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Effects of multi-observations uncertainty and models similarity
on climate change projections
Raju Pathak1,2, Hari Prasad Dasari 1,2, Karumuri Ashok 1,2,3 and Ibrahim Hoteit 1,2✉

Climate change projections (CCPs) are based on the multimodel means of individual climate model simulations that are assumed to
be independent. However, model similarity leads to projections biased toward the largest set of similar models and intermodel
uncertainty underestimation. We assessed the influences of similarities in CMIP6 through CMIP3 CCPs. We ascertained model
similarity from shared physics/dynamics and initial conditions by comparing simulated spatial temperature and precipitation with
the corresponding observed patterns and accounting for intermodel spread relative to the observational uncertainty, which is also
critical. After accounting for similarity, the information from 57 CMIP6, 47 CMIP5, and 24 CMIP3 models can be explained by just 11
independent models without significant differences in globally averaged climate change statistics. On average, independent
models indicate a lower global-mean temperature rise of 0.25 °C (~0.5 °C–1 °C in some regions) relative to all models by the end of
the 21st century under CMIP6’s highest emission scenario.
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INTRODUCTION
Climate change is a serious concern for modern civilization
because of its unforeseeable consequences for human societies
and ecosystems and its destabilization effect in the case of various
earth systems and processes1,2. Increasing global mean surface
temperatures exacerbate the magnitude and frequency of heat
waves and are associated with increasing extreme storms, heavier
precipitation, floods, and more intense droughts. Such disasters
cause deaths, infrastructural damage, and environmental and
economic losses3. Climate change projections (CCPs), driven by
emissions estimated according to a set of future socioeconomic
conditions, can be used to estimate changes in future climate
statistics and the changing frequencies and intensities of extreme
events. They are useful for risk-based long-term planning3,4.
CCPs of a particular climate variable (such as temperature,

precipitation, etc.) from a single global climate model (GCM) are,
generally, the averages of the variable from multiple simulations
(realizations) that differ in terms of initial conditions or parameter
values5,6. Analogously, multimodel-based CCPs are statistical
consensus estimates (i.e., averaging) of multiple simulated
GCMs1,3–5. Such methods often lead to inaccurate estimates of
uncertainty associated with model parameters and numerical
schemes/physics. For example, equally weighted multimodel
mean of the GCM simulations is typically used as the best
estimates3,4. Multimodel ensembles of several GCMs, wherein
each GCM provides statistically independent climate information,
can be used to represent structural uncertainty7. Typically, the
uncertainty associated with a simulated climate variable is
expressed by the spread across models3,4,8. The consensus
methods used to generate CCPs generally smooth out structural
uncertainties and ignore disparate physical process assumptions
associated with different models8–11. Scientists consider consen-
sus estimates along with uncertainties when interpreting CCPs.
Importantly, because GCMs are developed, calibrated, and

initialized using observations, any uncertainty in the observations
can affect the model-produced weather and climate projections.

Observational uncertainty affects the validation and evaluation of
model outputs, leading to incorrect model performance and
ranking12–16. Validations conducted using single observation-
based gridded datasets are subject to data uncertainty and
incorrect interpretation13. A few studies have discussed observa-
tional uncertainties at the regional scale, especially for Europe12,
the United States of America14, and India13,15,16. Using multiple
regional climate model simulations, Kotlarski et al.12 found
observational uncertainty comparable to model uncertainty for
many European countries, making the model results sensitive to
the observations used. In addition, GCMs developed by various
institutions share similar/same model physics and components,
which inevitably introduces some level of dependence across the
models5,9,10,17–20. In this study, observational uncertainty and
model uncertainty for a particular climate variable refer to,
respectively, uncertainty across multiple observations and that
across multiple models. In a pioneering study, Pennell and
Reichler9 found that only 8 of the 24 Coupled Model Inter-
comparison Project (CMIP) Phase-3 (CMIP3) models were inde-
pendent over the northern extratropics. Collins et al.5 suggested
this was due to the complexity of developing models from scratch.
Moreover, CMIP5 model dependency is higher than that of CMIP3,
being associated with similar initial conditions and numerical
schemes10 and similarities in physics packages, such as cumulus
parameterization16. Because such similarities in a group of models
lead to common biases, treating all models equally will likely bias
multimodel predictions18 and underestimate uncertainties11.
Leduc et al.20 also argued that any result that agrees across
multiple models of the same group may not be considered
reliable unless there is evidence that these models are indepen-
dent. Indeed, consensus estimates from weighted CMIP6 models
based on performance and dissimilarity indicate relatively reduced
future global warming with lower uncertainty than unweighted
CMIP6 models8. Nevertheless, model-developing centers with
many models in CMIP6 (even though they do not differ among
themselves by much) contribute more weight to the multimodel
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means;20 the combined model performance is also susceptible to
observational uncertainties. This suggests that implications of
observational uncertainty and model dependence must be
considered for reliable climate projections. In this case, selecting
the group of best models that is relatively more robust to the
observational uncertainty (i.e., the group of models that score an
acceptable rank against the different observations) makes the
result more reliable. A further criterion of running these best
models through a model independence test should enhance the
degree of confidence in climate projections.
Here, we quantify the uncertainties in multi-observations and

models and the dissimilarities among GCM simulations for the
historical period 1980–1999, for which multiple observations and
models are available. Three metrics were used to evaluate the
uncertainties, namely, the spatial mean bias, pattern correlation,
and interannual variability, which describe different aspects of
observational and model uncertainties. These metrics were
computed for temperature and precipitation.
We used CMIP6 datasets, along with those from CMIP5 and

CMIP3 datasets, to estimate contributions to intermodel similarity
(dissimilarity) that arise from modules common (distinct) to other
models in terms of physics or features, such as aerosol loading,
carbon cycle, ocean biogeochemistry, and resolution. We calcu-
lated the “effective” number of climate models after removing the
influence of model similarity—this exercise also showed that the
intermodel independence assumption was not valid. We then
investigated the impact of model similarity on the global and
regional future climate change estimates of socioeconomic
pathways (SSP) 5–8.5 for the period 2015–2100 against the mean
climate of 1980–2014 using three CMIP6 model sets: all models,
similar model pairs, and diverse models. We estimated the
observational and model uncertainties for historical simulations
and their implications. Assuming that these uncertainties persist in
the future, we conjectured similar implications from these
uncertainties when interpreting future CCPs.

RESULTS
Observation and model dataset uncertainty
Differences across various observational and reanalyzed datasets
introduce uncertainties when rating model performance13 and
thus influence the interpretations of multimodel evaluations and
model uncertainties. We intercompared annual and seasonal
climatological spatial distributions, pattern correlations, and
interannual variabilities to gauge the differences among the
seven observational rainfall and temperature datasets (Supple-
mentary Table 1). We used the Multi-Source Weather (MSWX)
datasets as a reference for both precipitation and temperature
because of (1) their high resolution and bias correction with
quality-controlled ground and satellite observations21 and (2) both
MSWX temperature and rainfall datasets exhibit high correlation
(>0.98) with the averages of all the observations (Supplementary
Table 2). We generated differences between the other observa-
tions and the MSWX datasets for the intercomparison. Hereafter,
unless described otherwise, “difference” means a difference (bias)
of an observational or a model dataset compared to the MSWX
dataset.
Figure 1a–f shows the differences among temperature and

precipitation observations on seasonal and annual timescales for
the global and 21 regional areas (see Table 1). Considerable inter-
observational differences are seen in the high-topographic, polar,
and desert areas for precipitation and temperature. In the case of
precipitation (Fig. 1a–c), the inter-observational spread for the
spatial mean difference ranges from −30 to 30%, the pattern
correlation ranges from 0.7 to 0.99, and the interannual variability
ranges from 0.7 to 1.5. The spread of these statistics is greater for
some regions, including Northern Europe, the Sahara, South and

North Asia, Tibet, Central America, and Greenland. In the case of
temperature (Fig. 1d–f), the inter-observational spread for spatial
mean difference, pattern correlation, and interannual variability
values are −1.5 °C–1 °C, 0.8–0.99, and 0.75–1.25, respectively.
However, the seasonal inter-observational spread is larger over
some of the regions. For example, the spatial mean difference
values vary by up to −3 °C over Alaska, Greenland, Tibet, and
North Asia; the pattern correlation values vary by 0.7 over Alaska,
Southern Africa, the Sahara, and Southeast Asia; and the
interannual variability values vary by 1.4 over Central America
and South Africa. From the perspective of observational density,
particularly in data-sparse regions, such as the Sahara and Tibet,
the Climate Prediction Center (CPC) and Global Precipitation
Climatology Project datasets show the largest differences in
precipitation. Notably, the spread was relatively high over the
relatively better-sampled region of South Asia for summer.
However, the CPC and National Centers for Environmental
Prediction datasets exhibit the largest differences in temperature,
mainly over data-sparse regions.
In addition to inter-observational differences, we estimated

intermodel differences with respect to the MSWX datasets
(Fig. 1g–l; see Supplementary Table 3 for the list of models). For
precipitation, the global and regional intermodel differences in
the spatial mean, pattern correlation, and interannual variability
vary from −30% to 60%, 0.5 to 0.99, and 0.5 to 2, respectively,
except for Southern Africa, the Sahara, Tibet, South and North
Asia, Alaska, Central America, and Australia, where this range is
higher for the summer and winter seasons. This indicated that a
large set of global climate models is also affected by poor
correlations with the observed data and overestimations of
interannual precipitation variability in several regions. More than
half of the CMIP6 models exhibit a predominantly wet bias. The
intermodel spatial mean bias, pattern correlation, and interannual
variability for temperature vary from −3 °C to 2 °C, 0.9 to 0.99, and
0.75 to 1.75, respectively. Further, the majority of CMIP6 models
overestimate the interannual temperature variability and exhibit a
cold bias, which is commensurate with the previously mentioned
wet bias. However, we must note that there are also a few models
that underestimate the interannual temperature variability and
exhibit a warm bias.
In principle, model uncertainty should be greater than the

observed uncertainty. Since the robustness of model performance
and intermodel performance differences are subject to uncer-
tainty across observational datasets (Supplementary Fig. 3), we
estimated observed-to-model uncertainty ratios (Fig. 2), as defined
in “Methods: Uncertainty intercomparison.” For precipitation, the
model uncertainties in spatial mean bias and interannual
variability are comparable to the observed uncertainties in all
CMIP vintages on a global scale (Fig. 2a). Specifically, for regions
such as Greenland, Alaska, Northern Europe, Tibet, North and
Central Asia, and Western North America for all CMIP vintages,
model uncertainties in spatial mean bias and those in interannual
variability are either comparable or lesser to the corresponding
observational uncertainties. In contrast, for the rest of the world,
model uncertainty dominates over the observed uncertainty
(Fig. 2a). For temperature, the model uncertainties for spatial
mean difference and interannual variability were greater than four
times at the global scale and two times for most regional areas,
compared to the observed uncertainty for all CMIP vintages
(Fig. 2b). However, the model uncertainties were only slightly
comparable to the observed uncertainties, specifically in the
interannual variability for South Africa, Central and Western North
America (Fig. 2b). Nonetheless, the model uncertainties in the case
of pattern correlations for temperature were comparable to
observed uncertainties globally and in most regional areas, with
the observed uncertainty being more predominant over Alaska,
Greenland, Tibet, Sahara, Mediterranean Basin, South, Southeast
and Central Asia, Western North America, and South Africa.
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Fig. 1 Inter-observation/model spread for the spatial mean bias, pattern correlation, and ratio of interannual variability. a–c For
observed precipitation, d–f for observed surface temperature, g–i for CMIP6 model simulated precipitation, and j–l for CMIP6 model simulated
surface temperature. The y-axis shows the inter-observation/model spread for global land and the 21 different regional areas. The gray circles
represent the annual mean values of corresponding observations/models. The red and blue lines represent the minimum to maximum of the
inter-observation/model spread for June–August and December–February seasonal means, respectively. The spatial mean bias for
precipitation and temperature is shown in percentage and degree Celsius, while the pattern correlation and the ratio of interannual variability
are unitless.
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Observed uncertainty, particularly when greater or comparable to
model uncertainty (Supplementary Figs. 4 and 5), is a matter of
grave concern13, as observational uncertainty contributes greatly
to the overall model performance uncertainty (see Supplementary
Fig. 3 in the Supplementary Material). In this context, it is
reasonable to ask whether these high uncertainty ratios are largely
due to intermodel similarity.

Model structure similarity
Figure 3 shows a dendrogram comprising CMIP6 and its ancestral
models, obtained by applying the hierarchal clustering on the

weighted pairwise distance of intermodel correlation22 for
temperature and precipitation, as discussed in the methodology.
Models under the lowest branches in Fig. 3 are most similar. As we
move up the tree, the similarity between the models, or groups of
models, progressively decreases. The farther the models or groups
of models are from each other, the more they are dissimilar.
Remarkably, the model pairings with high similarities (i.e.,
correlation >0.72) are those that had been developed at the
same institute, or they use the same model components/features
despite having been developed at different institutes (Fig. 3a). A
similar inference has been made for the CMIP3 and CMIP5
models5,9,10,17 (also see Fig. 3b). For example, the model pairs of
the CMCC-CM2-SR5 and CMCC-ESM2; CESM2-FV2 and CESM-
WACCM-FV2; and CanESM5 and CanESM5-CanOE, which were
developed at the same institute, are significantly similar (Fig. 3a);
so are the KACE-1-0-G and ACCESS-CM2; FIO-ESM-2-0 and
TaiESM1; and MPI-ESM-1-2-HAM and AWI-ESM-1-1-LR despite
having been developed at the different institutes (Fig. 3a). As
mentioned above, even when we move up the tree, the signatures
of similarity are still present. For instance, owing to the similarity
due to shared dynamics or/and physics, the four Max Plank
Institute for Meteorology (MPI-M) model variants appear as a
broad group under branch 22 (Fig. 3a). We also see in Fig. 3a
similar groups of of models derived from the same parent model,
such as the six Met Office Hadley Center (MOHC) model-
derivatives, the nine European Centers Consortium (EC-Cons)
models, and twelve National Center for Atmospheric Research
(NCAR) models.
Curiously, the Indian Institute of Tropical Meteorology (IITM)

model exhibits significant similarities with the EC-Cons models, as
evidenced by it being clustered in branch 20, despite having no
direct connection with them (Fig. 3a). This pairing is an obvious
exception, unlike all other models that fall into the same group,
owing to having the same or similar physics components/schemes
or same resolution, or have a common dominant component (e.g.,
atmospheric or oceanic general circulation model), etc.23,24 (see
Supplementary Table 4 for more details on the groups of CMIP6
models that share large portions of common components/
features). We speculate that the afore-discussed grouping of the
IITM model into the group dominated by the EC-Cons models
(Fig. 3) is probably a statistical artifact.
A similar analysis carried out with all vintages of CMIP models

highlights the contribution of the lineage of the model to the
similarity with its predecessors across the generations. For
example, all NCAR models across the vintages form a broad
group (Fig. 3b).

Fig. 2 Global and regional intercomparison of observed-to-model uncertainty ratio. a Annual mean precipitation and b surface
temperature. The observed-to-model uncertainty ratio is computed for CMIP3, CMIP5, and CMIP6 models for three different metrics, namely,
spatial mean bias, pattern correlation, and the ratio of interannual variability (from left to right in each CMIPs). The colored bars represent
different regional areas, and the gray star represents the global region. The ratio larger than 0.5 indicates that the observational uncertainty
significantly contributes to the model uncertainty at the 95% confidence level (shown in light-blue shading).

Table 1. List of 21 regional areas as defined in Giorgi and Francisco32.

Sr. No. Name Acronym Latitude (°) Longitude (°)

1. Australia AUS 45S-11S 110E-155E

2. Amazon Basin AMZ 20S-12N 82W-34W

3. Southern South
America

SSA 56S-20S 76W-40W

4. Central America CAM 10N-30N 116W-83W

5. Western North America WNA 30N-60N 130W-103W

6. Central North America CNA 30N-50N 103W-85W

7. Eastern North America ENA 25N-50N 85W-60W

8. Alaska ALA 60N-72N 170W-103W

9. Greenland GRL 50N-85N 103W-10W

10. Mediterranean Basin MED 30N-48N 10W-40E

11. Northern Europe NEU 48N-75N 10W-40E

12. Western Africa WAF 12S-18N 20W-22E

13. Eastern Africa EAF 12S-18N 22E-52E

14. Southern Africa SAF 35S-12S 10W-52E

15. Sahara SAH 18N-30N 20W-65E

16. Southeast Asia SEA 11S-20N 95E-155E

17. East Asia EAS 20N-50N 100E-145E

18. South Asia SAS 5N-30N 65E-100E

19. Central Asia CAS 30N-50N 40E-75E

20. Tibet TIB 30N-50N 75E-100E

21. North Asia NAS 50N-70N 40E-180E

The region name, acronyms, and the details of latitude and longitude. Only
land grid points are considered for the analysis.
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Fig. 3 Hierarchical clustering of different climate models on the global scale. a CMIP6 with 57 models and b CMIP6 with the previous two
CMIP vintages (i.e., CMIP3 and CMIP5) with 128 models. The models that merged with a high correlation value are highly similar and share a
lot of structural characteristics. A weighted pairwise distance algorithm was used for model clustering, where the distance between two
similar/dissimilar models was calculated as one minus pattern correlation (see Eq. 5). The values on the x-axis represent equivalent
correlations, interpreted as the level of model similarity/dissimilarity. Significantly similar models, indicated by gray shading, merged at
correlation (r>or ¼ 0:72) with a confidence level of 99%. Models with obvious code similarities or produced by the same institution/center are
marked in the same color. The significantly dissimilar models branch in CMIP6 models clustering are marked by the numbers (a).
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Sensitivity of model components to similarity
A few studies have hinted that shared atmospheric components
potentially contribute to the similarity of multimodel out-
puts5,10,17. This is likely due to the implementation of similar
atmospheric physics schemes, such as, for example, convective
parameterization, in many climate models. In fact, models may
have the same atmospheric or oceanic modules, which also can
be expected to contribute to the model similarity more
substantially. For instance, the two NCAR models—the CESM2-
FV2 and CESM2-WACCM-FV2 are the same, except that the latter
model includes a comprehensive chemistry mechanism with a
model top of 130 km, compared to a simplified chemistry module
with a top height of 40 km in the first model. This leads to a high
similarity score (i.e., low dissimilarity score) between them (Fig. 3a).
Note that the intermodel similarity may likewise arise from the
atmospheric or oceanic modules having the same resolution.
In this context, we carried out an exercise to quantify the

individual contributions to the intermodel similarity by different
typical shared components/features, such as convection, resolu-
tion, chemistry, etc. For this purpose, we identified pairs of
models, which only differ either in the use of a model component/
physics package or resolution (Supplementary Table 5). All other
features across the pair are the same and could even appear very
close to one another in Fig. 3a, b. In other words, one model of
each identified pair contains an additional component or modified
version of the same component. For example, in the pair of IPSL-
CM5A-LR and IPSL-CM5B-LR models, IPSL-CM5B-LR uses a set of
different physical parameterizations in the atmospheric compo-
nent compared to IPSL-CM5A-LR model, while all other features
remain the same (Fig. 3b). We then calculated the contribution
from this distinct component/feature to the dissimilarity as a
dissimilarity index, defined as the average of Dmod

i;j for all model
pairs (Eq. 6), where D is the distance (see “Methods: Model
dissimilarity”).
Out of all the 128 CMIP model outputs we analyzed (from all

three vintages; see Supplementary Table 3), we identified several
distinct pairs of models. These pairs and the distinctions are
detailed in Supplementary Table 5. Six model pairs (i.e., 12 models)
have different/modified ocean components. Thirteen model pairs

have different/modified atmospheric components (in terms of
convective parameterizations, cloud model, radiation schemes,
etc.). Three sets of four model pairs (i.e., 8 models) have different
aerosol treatments, ocean biogeochemistry, and oceanic horizon-
tal resolutions, respectively. Three model pairs have components
that differ only in resolution, and three model pairs have different/
modified atmospheric chemistry. Given such distinctions, we
expected that different/modified or additional components would
increase model dissimilarity, and a greater change in the
dissimilarity of a model due to different/modified or additional
components would indicate a greater contribution of that
component to model dissimilarity.
Figure 4 demonstrates the percentage contribution of adding a

component/feature in a model-to-model dissimilarity. The con-
tributions of atmospheric chemistry, ocean biogeochemistry, and
interactive aerosol to dissimilarity are, respectively, ~0.86%, 2.11%,
and 3.34% (Fig. 4). Furthermore, adding atmospheric chemistry
and oceanic biogeochemistry together contributed to model
dissimilarity by 4.24%; however, this was not a simple linear
combination of individual model contributions. These contribu-
tions to dissimilarity are relatively less than those arising from
distinct atmospheric and/or ocean modules and resolution. For
example, the dissimilarity index associated with a modified or
different ocean component is a relatively high 6.49%. Further-
more, doubling horizontal ocean resolution results in an additional
increase of 4.24%. Likewise, adding a modified/distinct atmo-
spheric component to a model increases its dissimilarity by an
average of 13.94%. The dissimilarity associated with atmospheric
modification ranges from a relatively low 2.54% due to increasing
vertical atmospheric levels to a very high 28.06% related to major
parameterization distinctions (Fig. 4). Doubling the horizontal
resolution of the atmospheric model contributed to dissimilarity
by an average of 11.93%, ranging from 7.54 to 17.02% across three
pairs (Fig. 4). Apparently, having distinct atmospheric components
and/or resolution introduces relatively higher intermodel dissim-
ilarity compared to atmospheric chemistry or ocean modules. By
analogy, having the same atmospheric components and/or
resolution can be expected to add to the intermodel similarity
equally. As a result, any modest changes in the features of the
atmospheric component of a GCM may enhance their dissimilarity
level.

Effect of similarity on the assumption of intermodel
independence
Given the dependencies associated with model code/component
sharing, we quantified the statistical independence of the various
models, as discussed in “Results: Sensitivity of model components
to similarity.” This was estimated by computing the effective
number of “independent” climate models Meff compared to the
actual number of models considered (M) using Eq. 7. As each CMIP
group contained multiple models, we also note that Meff would
change based on M. In this context, we estimated the sensitivity of
Meff to changes in M. Figure 5 shows the variation of Meff with
respect to M. The Meff is 10.7 for CMIP3 but 11 for both CMIP5 and
CMIP6, which is surprising given the tremendous improvements
and developments in CMIP6 models. Similar Meff statistics were
obtained regionally (figure not shown). While approximately 55%
of the CMIP3 models were similar, this number increased to 76%
for CMIP5 models and 80% for CMIP6 models, indicating a decline
in dissimilar CMIP models. Figure 5 also shows a concave-shaped
evolution of Meff with respect to M, indicating that the
contribution of a model to effective models decreases asympto-
tically as the model number, over which the averages were
obtained, increases. This indicates that information from the
additional model to the multimodel ensemble overlapped with
prior models, reducing the number of effective climate models
due to lesser and lesser new information9. For example, although

Fig. 4 Dissimilarity contribution by model component. The
vertical bar indicates the mean dissimilarity contribution of a
particular model component, and the vertical line shows the
minimum to maximum dissimilarity range. The number of model
pair sets used for a component is shown in red. The dissimilarity
contribution was obtained by adding a component in a model to its
predecessor/parent model or modifying it with respect to its
predecessor/parent model.
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we upscaled from a 50-model ensemble mean to a 55-model
ensemble mean, the effective model size only increased by 0.2.
However, increasing the number of models from 15 to 20
considerably increased the Meff by 1.
We repeated the computation of Meff using select sets of CMIP6

models to quantify the sensitivity of the Meff to the similarity
effect. This was conducted using two ensembles: one for all similar
model pairs from three source groups, accounting to 21 models
(hereafter referred to as 21CMIP6, with eight models from the
NCAR group, six models from MOHC, and seven models from the
EC-Cons group) (Supplementary Table 4). In contrast, the other
model ensemble is for all dissimilar model pairs, accounting to 23
models (hereafter referred to as 23CMIP6, with only one parent
model from a pair/group of similar models; see Fig. 3a/
Supplementary Table 4). The Meff increased rapidly with an
increase in dissimilar models up to M 15 (Fig. 5), but the rate of
increase flattened beyond this for further increases of M. This was
because these models also had some similarities to other models
even though they form distinct pairs with them. Meff decreased
more rapidly with increasing numbers of similar models in the
ensemble (Fig. 5). If one of the models was removed from the
same-source model pairs (e.g., models from NCAR or MOHC), there
was only a marginal increase in Meff. The effected model similarity
became increasingly problematic as shoot-off models with large
duplications increased. The resultant reduction in Meff greatly
discredited the assumption of model independence.

Similarity effects on climate change estimates
The Meff for the projection period 2015–2021 under SSP5–8.5 is
the same as that for the corresponding historical period
(1980–1999) (Fig. 5). However, this low Meff may change in far-
future simulations if model components become distinct or if
models with common components, as seen in CMIP6 vintage

models, behave dissimilarly due to increased forcings10,13. This
would also be associated with changes in physical processes due
to changes in mean climate (e.g., shifting from a cumulus
convection regime to a large-scale rain regime). However, in the
near future, we expect future climate simulations to retain model
similarities.
For this analysis, we used 37 of 57 CMIP6 models that had

future surface temperature and precipitation projections for both
SSP5–8.5 and SSP1-2.6 scenarios (see Supplementary Table 4 for
the list of 37 CMIP6 models). We analyzed multimodel mean
temperature and rainfall averages from two model sets: one from
23CMIP6 and the other from all 37 models (hereafter referred to as
37CMIP6). Relative to the 37CMIP6, the 23CMIP6 showed lesser
changes in mean temperature and precipitation by the end of the
21st century when compared to the current climate of 1980–2014
(Fig. 6a–d). Specifically, while the mean projections of 37CMIP6
indicate a 4.5 °C rise in temperature and a 7.5% increase in
precipitation, the 23CMIP6 mean shows 0.25 °C less warming and
0.75% less precipitation by the end of the 21st century. For the
SSP1–2.6 projections, 23CMIP6 shows ~0.2 °C less warming and
~0.4% less precipitation relative to the corresponding 37CMIP6,
for which the corresponding values are 1.25 °C for temperature
and 2.25% for precipitation (figure not supplied).
Further, to highlight contributions from similar models, we also

showed the multimodel averages of climate variables from
21CMIP6. This allows us to unravel how model selection with
similar models influences climate change estimates even when
the number of sampled models is large. We found that the
projected mean temperature and precipitation increase, respec-
tively, by ~0.5 °C ~1% by the end of the 21st century. These
projected changes by the 21CMIP6 models are much higher than
those projected by the dissimilar models. Among these models,
most of the MOHC models particularly exhibited larger changes
compared to 37CMIP6 and dominated the results of 21CMIP6 and,
thereby, 37CMIP6 (Fig. 6b, d).
Understandably, there is also a modest reduction in uncertainty

in 21CMIP6 relative to 37CMIP6, and more so relative to the
23CMIP6 models because the 21CMIP6 models contain mostly
similar models (Fig. 6a, c). In particular, the high similarity in the
climate variables from the EC-Cons group greatly reduced
uncertainty compared to the other groups. These results indicate
that having such a high number of similar models reduces the
intermodel uncertainty of a larger model group, such as 21CMIP6
or 37CMIP6, and skews the mean estimates toward the dominant
subgroup of models. Critically, the intermodel uncertainty across
23CMIP6, the set of dissimilar models, increases over time.
Similarly, on a regional scale, the 23CMIP6, compared to the

mean change of 37CMIP6, showed smaller changes in mean
surface temperature and precipitation over Central America, Tibet,
Australia, South and North Asia, Southern Africa, and the Sahara
(0.2 °C–0.7 °C for temperature and 2–5% for precipitation), except
for larger changes in precipitation over East Asia and western
Africa in the far future (2081–2100) (Fig. 7a, b). The relatively larger
multimodel mean surface temperature and precipitation in the far
future for most regions projected by the 37CMIP models relative
to the 23CMIP6 models are mainly due to the corresponding
higher contributions from the 21CMIP6 models to the 37CMIP6
models. To be more specific, the multimodel mean temperature
and precipitation from the 21CMIP6 models are higher than those
of the 37CMIP6 by 0.2–0.8 °C (Fig. 7a) and 2–4% (Fig. 7b),
respectively. This is a clear example of how the common biases in
a group of similar models can also bias the projections from a
larger ensemble of models containing this group of models.
Interestingly, most of these regions have also been reported as
hotspots of concern due to observational uncertainty as well (see
“Results: Observation and model dataset uncertainty”). The wide
uncertainty for 23CMIP6 and the somewhat smaller uncertainty for

Fig. 5 Sensitivity of the number of effective climate models (Meff)
to changes in actual climate models (M) at the global scale. The
solid black line represents the Meff averages over precipitation and
temperature and over seasons for the CMIP6 models from 1980 to
1999, with the gray shaded area representing 95% confidence
intervals. The thick dotted black line represents the Meff averages
over precipitation and temperature over seasons for the CMIP6
models from 2015 to 2021 under SSP5–8.6. The dashed gray lines
represent the Meff for CMIP6 precipitation and temperature across
the four seasons. The thick red and dashed red lines represent the
Meff of most dissimilar CMIP6 models and ensembles of models from
either the same institute or from a different institute that largely
shared the model components, respectively. The solid pink and
purple lines represent the Meff values averages over precipitation
and temperature over seasons for CMIP5 and CMIP3 models,
respectively. The straight green line represents Meff ¼ M.
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21CMIP6 could also be seen in most regional areas, as expected
from the analysis of Meff (Fig. 5).

DISCUSSION
This study aims to unravel the effects of model and observational
data uncertainty and those of intermodel similarity on current
climate simulations and future climate projections of temperature
and precipitation. We used seven gridded observations/reanalysis
datasets and historical and projection datasets of 128 GCMs from
CMIP6, CMIP5, and CMIP3 vintages. Our analysis suggests that
while the seasonal climatological mean values from seven
observational datasets agreed with one another when averaged
globally, they showed localized differences. These differences
translate into differences in GCM performance scores. In particular,
the high-topographic, polar, and desert areas exhibit large
seasonal temperature and precipitation differences. On the
regional scale, the largest differences in temperature observations
are seen over Tibet, North and South Asia, Central America, Alaska,

and Greenland, and precipitation observations for Tibet, North and
South Asia, the Sahara, Northern Europe, and Greenland. Although
most of the regions where the uncertainties are high are,
expectedly, observation-sparse regions, observational uncertain-
ties are also prominent in relatively well-sampled regions, such as
South Asia, in terms of summer rainfall.
Our results indicate that the uncertainty associated with the

choice of gridded observational temperature datasets is, in
general, smaller than that associated with the uncertainty across
the models. Unfortunately, unlike for the temperature, the
influence of observational uncertainty across the observed
precipitation datasets is seen to be large, both in terms of spatial
mean as well as the interannual variability. The choice of gridded
observational datasets becomes important globally, with the
greatest impact over Greenland, Alaska, Northern Europe, Tibet,
and North, South and Central Asia. These results suggest that
temperature projections from all CMIP vintages are more reliable
than corresponding projected rainfall. This means that the
currently available multiple temperature observations are

Fig. 6 Projected future changes in global temperature and precipitation relative to the current climate of 1980–2014 under SSP5–8.5.
The time-series and box-whisker plots for a, b surface temperature and c, d precipitation. The time-series and box-whisker plots in black color
indicate the mean values of 37CMIP6 models. The time-series and box-whisker plots in red and blue color indicate the mean values of
21CMIP6 (i.e., all common model pairs belonging to three major groups (MOHC: Met Office Hadley Center, NCAR: National Center for
Atmospheric Research, and EC-Cons: European Center Consortium)) and 23CMIP6 models (i.e., all dissimilar models), respectively. The
uncertainty in climate change projections from 37CMIP6, 21CMIP6, and 23CMIP6 is reflected by one standard deviation of the intermodel
spread in black, red, and blue shadings. The box-whisker plots are plotted for three different projection periods, namely, the near-future
(2021–2050), mid-future (2051–2080), and far-future (2081–2100), and indicate means and uncertainties for the respective periods. The
individual model projected values are shown by gray circles in the box-whisker plots. The numbers before CMIP6/model groups in the plot
indicate the total number of models used for computation.
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acceptable for evaluating and validating model statistics, such as
simulated mean temperature or its variability when they are
within the limit of observational uncertainty.
Importantly, from an exhaustive analysis of commonality in

various model components, we found that the intermodel
similarity increased from CMIP3 to CMIP6. The similarity increased
from 55% in 24 CMIP3 through ~76% in 47 CMIP5, reaching a high
of 80% in 57 CMIP6 models. While we found 10.7 effective (that is,
independent) climate models in the case of CMIP3, the
corresponding effective model number for CMIP5 is a marginally
higher 11 and remains the same even that for the CMIP6 models.
The disparity between the number of effective climate models and
the number of actual models, particularly in the case of CMIP6, is
due to the high degree of similarity in the contributory models.
Most of the similarity is because such models are developed at the
same institute or originate from the same predecessor and have
many common dynamics and physical parameterizations. Among
the current climate model modules, the highest to lowest
contributors to the model similarity are the atmospheric, oceanic,
aerosol, ocean biogeochemistry, and atmospheric chemistry
components. However, the high similarity among CMIP6 models
relative to CMIP3 models does not mean that the CMIP6
projections are of no additional importance, as these have better
physics and resolutions and, consequently, better climate
statistics.
The area-averaged annual temperature and rainfall from the

ensemble of all CMIP6 models are projected to increase by 4.5 °C
and 91.3 mm (i.e., a 7.5% increase), respectively, by the end of the
21st century under the SSP8.5 scenario, while the dissimilar
models suggest projected increases of 4.25 °C in temperature and
84mm (i.e., 6.75%) in precipitation. On the regional scale, the
dissimilar models showed far less increases of 0.2–0.8 °C in
temperature and 2–5% in precipitation relative to the ensemble
of all models. The disparity in the results of the dissimilar models

relative to those from all models can also be seen in other climate
change scenarios, such as SSP1-2.6. These results have implica-
tions for the development of future models. In fact, these results
call for a multi-institutional collaboration, which should be more
focused, coordinated, and targeted to address the similarity
sources. Such a carefully designed multi-institutional collaboration
would enable to synthesize the available physics packages and
dynamics configurations, introduce diverse combinations based
on the existing packages, and, most importantly, design physics
packages based on ever-increasing observational in-situ and
remotely sensed datasets, particularly those from modern
campaigns that are ongoing around the globe. Increased
intermodel diversity should provide more reliable intermodel
uncertainty, which is currently underestimated due to model
similarity. In this context, prioritizing the critical model compo-
nents identified in this work will pave the way for developing
advanced model projections with higher reliability. Finally, our
results on model similarity have practical implications for
application scientists and policymakers who use multimodel
outputs for adaptation planning.

METHODS
Data
We used historical precipitation and surface temperature data
from 24 CMIP3, 47 CMIP5, and 57 CMIP6 models (Supplementary
Table 3) and CMIP6 projection data from the business-as-usual
climate change scenario (SSP5–8.5). Most CMIP6 models are
updated/improved versions of their predecessors in terms of
parameterization, resolution, earth system components, coupling,
and tuning3,25. The outputs of these climate models were
downloaded from the website https://data.ceda.ac.uk/badc, pro-
vided by the Center for Environmental Data Analysis of the
National Center for Atmospheric Science, United Kingdom.

Fig. 7 Regional precipitation and temperature change in the far future (2081–2100) relative to the current climate of 1980–2014 under
SSP5-8.5. Changes in global and regional mean a surface temperature and b precipitation for 37CMIP6 (black), 21CMIP6 (red), and 23CMIP6
(blue) models. The uncertainty in projected far-future climate change estimates for surface temperature and precipitation are reflected by one
standard deviation of the intermodel spread in the horizontal line for respective regions. The regional areas in the figure are arranged in
ascending order of increasing mean surface temperature change from 37CMIP6 models.
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The observed surface temperatures were taken from the Global
Historical Climatology Network, National Oceanic and Atmo-
spheric Administration, University of Delaware (UoDel), Climate
Research Unit (CRU), National Centers for Environmental Predic-
tion (NCEP), Climate Prediction Center (CPC), and Multi-Source
Weather (MSWX) databases. Although the NCEP and MSWX
datasets are essentially reanalysis products, they are commonly
used as proxies for observations; therefore, in this study, they were
deemed observations when evaluating observational and model
uncertainties (e.g., refs. 15,21). The precipitation datasets we
analyzed included the Global Precipitation Climatology Center,
Global Precipitation Climatology Project (GPCP), UoDel, CPC, CPC
Merged Analysis of Precipitation, CRU, and MSWX datasets. Details
of the observations are presented in the Supplementary Materials
(Supplementary Table 1). All these observational datasets were
downloaded from the website https://psl.noaa.gov/data/gridded/
index.html, provided by the Physical Science Laboratory of the
National Oceanic and Atmospheric Administration, United States
of America.
Notably, we only used surface temperature and precipitation, as

these variables have been found to be sufficient for model
genealogy investigations (e.g., refs. 10,17). The model outputs and
observational datasets were bilinearly interpolated to a horizontal
resolution of one degree (e.g., refs. 26,27).

Uncertainty intercomparison
We used three performance-based metrics, spatial mean bias,
pattern correlation, and the ratio of interannual variability, to
compare observational and model uncertainties both globally and
regionally over the 21 different regions (see Table 1). The reasons
for selecting these three metrics are as follows: the spatial mean
bias provides an estimate of how accurate the values from one
dataset/model are in comparison to the actual values, while the
pattern correlation indicates the degree to which the spatial
patterns of two different datasets are structurally similar/dissimilar.
In contrast, the ratio of interannual variability indicates how well
the interannual variations of one dataset/model are compared to
the actual variations, which is important for comprehending the
severity of past and future climate events. These metrics were
calculated for each model m, variable q, season k, and region r
against each observation c. For each model with a total of N grid
points, we defined on and yn as monthly observational and climate
model data at grid point n in region r. Furthermore, in the
following, an overbar indicates the temporal mean across all time
steps for a season k in the study period, while two overbars reflect
the temporal mean across all time steps in a year that falls into
season k and spatial means.
Spatial mean performance (PS) was evaluated by averaging the

climatological bias (e) between a model simulation and an
observation over all grid points as follows:

eq;kn;m;c;r ¼ yq;kn;m;r � oq;kn;c;r

� �
(1)

Pq;k;m;c;r
S ¼

XN
n¼1

eq;kn;m;c;r (2a)

Spatial pattern similarity performance (PR) was assessed using
pattern correlation, which, for clarity, was expressed by dropping
the indices q, k, m, c, r as follows:

PR ¼ cov yn; onð Þ
σ ynð Þσ onð Þ ; n ¼ 1¼ :N (2b)

where cov and σ denote spatial covariance and standard
deviation, respectively.
Interannual variability performance (Pσ) was evaluated using the

ratio of the standard deviation of a yearly varying model

simulation and observation as follows:

Pσ ¼ σ y
� �

σ o
� � (2c)

Further, to diagnose the relationship between the influence of
the choice of reference data on the observational uncertainty and
the influence of the choice of a GCM on the model uncertainty,
these were quantified using the methodology suggested by
Kotlarski et al.12. Briefly, observational uncertainty was defined as
the mean standard deviation of the metric values when a GCM
was compared to all seven reference datasets as follows:

Uobs ¼
PM

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6

P7
c¼1 Pm;c � 1

7

P7
c¼1Pm;c

� �2q

M
(3a)

where M is 57 for CMIP6, 47 for CMIP5, and 24 for CMIP3, and Pm,c

is the value of a performance metric for a given variable, season,
and region when using the reference dataset c (c 2 f1; 2; 3; ¼ 7g
for evaluating GCM m (m 2 f1; 2; ¼ :Mg. Note that whenever we
averaged correlations, we first took the mean over Fisher’s z
transformed correlation coefficients and then computed their
inverses to derive an average correlation (see Supplementary
Methods).
Furthermore, when calculating model uncertainty, 150 (M7)

GCM realizations were created for each CMIP vintage using the
bootstrapping without replacement method to ensure consis-
tency with several observational references. Because these
realization numbers were deemed sufficient, increasing them
had no discernible effect on the uncertainty calculation (Supple-
mentary Fig. 2). The model uncertainty was thus defined as the
mean standard deviation of the metric values when all 150
member realizations were compared to a particular reference
dataset as follows:

Umod ¼

P7
c¼1

1
150

P150
nr¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6

P
m2Snr Pm;c � 1

7

P
m2SnPm;c

� �2r !

7

(3b)

In this case, the ratio of the observed to the model uncertainty
defined the robustness of the evaluation, and a ratio greater than
0.5 (i.e., a model uncertainty within two standard deviations of
observations) indicated that observational uncertainty signifi-
cantly contributed to the overall evaluation uncertainty as follows:

R ¼ Uobs

Umod
(3c)

Model dissimilarity
We used independent spatial patterns to assess model dissim-
ilarity28. As the models with common physics module(s) and codes
may have had similar error patterns, a symmetric correlation
matrix (S) was created using spatially varying error structures
(Eq. 1). As the amounts of precipitation and their variability were
higher over the tropics compared to other regions29, we normal-
ized these errors using the observed interannual standard
deviation (σ) at each grid point for each variable, season, and
model (Supplementary Fig. 6a, b) as follows:

e0 ¼ e=σo (4a)

Individual climate models also have common errors (Supple-
mentary Fig. 6c, d) because of unresolved physical processes or/
and topography30. Importantly, there was a high and statistically
significant correlation (~0.72) between individual model errors
and the multimodel mean error (MME or e ¼PM

m¼1e
0) across all

fields, indicating a shared systematic bias (Supplementary Fig. 1).
Model similarity due to shared conceptual frameworks and codes,
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by definition, means that the error patterns of variable q of model
m should be related to the error in the corresponding q patterns
of the other model. Thus, the MME-associated error pattern of a
model can be obtained as the correlation coefficient rðe0; eÞ
between e0 and e. The MME-independent portion of the models, in
a linear sense, was determined by subtracting their MME-
associated error patterns (Supplementary Fig. 6e, f) as follows:

d ¼ e0� � rðe0; eÞ ´ e� (4b)

Where * denotes the standardization, which ensures all data fields
have uniform scales before they are used in Eq. 4b.
In Eq. 4b, the MME pattern e� and the model error pattern d are

unrelated. The correlation between the two models (Si;j) for any
variable and season was given as follows:

Si;j ¼ r di ; dj
� �

(5)

The zero average correlation between model pairs showed that
removing the MME signal from a model reduced its combined
influence associated with unresolved physical processes or/and
topography (Supplementary Fig. 1). The spatial error patterns in
the annual precipitation simulated by the GFDL-ESM4 model with
and without the MME-associated component are shown in
Supplementary Fig. 6c, e, and those simulated by the MCM-UA-1
model are shown in Supplementary Fig. 6d, f, respectively. Si;j
were then converted into a distance metric, Di;j ¼ 1� Si;j , which
with a smaller (larger) value of Di;j (Si;j) indicate high similarity
between the two models and vice versa for dissimilar models.
Further, the Di;j computed over all model pairs form a symmetric
M × M matrix D. The matrix D is then used to rearrange the
models in a hierarchical structure by applying the weighted
pairwise algorithm on matrix D. The detailed description of
applying the weighted pairwise algorithm for hierarchical cluster-
ing of datasets can be found in Sokal et al.22.
The effect of GCM modification (i.e., modifications of parame-

trizations, resolution, and addition of a model component) on
intermodel similarity was estimated as follows:

Dmod
i;j ¼

XM

k¼1;k≠i;k≠j

ðDi;k � Dj;kÞ
Dj;k

´ 100 (6)

Finally, the effective number of climate models, Meff, following
Pennell and Reichler9, was calculated using eigenvalues of
correlation matrix28 S as follows:

Meff ¼
Pi¼M

i¼1 λi
� �2
PM

i¼1λ
2
i

(7)

where λi represents the ith eigenvalues of matrix S, Meff varies
between one and M, and Meff ¼ 1 Mð Þ indicates that all model
error structures are identical (independent).

Statistical analysis
We used a one-tailed 99% confidence limit (i.e., r ≥ 0.72) to
indicate significantly similar model pairings. This was done under
the assumption that intermodel correlations (i.e., matrix S from
Eq. 5) follow a Gaussian distribution, and the mean of all averaged
intermodel correlations is zero (Supplementary Fig. 1).
In addition, in the case of computing Meff irrespective of the

choice of models, we used the bootstrapping resampling without
replacement method31 to generate 150 samples of randomly
chosen models. The number of models in each sample ranged
from 3 to 24 for CMIP3, 3 to 47 for CMIP5, and 3 to 57 for CMIP6.
Increasing the sample numbers beyond 150 had no further
discernible effect on Meff and were, therefore, 150 samples
considered to be sufficient for Meff analysis (Supplementary
Fig. 2). The interval between the 2.5 and 97.5% levels of the 150

bootstrapped samples was used to calculate the 95% confidence
interval of the Meff over model M.
Furthermore, the effect of observational uncertainty on model

uncertainty was significant at the 95% confidence level when the
model uncertainty was either lower than or equal to two times
that of the observed uncertainty (i.e., the ratio of observational
uncertainty to model uncertainty was larger than 0.5).
The significant levels of errors in both the multimodel mean and

individual models were tested using the two-tailed Student’s t-test
(Supplementary Fig. 6). The independent sample size (Neqv) in a
time series of length N (i.e., 20), used in the analysis of the two-
tailed Student’s t-test, was calculated as a lag-one autocorrelation
(r1) at the 95% significance level (see Eq. 8) as follows:

Neqv ¼ N � ð1� r1
1þ r1

Þ (8)
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