outcomes, though our results are strongly heterogeneous across space, time, and climate metrics. Our results can provide guidance
to impact modelers and decision-makers regarding the uncertainties associated with downscaling and bias-correction when
performing local-scale analyses, as neglecting to account for these uncertainties may risk overconfidence relative to the full range
of possible climate futures.
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INTRODUCTION
Climate change is a global phenomenon that manifests on
regional to local scales1. Managing the risks of a changing climate
thus requires accurate, high-resolution climate projections as well
as an understanding of the associated uncertainties. One of our
primary sources of information about future climate change is
ensembles of coupled general circulation models (GCMs) run
under various greenhouse gas emissions scenarios2. However,
GCM projections of future climate are highly uncertain, owing to
three primary factors: model uncertainty, arising from differences
in the structures and parameters of GCMs and thus their responses
to the same radiative forcing input; scenario uncertainty, arising
from the range of possible future greenhouse gas emissions
trajectories; and internal variability, arising from the chaotic nature
of the Earth system.
Understanding the relative importance of each of these sources

of uncertainty can help guide research agendas and inform the
modeling choices of end-users. Several previous studies have
made important progress towards this goal for a variety of both
climate and socioeconomic outcomes3–8. Hawkins and Sutton3

(hereafter, HS09) use model outputs from the Coupled Model
Intercomparison Project Phase 3 (CMIP3) to partition uncertainty
in global and regional temperature projections, later extending
their analysis to precipitation5. More recently, Lehner et al.6

(hereafter, L20) leverage single model initial condition large
ensembles (SMILEs) alongside CMIP6 outputs to better character-
ize internal variability, particularly at regional to local scales where
its influence can be dominant. Using a similar SMILE-based
approach, Blanusa et al.7 (hereafter, B23) highlight the importance
of internal variability in driving daily temperature and precipita-
tion extremes.
While these works have led to many useful insights, they

primarily rely on GCM outputs that are typically viewed as
unsuitable for downstream analyses owing to their coarse spatial
resolutions and systematic biases9. GCM outputs often need to be
downscaled (to increase the spatial resolution) and bias-corrected
(to remove systematic biases) before being considered suitable for

the wide variety of end-uses in which they might be employed,
including impact assessments10,11, adaptation planning12, infra-
structure design13, and financial risk disclosures14. However,
constructing a downscaled and bias-corrected ensemble requires
making several methodological choices15,16 that can combine to
produce considerable differences in the representation of
temperature and precipitation, in particular for extremes17–20.
Such differences can persist in impact assessments, for example,
related to hydrology21–23 or ecosystem dynamics24. Due in part to
these insights, a separate body of work has emerged that aims to
quantify the importance of downscaling and bias-correction
relative to other sources of uncertainty25–31. However, these
studies often report mixed conclusions: for example, Chegwidden
et al.27 analyze hydrologic variables in the Pacific Northwest
region of North America and find that the choice of downscaling
algorithm does not contribute meaningfully to projection spread;
in contrast, Wootten et al.29 focus on meteorological variables in
the southeastern United States and conclude that impact
assessments using only a single set of downscaled and bias-
corrected GCMs may suffer from overconfidence. Many of the
conflicting results in this literature can be explained by different
studies focusing on distinct and often small geographic regions, or
on varying sets of meteorological or hydrological variables. Each
study also relies on a unique sampling of GCMs, scenarios, and
downscaling and bias-correction algorithms, which can lead to
different uncertainty decompositions.
In this work, we aim to address the above literature gaps by

quantifying the contribution of downscaling and bias-correction
to projection uncertainty for a variety of climate metrics at a global
scale. Following the simple variance decomposition approach of
previous works29, we account for scenario uncertainty, model
uncertainty, downscaling and bias-correction uncertainty, and
interannual variability. Our approach involves calculating the time-
evolving relative contribution of each source to the total
projection spread (see “Methods”). We focus on statistically
downscaled and bias-corrected ensembles and include, to our
knowledge, all global, publicly available datasets with parent
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GCMs taken from the CMIP6 repository32. This leads to a super-
ensemble comprising ~200 downscaled and bias-corrected model
outputs across 4 emissions scenarios, 22 parent CMIP6 models,
and 5 downscaling and bias-correction algorithms (Supplementary
Table 1). Owing to data availability, we are restricted to analyzing
metrics of climate change derived from daily maximum or
minimum temperature and daily precipitation. Our selection of
indicators includes annual temperature and precipitation averages
as well as several indices of climate extremes due to their potential
for large impacts on a broad variety of human–environment
systems33.
Our uncertainty partitioning results are strongly heterogeneous

across space, time, and climate metrics. However, in general, we
find that downscaling and bias-correction contribute a non-
negligible fraction of the total projection variance (typically no less
than 25%, globally averaged). In many cases they represent the
primary source of uncertainty. Downscaling and bias-correction
are particularly important over the near term (early-to-mid 21st
century), in projections of precipitation, in projections of extremes,
in regions of complex terrain, and in regions where historical
observations disagree. Our results corroborate previous works
showing that in many instances, relying on a single set of
downscaled and bias-corrected outputs can risk overconfi-
dence29,34. For stakeholders or impact modelers who lack the
computational capacity to extensively sample across all four
sources of uncertainty, our results may also assist in deciding
which factors to prioritize.

RESULTS
Hereafter, to improve readability, we use the terms “downscaled”
or “downscaling” to encompass the outputs or methods of
downscaled and bias-corrected ensembles, unless the distinction
between downscaling and bias-correction is important.

Variance decomposition of climate averages
We begin by analyzing indicators of long-term climatic change,
namely annual average temperature and annual total precipita-
tion. Before moving to the global picture, we focus on three
example locations: New Delhi, India; Seattle, USA; and Lagos,
Nigeria. In addition to being populous and economically
important cities with distinct climates, these locations allow a
comparison to previous works (L20, B23). The variance decom-
position results for each city, as well as each individual down-
scaled projection, is shown in Fig. 1 (projections conditioned on
each emissions scenario are shown in Supplementary Figs. 1–4).
There is broad agreement on the sign of change for both
temperature and precipitation, with average temperatures gen-
erally increasing in all locations (Fig. 1a–c) and total precipitation
slightly increasing in New Delhi and Seattle (Fig. 1g, h) while
remaining approximately constant in Lagos (Fig. 1i). However,
there is considerable projection spread for all metrics and
locations, and the resulting variance decompositions lead to
different interpretations as to the driving factors. For temperature
projections (Fig. 1d–f), the contribution of scenario uncertainty is
similar in all three locations, starting small and only becoming
non-negligible after around 2050. The reverse is true for
interannual variability, which is more important in the first half
of the century and declines over time. Similarly, the relative
contribution of downscaling is largest over the near term and
declines over time. However, there are considerable differences in
magnitude across the three cities: temperature projections in New
Delhi show little dependence on the choice of downscaled
ensemble (Fig. 1d), whereas downscaling is the dominant
uncertainty in Lagos long into the 21st century (Fig. 1f). For
precipitation projections, a qualitatively different uncertainty
decomposition emerges (Fig. 1j–l). Interannual variability is much

more important in all locations, while the contribution of scenario
uncertainty virtually disappears. In Seattle, downscaling is
responsible for a substantial fraction of the variance of precipita-
tion projections (Fig. 1k), model uncertainty contributes a small
but perceptible fraction, and the overall decomposition changes
little over time. This contrasts with New Delhi (Fig. 1j) and Lagos
(Fig. 1l), where model uncertainty is relatively more important and
grows over time.
Each variance decomposition shown in Fig. 1 arises from a

combination of factors unique to each location. For example, the
importance of downscaling uncertainty for Seattle precipitation
may be related to its positioning in a mountainous region35,
whereas the dominance of downscaling uncertainty in Lagos
temperature projections may be driven by disagreements among
the underlying observational datasets used to perform the
downscaling (Supplementary Figs. 11 and 12). Fully explaining
each uncertainty decomposition would require expertise regard-
ing the many physical processes affecting each location’s climate,
an understanding of their representations in the CMIP6 GCMs, and
knowledge of how the resulting temperature and precipitation
outputs are affected by each downscaling methodology. Although
beyond the scope of the current work, these considerations are
critical in determining which ensemble(s) and models therein to
rely on for decision or risk analyses.
We now apply our variance decomposition globally, continuing

to focus on climate averages. These results are shown in Fig. 2,
where uncertainty sources are sorted along each column, and
each row shows a 20-year averaging period representing the early,
mid, or late 21st century. The global results are largely in keeping
with those of the three example cities. For annual average
temperature, across almost all regions of the globe, there is a
marked increase in the contribution of scenario uncertainty over
time and a corresponding decrease in downscaling uncertainty
and interannual variability. This matches the behavior of each of
the locations shown in Fig. 1, even if the magnitudes differ. For
example, Lagos can be seen as an outlier in terms of the
importance of downscaling uncertainty—by the late 21st century,
downscaling still contributes around 25% of the total variance of
Lagos temperature projections (Fig. 1f), almost double the global
average. Figure 2a also shows that in many locations, model
uncertainty grows to become the most important driver of
variance by mid-century and continues to contribute a substantial
fraction by late-century, though scenario uncertainty typically
becomes larger. For annual total precipitation (Fig. 2b), inter-
annual variability remains the dominant contributor, usually
followed by downscaling uncertainty and model uncertainty,
while scenario uncertainty is almost always negligible. As in Fig. 1,
the precipitation decomposition changes little over time.
The global results shown in Fig. 2 also reveal some important

spatial patterns. For both temperature and precipitation projec-
tions, major mountain ranges including the Rocky Mountains, the
Andes, and the Himalayas exhibit comparatively large down-
scaling uncertainties with correspondingly lower contributions
from other sources. This could be due to topographic influences
on atmospheric dynamics that are not well represented in coarse-
resolution GCMs, leading to methodological differences in the
downscaling algorithms being amplified into a larger spread in
outcomes36. However, the same regions also tend to show larger
disagreements in the historical record (Supplementary Fig. 15),
which can drive differences in the projections37,38. Indeed, we find
that at the grid point level, downscaling uncertainty is more
strongly correlated with observational disagreement than are the
other sources (Supplementary Figs. 5 and 6).
Our global results broadly agree with HS09 and L20: for

temperature projections, we find that interannual variability is
largest over the mid- and high-latitudes; for precipitation
projections, we find that model uncertainty is larger in the tropics
compared to other regions. In our results, interannual variability
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Fig. 1 Projections and variance decomposition of climate averages for selected cities. a–c Timeseries of annual average temperature from
each downscaled model output. Gray lines show individual downscaled outputs and colored lines of different styles show associated
ensemble-scenario means. Outputs for each city are taken from the single grid point encompassing their respective locations. d–f Variance
decomposition of annual average temperatures corresponding to the timeseries plots in (a–c). The contribution of each uncertainty source is
expressed as a percentage of the total variance. g–i Timeseries of annual total precipitation, similar to (a–c). j–l Variance decomposition of
annual total precipitation, similar to (d–f).
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remains considerably more important beyond the early 21st
century, which arises because previous works apply decadal
averages to each climate metric before performing the variance
decomposition. Here we do not average any climate indices over
time in order to ensure that our results remain sensitive to the
entire distribution of possible outcomes in any given year.
Applying long-term averaging before performing the variance
partitioning would lead to a reduction in the importance of
interannual variability, similar to what is observed in the
Supplementary Information of B23.

Variance decomposition of climate extremes
While long-term averages are important indicators of climatic
change, climate and weather extremes play an outsized role in
driving environmental and socioeconomic impacts39. In this
section, we therefore apply our variance decomposition approach

to a suite of indices measuring climate extremes, focusing first on
annual 1-day maxima of daily maximum temperature and daily
precipitation, shown in Fig. 3. The spatial patterns of these results
are somewhat similar to those of annual averages (Pearson
correlation coefficients calculated at the grid cell level typically
range from 0.4 to 0.6, shown in Supplementary Figs. 9 and 10);
regions of complex terrain and areas of relatively large observa-
tional disagreement are again typically associated with larger
downscaling uncertainties (Supplementary Figs. 13, 14, 16). The
temporal evolutions are also broadly similar—for both average
metrics and 1-day maxima, the precipitation decomposition
remains approximately constant over time, and the temperature
decomposition shows a pattern of increasing relative contribu-
tions from model and scenario uncertainty at the expense of
downscaling uncertainty and interannual variability. In terms of
the magnitude of the relative contribution from each source, the

Fig. 2 Global variance decomposition of climate averages. a Variance decomposition for annual average temperature. Each column shows
the contribution from a different source of uncertainty, measured as the fraction of total variance. Each row depicts a 20-year averaging
period, where the variance decomposition is performed annually, and the results are averaged over time. The purple dots in the upper left
subplot show the locations of New Delhi, Seattle, and Lagos. b Variance decomposition for annual total precipitation in the same layout as (a).
The gray boxes in the lower left of each subplot give the area-weighted global average of each decomposition. A version of this plot with a
more granular colormap is available in the Supplementary Information (Supplementary Fig. 28).
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decomposition for 1-day precipitation maxima (Fig. 3b) is very
similar to that for annual totals (Fig. 2b). One of the few
differences is that interannual variability becomes slightly more
important at the expense of model uncertainty, particularly in the
tropics. For temperature projections, there are notable differences.
Downscaling and interannual variability play a more important
role at longer time horizons for annual maximum temperatures
(Fig. 3a) compared to annual average temperatures (Fig. 2a). Recall
that for annual average temperatures, scenario and model
uncertainty account for most of the variance by the late 21st
century (77%, globally averaged; Fig. 2a). The corresponding late-
century breakdown for maximum temperatures is qualitatively
different as each source contributes approximately equally (Fig.
3a).
We find qualitatively similar results for the annual maxima of

daily average temperature and daily minimum temperature
(Supplementary Fig. 31), although downscaling is slightly less

important in both cases. We also consider how the uncertainty
partitioning changes for temporally compounding extremes by
repeating the calculation for 5-day maxima (Supplementary Fig.
32). This made very little difference for temperature projections;
for precipitation, it led to a small decrease in the contribution from
downscaling uncertainty and a corresponding increase in the
importance of interannual variability.
There are several possible measures of climate extremes

beyond annual 1-day maxima. Different end-users may care about
distinct characteristics of a given hazard40, including its magnitude
and timing in relation to relevant human or environmental
thresholds, its correlation structure across space and time, and
whether it co-occurs with another hazard41. Although mindful that
any set of indices will neglect many aspects of climate extremes
that are important for specific sectors, we now define and analyze
a suite of metrics that aim to be as broad as possible. We analyze
three threshold indices: the annual number of extremely hot days

Fig. 3 Global variance decomposition of annual 1-day maxima. a Variance decomposition for the annual maximum of daily maximum
temperature. As in Fig. 2, columns delineate the contribution from each uncertainty source, and rows demonstrate the temporal evolution.
b Variance decomposition for annual maximum 1-day precipitation, in the same layout as a. The gray boxes in the lower left of each subplot
give the area-weighted global average of each decomposition. A version of this plot with a more granular colormap is available in the
Supplementary Information (Supplementary Fig. 29).
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(defined as daily maximum temperature exceeding the local
historical 99th percentile), the annual number of dry days (daily
precipitation less than 1mm), and the annual number of
extremely wet days (daily precipitation exceeding the local
historical 99th percentile). The resulting uncertainty decomposi-
tions are shown in Fig. 4.
Several insights emerge from Fig. 4. First, there continues to

exist a clear qualitative difference between the precipitation- and
temperature-based indices. The decomposition for dry days (Fig.
4b) and extremely wet days (Fig. 4c) is roughly constant over time
and largely dominated by downscaling uncertainty and inter-
annual variability, while scenario uncertainty again contributes
negligibly. In contrast, the results for extremely hot days (Fig. 4a)
show a similar temporal pattern to previous temperature-derived
metrics where model and scenario uncertainty play an increas-
ingly important role at longer time horizons. Second, note that in
many regions, model uncertainty is the most important factor by
the late 21st century in projecting extremely hot days, which
contrasts with our results for the non-threshold metric of
temperature extremes, annual maxima (Fig. 2a). This is likely
related to the large spread in CMIP6 climate sensitivities42. Since
we define an extremely hot day in reference to a constant (local)
temperature threshold, higher-sensitivity GCMs will tend to cross
that threshold earlier than lower-sensitivity GCMs, leading to a
relative increase in model uncertainty. Third, for all metrics
analyzed thus far, the annual number of dry days is markedly the
most sensitive to the choice of downscaled ensemble. This may be
related to observational disagreements regarding the historical
frequency of dry days (Supplementary Fig. 17) but could also be
driven in part by methodological differences in whether and how
the bias-correction algorithms adjust their outputs based on
minimum precipitation thresholds43. Finally, our results for
extremely hot days and extremely wet days are in reasonable
qualitative agreement with those of B23, notwithstanding some
differences in the magnitudes that arise due to our inclusion of
downscaling uncertainty and our decision not to apply decadal
averaging.
In the Supplementary Information, we test the sensitivity of

these results to several different threshold definitions (Supple-
mentary Figs. 33–45). Broadly, we find that downscaling becomes
less important if daily average or minimum temperatures are
considered instead of the daily maximum, and interannual
variability becomes more important if more extreme thresholds
are used. Calculating the historical quantiles from a separate
observational dataset can lead to some differences in the
contribution from downscaling uncertainty, but this does not
change the qualitative results. We also include extensions to
account for temporally compounding extremes by calculating the
longest consecutive run of days crossing each threshold, the main
effect of which is to increase the importance of interannual
variability (Supplementary Figs. 33–45). Lastly, we also investigate
a simple multivariate metric, extremely hot and dry days
(Supplementary Figs. 46–47), which shows a very similar decom-
position to that for extremely hot days. This indicates that
conditioning the occurrence of daily temperature extremes on
concurrent low precipitation does little to alter the uncertainty
decomposition, although it is unclear whether this result would
hold over longer timescales.

Implications for risk assessment
Our results so far have been presented in terms of the relative
contribution of each uncertainty source. However, the magnitude
of these contributions in physical units is also important,
particularly for end-users who require decision-relevant informa-
tion. In Fig. 5, we show the absolute uncertainty attributed to
downscaling in the middle of the century for four previously
defined indices of extremes. The absolute uncertainty is measured

in physical units by computing the standard deviation across
downscaled ensembles rather than the variance. Although the
uncertainty decomposition only holds in variance space, Fig. 5 can
provide a heuristic estimate of the extent to which the overall
projection spread may be underestimated by relying on a single
set of downscaled projections. Note that in contrast to the
percentage shares, the absolute uncertainty contributed by each
source tends only to grow over time (Supplementary Figs. 69–75).
The heterogeneity across locations and metrics demonstrated

in Fig. 5 suggests that the relevance of downscaling uncertainty
for local decision and risk analyses is highly contextual. To
demonstrate this further, we provide a stylized example around
characterizing mid-century hot and wet extremes in Seattle,
shown in Fig. 6, which illustrates the effects of only sampling from
one downscaled ensemble relative to the entire super-ensemble.
Across most metrics and emissions scenarios shown in Fig. 6, key
distributional statistics such as the upper percentiles and inter-
percentile ranges can vary considerably among downscaled
ensembles as well as in relation to the full ensemble. For the
precipitation-based metrics (Fig. 6c, d), the differences among
downscaled ensembles are larger that those induced by switching
from the lowest to highest emissions scenario. Even for the
temperature-based metrics that show strong sensitivities to
emissions scenario (Fig. 6a, b), relying on different downscaled
ensembles can lead to qualitatively different risk perceptions in
relation to local thresholds. Consider, for example, the extra-
ordinary 2021 Pacific Northwest heatwave, which has been
extensively studied after breaking several temperature records
throughout the region44–47, leading to widespread impacts across
many sectors48. During this event, Seattle-Tacoma airport
recorded a temperature of 42.2 °C49 (denoted by the dashed
vertical line in Fig. 6b). Figure 6b shows that estimates of the
likelihood of surpassing this record by mid-century depend on the
choice of downscaled ensemble, as one ensemble projects that
this record is unlikely to be broken by mid-century even under an
extreme emissions scenario.
Although we present here a highly simplified example that

neglects many of the challenges of implementing risk assessments
in a nonstationary climate50,51, it nonetheless serves to illustrate
how modeling choices surrounding downscaled data sources can
induce substantively different hazard characterizations. These
results suggest that careful consideration should be given to the
role of downscaling uncertainty within any broader framework as
failure to do so may lead to decisions that are not robust to the full
set of plausible climate futures.

DISCUSSION
Our main finding, that downscaling and bias-correction often
contribute considerable uncertainty in local climate projections, is
robust to a number of methodological checks that we outline in
the Methods section and Supplementary Information. There are
nevertheless several possible avenues of future research. First,
note that despite our simplified treatment of internal variability
(see associated discussion in “Methods”), we nonetheless find that
interannual variability is an important driver of uncertainty for
many metrics. For several precipitation-based metrics and indices
of extremes, the combined contribution of interannual variability
and downscaling drive a large share of the variance. This would
suggest that future work characterizing uncertainties around the
role of internal variability at local scales would be valuable. The
framework presented here could be extended to include down-
scaled initial condition ensembles52, but to our knowledge such
an ensemble does not yet exist at global scale. Independent
estimates of internal variability at local scales, potentially derived
from hybrid statistical techniques53, could also be used to test for
potential biases in the model-derived representation used here.
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Fig. 4 Global variance decomposition of threshold indices of climate extremes. Variance decomposition for: a annual number of extremely
hot days, b annual number of dry days, and c annual number of extremely wet days. As in Figs. 2 and 3, columns delineate the contribution
from each uncertainty source, and rows demonstrate the temporal evolution. Extremely hot days and extremely wet days are defined to occur
when daily maximum temperature and daily precipitation exceed their local 99th percentiles, respectively, where percentiles are calculated
over 1980–2014 from the GMFD observational dataset (see “Methods”). Dry days are defined to occur when daily precipitation is less than 1
mm. The gray boxes in the lower left of each subplot give the area-weighted global average of each decomposition. A version of this plot with
a more granular colormap is available in the Supplementary Information (Supplementary Fig. 30).
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Second, one important limitation of this work is the necessarily
unbalanced sample design. Our constraint of global spatial
coverage led to the omission of many downscaled ensembles
that are only available at continental or national scales. As such,
many GCMs in our super-ensemble are only downscaled via two
different methods, and our estimate of the downscaling
uncertainty (the variance across downscaling methods) likely
suffers from biases associated with this small sample size. We
partially mitigate this bias by averaging each individual estimate
across GCMs but expanding the super-ensemble to include a
greater variety of downscaling methods should lead to more
robust estimates. Adding more ensembles to the uncertainty
decomposition could increase or decrease the relative importance
of downscaling29.
It is also important to highlight that our definition of

downscaling uncertainty encompasses more factors than just
the selection of each downscaling and bias-correction algorithm.
In general, many decisions related to the development of a
downscaled ensemble can contribute to observed differences in
outputs. Such choices include the underlying observational
dataset and the temporal extent used for training, and any re-
gridding processes applied to the observations or native GCMs.
Alternate configurations of the same downscaling or bias-
correction algorithm, for example, related to the preservation of
GCM-simulated trends, can also lead to considerable differences54.
In the Supplementary Information, we provide qualitative
evidence that in many cases considered here, downscaling
uncertainty is related to disagreements in the historical record.
However, additional research is needed to more precisely separate

the effects of each component in the downscaling and bias-
correction process.
Third, we make an implicit assumption that the outputs from

each scenario, GCM, and downscaling method represent equally
plausible realizations of future climate. Methods are emerging that
aim to constrain climate projections by downweighting55,56 or
sub-selecting57,58 GCMs based on their agreement with historical
observations, potentially combined with probabilistic emissions
constraints59–61. However, the extension of such techniques to
downscaled outputs remains an area of active research62,63 and
may be complicated by the presence of observational disagree-
ments at local scales if downscaling algorithms rely on conflicting
datasets64. The application of any such framework would decrease
absolute uncertainty, but may not reduce the relative importance
of downscaling uncertainty if some GCMs or scenarios are down-
weighted or removed from the ensemble. Future work investigat-
ing these questions would be valuable.
Fourth, we again highlight that our selection of climate metrics

is necessarily limited. Since all of the indices we analyze are
calculated annually, we are unable to probe extremes that
manifest on longer timescales (for example, the magnitude of a
10-year return period event) and we aggregate over seasonal
information that is important for many sectors. A useful extension
to this work could test how these aspects of climate hazards alter
the variance decompositions. In addition, moving beyond
standardized meteorological indices to analyze targeted metrics
that are relevant for specific sectors may lead to qualitatively
different results65.

Fig. 5 The contribution of downscaling to absolute uncertainty. Absolute uncertainty attributed to downscaling, averaged over 2050–2069,
for: a annual number of extremely hot days, b annual maximum of daily maximum temperature, c annual number of extremely wet days, and
d annual maximum 1-day precipitation. The absolute uncertainty is expressed via the standard deviation across ensembles at each grid point
and is measured in physically meaningful units. The gray boxes in the lower left of each subplot give the area-weighted global average of each
contribution.
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Finally, note that variance decomposition is only one of many
possible approaches to characterize uncertainty. More formal
sensitivity analysis techniques can be applied to understand
specific aspects of the outcome space66 and ensure that
inferences are relevant for downstream decision analyses67. In
addition, climate projections are often used to drive sectoral
models that contain their own structural and parametric
uncertainties68–71. Socioeconomic outcomes of interest may well
be more sensitive to the representation of these environmental
and/or human system dynamics, and sound risk management
strategies should account for the uncertainty in each relevant
system as well as their interactions72.
Our results have important implications for many users of

downscaled climate products. Across almost all locations, time
horizons, and indices of climatic change that we analyze,
downscaling rarely represents a negligible source of uncertainty.
This would imply that a strategy of sampling from more than one
downscaled ensemble is advisable during risk or impact analyses
that are sensitive to low-probability climate hazards, as has been
suggested elsewhere29,34. Such a sampling may represent a
substantial increase in data and computational requirements, so
we emphasize that it may not be necessary in all cases. Our results
can provide some initial heuristic guidance in this regard—they
suggest that downscaling uncertainty is particularly important
over the near term, in projections involving precipitation or
climate extremes, and in regions of observational disagreement.
We have also developed an interactive JupyterLab-based dash-
board, deployed on the MSD-LIVE platform, that facilitates further
exploration of our results: https://lafferty-sriver-2023-downscaling-
uncertainty.msdlive.org. In general, we urge end-users to follow
existing recommendations regarding the use of downscaled
climate products16,73, including taking a process-informed
approach and relying on expert knowledge of local weather and
climate phenomena74. End-users may also consider whether

downscaled projections are the most appropriate method of
generating future climate information; other complementary
approaches might include applying GCM-simulated changes to
gridded historical data75 or developing a statistical model based
on pointwise observations76.
This work also adds to a growing body of literature applying an

increasingly diverse set of tools to characterize the uncertainties of
a changing climate and the resulting environmental and socio-
economic impacts. Deliberate efforts to coordinate methodologi-
cal comparisons would help build confidence in the insights
derived from this line of research, which in turn will be necessary
to guide best practices for the increasing number of both public
and private actors who are incorporating climate projections into
their decision-making processes.

METHODS
Data sources
We leverage five ensembles of statistically downscaled and
bias-corrected GCM outputs: NASA NEX-GDDP-CMIP677 (which
we refer to as NEX-GDDP), CIL-GDPCIR78, ISIMIP3BASD79,80

(which we refer to as ISIMIP3b), and two ensembles from
carbonplan81: GARD-SV82 and DeepSD-BC83. Some details on
the configurations of each approach can be found in
Supplementary Table 2. Each ensemble is filtered to ensure:
(1) parent GCMs are available in at least two ensembles, (2)
downscaled outputs for each GCM are available for at least 3
Shared Socioeconomic Pathways (SSPs)84, (3) downscaled
outputs are missing no more than one variable (from tasmax,
tasmin, and pr), and (4) downscaling is performed on the same
simulation member of the parent GCM. Satisfying these
requirements results in dropping 13 of 35 NEX-GDDP parent
models and 8 of 25 CIL-GDPCIR parent models. All ISIMIP3b

0 10 20 30 40 50 60 70
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CIL-GDPCIR

ISIMIP3b
All
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CIL-GDPCIR

ISIMIP3b
All a)

SSP5-8.5
SSP1-2.6

28 32 36 40 44
Annual Maximum of Daily Maximum Temperature (°C)
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SSP5-8.5
SSP1-2.6
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Annual Number of Extremely Wet Days
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ISIMIP3b
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ISIMIP3b
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SSP1-2.6

20 40 60 80 100
Annual Maximum 1-Day Precipitation (mm)
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SSP5-8.5
SSP1-2.6

Seattle, USA (2050-2069)

Fig. 6 Hazard characterization depends on modeling choices. Comparison of the probability distribution generated by relying on the full
ensemble (including all downscaled ensembles) versus any one downscaled ensemble, conditioned on the highest (SSP5-8.5) and lowest
(SSP1-2.6) emissions scenarios. Distributions are constructed for the grid point containing Seattle over 2050–2069 for different metrics:
a annual number of extremely hot days, b annual maximum of daily maximum temperature, c annual number of extremely wet days, and
d annual maximum 1-day precipitation. Boxplot whiskers span the 99% range. The dashed vertical line in (b) denotes the highest temperature
recorded at Seattle-Tacoma airport during the 2021 Pacific Northwest heatwave. Details on each downscaled ensemble and the SSP scenarios
can be found in the Methods section and Supplementary Information. We neglect the carbonplan ensembles here since they contain a limited
number of models.
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outputs are used. Additional outputs from different down-
scaling techniques are available in the carbonplan dataset but
do not satisfy the above requirements. After calculating each
metric in each ensemble, all outputs are conservatively re-
gridded to a common 0.25° grid.
For the threshold metrics that require comparing projection

outputs to historical quantiles, we rely on two observational
datasets: the Global Meteorological Forcing Dataset (GMFD) for
Land Surface Modeling85 and the ERA5 reanalysis from the
European Centre for Medium-Range Weather Forecasts86. These
products are chosen because they are available globally at 0.25°
spatial resolution. GMFD is the training dataset for the NEX-
GDDP ensemble, and ERA5 is the training dataset for the CIL-
GDPCIR ensemble and both carbonplan ensembles, although
with different temporal extents. The ISIMIP3b ensemble is
trained on W5E5 v2.087,88, which is only available at 0.5° spatial
resolution. The quantiles are calculated from daily data over
1980–2014. We conservatively re-grid both observational
datasets to the native grid of each downscaled ensemble
before calculating the threshold metrics. Our definition of
extremely hot days and extremely wet days in the main results
is based on daily maximum temperature and daily total
precipitation exceeding the local 99th percentile from GMFD,
respectively. In the Supplementary Information, we compare
the GMFD-calculated quantiles to those obtained from ERA5
(Supplementary Figs. 18–21).

Uncertainty partitioning
Following previous works, we employ a simple variance decom-
position approach to calculate the relative uncertainty arising from
four sources: scenario uncertainty, model/GCM uncertainty, down-
scaling uncertainty, and interannual variability. Additionally, in a
similar manner to Wootten et al.29, we employ a weighting
strategy that accounts for data coverage. Our method is as follows:
let x(t, s,m, d) represent a given climate metric in some location at
year t from scenario s, parent GCM m, and downscaling method d.
We first estimate the forced response x̂ðt; s;m; dÞ by fitting a 4th-
order polynomial over 2015–2100. Interannual variability is then
estimated as the centered rolling 11-year variance of the
difference between the extracted forced response and the raw
outputs, averaged over all outputs. The assumption of constant
interannual variability was highlighted as one shortcoming of
HS09, so in this work we allow the magnitude of interannual
variability to evolve over time. The contribution of each remaining
uncertainty source is calculated based on the forced response.
Scenario uncertainty is estimated as the variance over scenarios of
the multimodel, multi-method mean,

UsðtÞ ¼ vars
1

NðsÞ
X

m;d

x̂ðt; s;m; dÞ
" #

; (1)

where N(s) is the total number of downscaled outputs available for
scenario s. The above definition may underestimate the true
scenario uncertainty when the multimodel, multi-method
response is weak. Brekke and Barsugli89 propose taking the
variance over scenarios before averaging to circumvent this issue:

Ubb13
s ðtÞ ¼ 1

NmNd

X

m;d

vars x̂ðt; s;m; dÞ½ �: (2)

Here, Nm and Nd are the number of distinct GCMs and
downscaling methods in our super-ensemble, respectively. Our
main results are based on the former definition of scenario
uncertainty, following much of the existing literature. In the
Supplementary Information, we show that scenario uncertainty is
indeed larger under the Brekke and Barsugli definition, although
this does not change the qualitative results (Supplementary Figs.
48–54). Model uncertainty is estimated as the weighted mean of

the variance across models,

UmðtÞ ¼
X

s;d

ws;dvarm x̂ðt; s;m; dÞ½ �: (3)

The weights ws,d are chosen such that if more parent GCMs are
available for a given downscaling method and scenario (i.e., if the
variance is calculated across more GCMs), those methods and
scenarios are weighted higher:

ws;d ¼ mðs; dÞP
s;dmðs; dÞ : (4)

Here, m(s, d) indicates the number of parent models that have
been downscaled using method d for scenario s. Downscaling
uncertainty is estimated as the weighted mean of the variance
across methods:

UdðtÞ ¼
X

s;m

ws;mvard x̂ðt; s;m; dÞ½ �; (5)

where the weights ws,m are chosen such that if more downscaled
outputs are available for a given GCM and scenario, those GCMs
and scenarios are weighted higher:

ws;m ¼ dðs;mÞP
s;mdðs;mÞ : (6)

Here, d(s,m) indicates the number of downscaled outputs
available from parent GCM m and scenario s. The weighting
strategy can be made more intuitive with an example: from
Supplementary Table 1, there are five different downscaled
outputs available from the CanESM5 parent GCM whereas only
two different downscaled outputs are available from CMCC-
ESM2 (neglecting SSP availability). The weighting strategy
assumes that the estimated downscaling uncertainty from
CanESM5 provides more information about the true uncer-
tainty than the estimate from CMCC-ESM2. In this illustrative
example, our estimate for the true downscaling uncertainty
would be a weighted average of the two individual estimates,
where the CanESM5 estimate is weighted higher by a factor of
5/2. In the Supplementary Information, we recalculate our main
results without performing any weighting and show that the
qualitative interpretations are unchanged (Supplementary
Figs. 55–61).
We assume that the total variance in each year is given by the

sum of each individual variance estimate. Our main results show
the relative contribution of each uncertainty source measured as a
fraction of the total variance.

Methodological caveats
Here we outline two additional methodological caveats associated
with our main results. First, the 4th-order polynomial fit used to
separate the forced response from interannual variability likely
leads to an underestimate of the true extent of internal variability
since the fit will interpret unforced fluctuations as being part of
the forced response. L20 show that for coarse-resolution GCM
outputs, this bias can be particularly acute at regional scales and
for noisy output variables such as precipitation, reaching 50% of
the total uncertainty in some cases. One approach to mitigate this
bias is to average over large spatial scales, but this would
considerably reduce the influence of downscaling, which is our
primary focus in this work. Alternatively, using a large number of
model outputs may achieve a more robust averaged estimate. Our
inclusion of over 200 downscaled model outputs across 22 GCMs
may be sufficient in many cases, but this is difficult to verify within
the current framework. As noted in L20, more sophisticated
methods of extracting the forced response could also be used
(e.g., ref. 90).
Second, our main results neglect interactions among

uncertainty sources, which previous studies have shown to
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be significant in some instances91. To estimate the importance
of interaction effects, we implement two checks. We first
perform an ANOVA-based variance decomposition (described
in the Supplementary Information) for all metrics across our
three example cities. We find that interactions are small for
projections of climate averages (Supplementary Fig. 64) but
can sometimes be important for extremes (Supplementary Fig.
65). B23 note that accounting for the interaction between
model and scenario uncertainty may alter their results, but we
find this effect to be small—the interaction between model
and downscaling uncertainty is typically larger. Our ANOVA
results do not qualitatively alter the relative importance of
each uncertainty source, but rather reassign the fractions of
variance partitioned to each source to additional interaction
terms. For example, when neglecting interactions we find that
downscaling is the largest driver of variance for the annual
number of extremely hot days in Lagos by the end of the
century (Supplementary Fig. 63). The corresponding ANOVA
results reveal large model-downscaling and scenario-
downscaling interaction effects (Supplementary Fig. 65), but
the overall (combined) influence of downscaling uncertainty
remains important.
We also test whether our assumed total uncertainty, the sum of

each individual term, differs from true total uncertainty, given by
the variance across all outputs:

Utrue
totalðtÞ ¼ vars;m;d xðt; s;m; dÞ½ �: (7)

Regions and metrics for which the true total uncertainty is
considerably different from our assumed total uncertainty
indicate that interaction effects may be important. In the
Supplementary Information, we show the ratio of these two
quantities for each metric globally (Supplementary Fig. 68) and
for our example cities (Supplementary Figs. 66 and 67). Our
independence assumption generally leads to small errors (≤10%)
for annual averages and annual 1-day maxima. The Sahara Desert
stands out as a region of potentially large interaction effects for
the precipitation-based metrics. For the threshold metrics, our
assumption is less defensible as the discrepancy can reach 20%
over many regions. Interaction effects may be particularly
important for temperature-based metrics over the Amazon
rainforest, and the Sahara again shows comparatively large
discrepancies for the precipitation-based metrics. Although these
discrepancies do not necessarily indicate the presence of large
interaction effects, future research could investigate them in
more detail.

DATA AVAILABILITY
The NEX-GDDP ensemble is available from the NASA Center for Climate Simulation:
https://ds.nccs.nasa.gov/thredds/catalog/AMES/NEX/GDDP-CMIP6/catalog.html. The
CIL-GDPCIR ensemble is available on Microsoft Planetary Computer: https://
planetarycomputer.microsoft.com/dataset/group/cil-gdpcir. The ISIMIP3b ensemble
is available from the ISIMIP repository: https://data.isimip.org/. Both carbonplan
ensembles are hosted on Microsoft Azure. Example code showing how to access the
data can be found at the following GitHub repository: https://github.com/
carbonplan/cmip6-downscaling/. The GMFD observational dataset is available from
the National Center for Atmospheric Research: https://rda.ucar.edu/datasets/ds314.0/.
The ERA5 reanalysis product is available from the Copernicus Climate Change Service:
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. NetCDF files
of our main decomposition results are available on the MSD-LIVE repository93.

CODE AVAILABILITY
Code to reproduce this analysis is available at the following GitHub repository and
archived on Zenodo94: https://github.com/david0811/lafferty-sriver_2023_npjCliAtm.
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