
ARTICLE OPEN

Observed decreasing trend in the upper-tropospheric cloud top
temperature
Huan Liu 1, Ilan Koren 1✉ and Orit Altaratz 1

Obtaining the response of cloud top temperature (CTT) to global warming correctly is crucial for understanding the current and
future energy budget of the climate system. For a given cloud fraction, colder CTT implies more longwave radiation being capped
within the Earth-atmosphere system, consequently heating it. Current climate models predict an almost fixed CTT for upper-
tropospheric clouds as the climate is expected to warm up during the 21st century, as explained by the fixed anvil temperature
hypothesis. However, our analysis, based on the last 19 years of satellite observations (12.2002–11.2021), reveals a significant
decreasing trend in upper-tropospheric CTT with almost no change in the corresponding cloud fraction. This cooling rate is several
times larger than the observed surface warming rate. This finding suggests a missing heating component by upper-tropospheric
clouds in current climate predictions.
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INTRODUCTION
Cloud top temperature (CTT) is a major climatic factor that,
together with the cloud fraction (CF), determines, to a large
extent, the thermal emission of the Earth-atmosphere system1.
Less longwave radiation escapes into space with colder CTT,
leading to more energy being trapped within the atmosphere,
hence heating it. A decreasing trend in CTT following global
warming indicates additional heating of the climate system, i.e.,
positive feedback2. Therefore, information about changes in CTT is
crucial for climate prediction. Numerous studies were dedicated to
exploring clouds’ response to a warmer climate. Among them,
current climate models suggest an almost fixed or slightly
increased top temperature of upper-tropospheric clouds2–4, as
explained by the fixed anvil temperature (FAT) hypothesis5 and
the proportionally higher anvil temperature (PHAT) hypothesis6.
This prediction has been identified as highly confident in the latest
Intergovernmental Panel on Climate Change Assessment Report
(AR6) and has become well-accepted2.
The FAT hypothesis suggests that the temperature of tropical

anvils will not change under climate warming5. The physics
behind this hypothesis is based on the principles of the
tropospheric energy balance, the Clausius-Clapeyron relation,
and mass continuity7. To elaborate, clear-sky radiative cooling,
attributed mainly to longwave emission by water vapor, is
balanced by adiabatic heating through subsidence5,7. The
Clausius-Clapeyron equation relates the amount of water vapor,
and hence the tropospheric cooling with height, to the
temperature7,8. Above a certain level in the troposphere, where
the temperature is too cold to contain optically thick amounts of
water vapor, the cooling, and accompanying subsidence become
inefficient sharply (and hence weaker), leading to a strong clear-
sky convergence at this level5,7. Due to mass continuity, the strong
convergence is balanced by a strong cloudy-sky divergence.
Therefore, the anvils and cirrus clouds associated with it are
expected to form primarily at this isotherm level, independent of
surface warming5. The FAT hypothesis was later expanded to the
whole globe by demonstrating that the extratropical atmosphere
is controlled by similar fundamental physics9.

Although the FAT hypothesis includes a long chain of
assumptions, its general idea is supported by simulations of
cloud-resolving models, e.g., ref. 10, and observations focusing on
inter-annual variations (e.g., the El Niño–Southern Oscillation,
ENSO)11,12. These studies agree with the constraint of radiative
cooling on anvils’ temperature and show its negligible response to
surface warming9–14. Following this understanding, the FAT
hypothesis was refined to the PHAT hypothesis to explain the
positive longwave cloud feedback predicted by most of the global
climate models (GCMs)6. The PHAT hypothesis suggests a slightly
increased upper-tropospheric CTT in a warmer climate by taking
into account the stronger static stability at higher levels of the
upper troposphere (i.e., the stronger the static stability, the weaker
the subsidence required to maintain energy balance)6. However,
there are also simulations7 and short-term observations (months
to years)15–18 indicating non-negligible changes in anvil tempera-
ture with respect to the changes in surface temperature.
Additionally, global warming has led to other substantial global
changes besides the surface temperature, such as humidity19.
Direct, long-term observational evidence supporting the FAT or
PHAT hypotheses, or disproving them, is still missing20,21.
Here, to explore the trend in upper-tropospheric CTT, we

performed a detailed, almost global (60° S–60° N) analysis on 19
years of daily measurements (12.2002–11.2021) by the MODerate
Resolution Imaging Spectroradiometer (MODIS)22,23 aboard Aqua
satellite24; MYD08-D3 (Collection 6.1), hereafter MYD08-D3-C6.125

(see Data in the Methods section for details). We used this product
since it is well-calibrated, and the satellite did not drift during the
analysis period26. Additionally, single-sensor data avoids disconti-
nuities that may arise when combining datasets from different
sources and time periods27.

RESULTS
Climatology of upper-tropospheric clouds
We start by examining the favorable locations of upper-
tropospheric clouds around the globe and their mean CTT. Their
mean CF is presented on a global map in Fig. 1a. This subset of

1Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel. ✉email: ilan.koren@weizmann.ac.il

www.nature.com/npjclimatsci

Published in partnership with CECCR at King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00465-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00465-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00465-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00465-5&domain=pdf
http://orcid.org/0000-0001-8151-4668
http://orcid.org/0000-0001-8151-4668
http://orcid.org/0000-0001-8151-4668
http://orcid.org/0000-0001-8151-4668
http://orcid.org/0000-0001-8151-4668
http://orcid.org/0000-0001-6759-6265
http://orcid.org/0000-0001-6759-6265
http://orcid.org/0000-0001-6759-6265
http://orcid.org/0000-0001-6759-6265
http://orcid.org/0000-0001-6759-6265
http://orcid.org/0000-0002-7923-9000
http://orcid.org/0000-0002-7923-9000
http://orcid.org/0000-0002-7923-9000
http://orcid.org/0000-0002-7923-9000
http://orcid.org/0000-0002-7923-9000
https://doi.org/10.1038/s41612-023-00465-5
mailto:ilan.koren@weizmann.ac.il
www.nature.com/npjclimatsci


clouds is determined using daily measurements of maximal cloud
top pressure (CTP-Max ≤ 450 hPa, see Cloud and Domain Classi-
fication in the Methods section for details). Greenish to yellowish
colors mark areas with a relatively large CF of upper-tropospheric
clouds (>20%), indicating regions with favorable conditions for
deep or high cloud formation. Figure 1b presents a global map of
the mean upper-tropospheric CTT, exhibiting clear zonal patterns
that are consistent with the known areas of deep convection28

and extratropical cyclones29.
Previous studies suggested clear land-ocean contrast in atmo-

spheric warming rate and in changes in low-level humidity and CF
during recent decades19,30. Consequently, we separated the
analysis into three domains; Dglobal (60° S–60° N), Docean (oceans
over 60° S–60° N), and Dland (continents over 60° S–60° N); see
Cloud and Domain Classification in the Methods section. The area
covered by upper-tropospheric clouds as a function of their CTT
over the whole study period is presented in Fig. 2a–c by gray bars
(right y-axis). The corresponding distribution points to a maximal
CTT of approximately −20 °C and a mode at approximately –50 °C
(marked by magenta lines). It indicates that the subset of analyzed
clouds is composed of ice-top clouds reaching the upper part of
the troposphere.

Decreasing trend in upper-tropospheric CTT
To demonstrate how the upper-tropospheric CTT changes with
time, the normalized distributions representing the first and last 6
years of data are displayed on top of the overall ones (blue and red
lines in Fig. 2a–c, left y-axis). In addition, we present the differences
in these normalized distributions (last-6 years minus first-6 years,
Fig. 2d–f) to highlight the change in upper-tropospheric CTT and
avoid potential biases from changing CF and the observing system’s
performance. The increased normalized frequencies of CTT colder
than approximately –65 °C and the decreased normalized frequency
of CTT warmer than about –50 °C are consistent over all domains,
indicating a shift of the overall upper-tropospheric cloud tops to
colder temperatures. For CTT ranging between –50 and –65 °C, the
land results suggest a larger normalized frequency in the last years

(positive differences in Fig. 2f), while the oceanic results indicate a
smaller one (negative differences in Fig. 2e).
The anomaly of normalized yearly area distributions for upper-

tropospheric CTT (deviation from the 19-year mean; Fig. 2g–i)
provides further details about the mentioned shift. Although the
inter-annual variations are not negligible, we see a clear
separation between the cyanish (representing the first years of
data) and reddish (the last years) curves in the warmest and
coldest CTT bins. This is especially prominent over land (Fig. 2i).
The middle-top clouds with moderate CTT values show a mix of
cyanish and reddish curves, indicating a considerable inter-annual
variability most likely driven by short-term climate perturbations
rather than long-term climate change. Overall, these results
support a robust shift in upper-tropospheric clouds toward colder
top temperatures throughout the study period.
For specifying the trend of climate warming, we analyze the

evolution of the surface temperature, using atmospheric reana-
lysis data of Skin Temperature (ST, see Data in the Methods
section for details). Figure 3a–c presents the time series of
monthly ST anomalies (deviation from the 19-year mean of each
month) averaged over the 3 domains (area-weighted; note the
different ST scales). The most significant structural feature of these
ST anomaly series, especially for the oceanic results (Fig. 3b), is the
strong correlation with the Oceanic Niño Index (ONI, black lines,
see ONI in the Methods section for details).
The ONI value is a common measure for the ENSO state31.

Persistent large positive ONI-values indicate a warm phase of
ENSO, i.e., El Niño, characterized by an unusual warming of the
central and eastern tropical Pacific Ocean surface32. In contrast,
persistent large negative ONI-values indicate the cold phase of
ENSO, i.e., La Niña, the cooling counterpart of El Niño. As
previously demonstrated, the ENSO is a dominant mode of climate
variability on seasonal-to-interannual time scales, affecting the
climate over a significant portion of the globe33. It propagates
beyond the Pacific Ocean through atmospheric teleconnections34

and influences temperatures and clouds globally35–37. The strong
correlation between the ST anomaly series and the ONI series, as
revealed in Fig. 3a–c is consistent with previous studies35,36,

Fig. 1 Maps of CF and CTT mean values for upper-tropospheric clouds, calculated using daily measurements during 12.2002–11.2021.
a CF mean values, and b CTT mean values (CF-weighted). The magenta dashed lines in panel b highlight the boundaries of tropical latitudes
used in Fig. 3g–i (20° S–20° N, estimated as the boundaries of the very low upper-tropospheric CTT band).
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highlighting the major impact of El Niño and La Niña events on
the global climate system33,34.
Additionally, Fig. 3a–c shows that the ST anomaly series is a

superposition of the ONI signal and a linear trend suggesting a
signature of global warming38. It is worth noting that the ONI signal
has no significant trend along the study period (0.0026 °C yr-1, black
dashed line in Fig. 3a). The linear trends are estimated by the
ordinary least-squares (OLS) regression model (red lines in Fig. 3a–c,
see OLS Regression in the Methods section). The results suggest
warming rates of 0.02, 0.016, and 0.03 °C yr-1 over Dglobal, Docean,
and Dland, respectively.
Similarly, but to a lesser extent, the ONI signal can be detected

within the time series of monthly CTT anomalies (Fig. 3d–f),
indicating the effect of ENSO on cloud properties37,39. More
specifically, it demonstrates a warmer and colder CTT during El
Niño and La Niña events. Thus we found a different ENSO
signature on ST and CTT, which is associated with a different
response of the two variables to the atmospheric and oceanic
changes caused by the ENSO (Supplementary Fig. 1). As a
consequence, examining CTT as a function of ST, on a near-global-
scale, blurs the decreasing trend in CTT, as the ST is influenced
more significantly by ENSO-related inter-annual variations than
CTT (see Supplementary Figs. 1–2 and Supplementary Note 1 for
details).
Nevertheless, the ENSO signature on the CTT anomaly series

produces no significant bias on the clearly demonstrated
decreasing trend. During the first two decades of the 21st century,
the OLS regression model suggests a cooling rate of 0.052, 0.033,
and 0.1 °C yr-1 in upper-tropospheric CTT over Dglobal, Docean, and
Dland, respectively, constituting approximately 260%, 200%, and
330% of the magnitude of the corresponding warming rate in ST.
We test the sensitivity of the trends shown here to the calculation
method and the criterion used for determining the upper-
tropospheric cloud subset and find them to be robust (see Cloud
and Domain Classification in the Methods section, Supplementary

Fig. 3a–l, and Supplementary Note 2). We also observe a
consistent decrease in high-level CTT measurements by the
Atmospheric Infrared Sounder (AIRS) aboard the Aqua satellite
(see Data in the Methods section, Supplementary Fig. 3m–o, and
Supplementary Note 2 for details). Additionally, we find the
decrease is associated with a non-isothermal lifting of cloud tops
(i.e., the cloud tops are lifted in height more than the relevant
isotherm in a warmer upper troposphere. See Supplementary Fig.
4 and Supplementary Note 3).
To better link our findings to the FAT hypothesis, which

concerns mainly convective anvil temperature, we analyze the
tropical (20° N–20° S; magenta dashed lines in Fig. 1b) anvil CTT
estimations (Fig. 3g–i) based on MODIS observations (5 < ice
COD < 30; see Data and Cloud and Domain Classification in the
Methods section for details). The OLS regression model indicates a
cooling rate of 0.045, 0.015, and 0.12 °C yr-1 in anvil CTT over
Dglobal, Docean, and Dland, respectively. As previously observed for
upper-tropospheric CTT, these results highlight clear disparities in
CTT trends between land and ocean regions, with a much stronger
decrease observed over land than over the ocean. However, even
though the decreasing trend in anvil CTT over the ocean is
relatively weak, it retains its statistical significance and constitutes
approximately 94% of the magnitude of the corresponding
warming rate in ST.
Moreover, by examination of the CTT trend as a function of

cloud optical depth (COD; Fig. 3j–l), we are able to further
distinguish between different upper-tropospheric clouds: thin
anvils and cirrus (e.g., COD < 5), thick anvils (e.g., 5 < COD < 30),
and deep convective cores (COD > 30)11,15,40. The consistent
negative trends shown for all the COD bins suggest that the
observed shift to colder CTT is a common feature of all the upper-
tropospheric clouds. Specifically, deep convective cores exhibit an
even stronger CTT decreasing trend, aligning with the recently
reported increased frequency of extreme tropical deep convection
under climate warming41. This higher frequency of extreme

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Dglobal Docean Dland

Fig. 2 Upper-tropospheric CTT distributions (in intervals of 1 °C) over Dglobal (left column), Docean (middle column), and Dland (right
column), calculated using daily measurements. a–c The area distributions of CTT during 12.2002–11.2021 (gray bars, right magenta y-axis),
and the normalized area distributions (the total area covered by upper-tropospheric clouds is divided to obtain the normalized frequency; left
y-axis) during 12.2002–11.2008 (blue line) and 12.2015–11.2021 (red line); d–f the differences in the normalized area distributions between the
last and first 6 years (12.2015–11.2021 minus 12.2002–11.2008); g–i anomalies of normalized area distributions (the corresponding 19-year
mean of normalized frequency is subtracted to obtain the frequency anomalies) per year (from the December of the year before the legend
year to the November of the legend year). The magenta line in panels a–c indicates the area distribution mode from 12.2002–11.2021. The red
and blue bars in panels d–f mark positive and negative differences, respectively.
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tropical deep convective clouds implies a larger contribution of
the very cold CTT values to the upper-tropospheric CTT mean.
Next, we explore the upper-tropospheric CTT per month to

examine the seasonality of the identified trends (Fig. 4). The
means of the first and last 6 years of upper-tropospheric clouds

over land (Fig. 4c) show significantly colder CTT for the last years’
dataset, suggesting that the revealed decreasing CTT trend is
persistent throughout the year in all seasons. Similar to the linear
trends estimated in Fig. 3d–f, the differences between the first and
last years’ CTTs suggest cooling rates of 0.049, 0.031, and 0.1 °C yr-1

Fig. 4 Spatially averaged (CF-area-weighted) monthly upper-tropospheric CTT over Dglobal (left column), Docean (middle column), and
Dland (right column). a–c Six-year means (dots) ± 1 s.d. (shades); and d–f monthly CTT of each year (from the December of the year before the
legend year to the November of the legend year). The red number in a–c presents the linear trends estimated by the monthly differences’
mean (red dots minus blue dots).

Fig. 3 Time series of spatially averaged monthly anomalies and CTT trends over Dglobal (left column), Docean (middle column), and Dland
(right column). a–c ST anomalies (area-weighted, blue points) and ONI-values (black curve); d–f CTT anomalies (CF-area-weighted) for upper-
tropospheric clouds; g–i CTT anomalies (CF-area-weighted) for anvil clouds over tropics (20° S–20° N; magenta dashed lines in Fig. 1b); and
j–l linear trends in upper-tropospheric CTT anomalies as a function of COD (in intervals of 5) estimated by the OLS regression slope per COD
bin. The black dashed line in panel a is the OLS regression line for ONI and is statistically insignificant at a 95% confidence level. In panels
a–i, the red line is the OLS regression line for ST and CTT; the red number presents the corresponding linear trend estimated by the OLS
regression slope. In panels j–l, the colors represent the total number of upper-tropospheric clouds per COD bin. All linear trends in ST and CTT
are statistically significant at a 95 % confidence level.
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in upper-tropospheric CTT over Dglobal, Docean, and Dland,
respectively. Again, the decrease is less evident over the oceans
(particularly in January, June, September, and October) than over
land. The yearly results presented in Fig. 4d–f further demonstrate
that the observed trend results from a gradual change during the
study period rather than contributions from specific years.
Another interesting finding is the seasonality of upper-
tropospheric CTT and its opposite behavior over the ocean and
land. Additional analysis suggests that these seasonality patterns
are associated with the seasonal changes in atmospheric
temperature and the asymmetric distribution of ocean and land
between the two hemispheres (see Supplementary Fig. 5 and
Supplementary Note 4 for details).
Finally, Fig. 5 presents a global map of the local linear trends in

the CTT of upper-tropospheric clouds and the corresponding area
distributions. These local trends (per grid box) are calculated as
the slope of the OLS regression models predicting the time
evolution of monthly CTT anomalies. A blue-dominated trend map
(Fig. 5a) and the corresponding negative-dominated distributions
(especially over land; Fig. 5b) suggest, once again, a dominant
global feature of the observed decreasing trend in the upper-
tropospheric CTT. This feature is very prominent when focusing on
the statistically significant results (at a 95 % confidence level; Fig.
5c–d). One exception is the Tibetan Plateau, which exhibits an
increasing CTT trend during the study period. A possible
explanation is the extreme elevation of this region, which makes
our cloud data definitions less valid. Nevertheless, the almost-
universal decreasing CTT trend suggests robust and consistent
cooling of the upper-tropospheric clouds’ top. We suggest that
climate warming and the resultant global changes are the most
plausible explanations for the observed cooling patterns, as other
known large-scale climate phenomena, such as the ENSO, the
Pacific Decadal Oscillation, and the Atlantic Multi-decadal Oscilla-
tion, would most probably affect clouds by more complex and less
homogeneous spatial modes37.

Increase in upper-tropospheric water vapor concentration
The consistent decrease in upper-tropospheric (and specifically
anvil) CTT shown here contradicts the prediction based on the FAT
and PHAT hypotheses that suggested the upper-tropospheric CTT
will remain almost fixed or increase slightly under climate

warming5,6. To explore the physical reasoning behind our results,
we analyze the changes in water vapor mass mixing ratio (in g kg-1)
as a function of temperature level in the atmosphere.
The FAT theory assumes that the water vapor concentration

depends mainly on temperature. Therefore, the anvil temperature,
predominantly associated with the atmospheric level of the
sharpest decrease in radiative cooling by clear-sky water vapor,
should be nearly fixed at the temperature level at which the air is
too cold to contain optically thick water vapor. However, the
analysis of AIRS observations suggests a consistently increasing
trend in clear-sky water vapor concentration (see Data and Cloud
and Domain Classification in the Methods section for details) per
temperature level in the upper troposphere during our study
period (Fig. 6). In addition, a slightly stronger increasing trend is
revealed over land (Fig. 6c) than over oceans (Fig. 6b). Although
not fully explaining the observed decrease in upper-tropospheric
CTT, it challenges the most fundamental assumption of the FAT
hypothesis. If other links within the FAT hypothesis are true, such
an elevated water vapor mixing ratio may shift the anvil layer to
lower temperatures, consistent with the observed decrease in
upper-tropospheric CTT and anvil CTT.

Potential radiative effect of upper-tropospheric clouds
To estimate the longwave radiative effect of the observed
decrease in upper-tropospheric CTT, we explore the changes in
the corresponding CF (see Supplementary Fig. 6 and Supplemen-
tary Note 5). A nearly constant mean CF (Supplementary Fig. 6b–d)
suggests that the observed decrease in CTT is likely to drive more
capture of thermal radiation; hence, an overall warming effect is
expected. However, the local CF trends show spatial structures
(Supplementary Fig. 6a). The weak decrease over the tropics and
increase over higher latitudes suggest that more thermal radiation
is trapped over mid-latitudes, and this effect may be compensated
on some level by the CF reduction over the tropics, but we note
the low significance of the CF analysis.

DISCUSSION
Adopting the FAT and PHAT hypotheses5,6, almost all GCM
simulations predict no changes or a very modest increase in
upper-tropospheric CTT as the climate warms over the 21st

(a) Linear trends in upper-tropospheric CTT (  yr-1)(a) Linear trends in upper-tropospheric CTT (  yr-1) (b)(b)

(d)(d)(c)  yr-1)(c)  yr-1)

Fig. 5 Trend maps of upper-tropospheric CTT (unit: °C yr-1) and the corresponding area distributions (CF-area-weighted summation, in
intervals of 0.01 °C yr-1), calculated using local monthly anomalies (CF-weighted) during 12.2002–11.2021. a A map of linear trends,
estimated by the OLS regression slope per grid box (only areas with data over the entire 19 years are considered); b area distributions of the
trends shown in a; c statistically significant trends at a 95 % confidence level; and d area distributions of trends shown in c. The black, cyan,
and yellow bars in b and d are the results over Dglobal, Docean, and Dland, respectively.
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century6. Assuming no changes in other cloud properties, it
suggests extra heating by the unchanging cloud emission
together with a warmer surface2,4,6,42.
However, our analysis, which uses satellite observations of cloud

properties during the first two decades of the 21st century
(12.2002–11.2021), reveals an opposite trend. The upper-
tropospheric CTT is shifting consistently to colder values
throughout the globe, particularly over land. This cooling rate is
several times larger than the observed warming rate of the global
surface. This decrease in upper-tropospheric CTT is associated with
a non-isothermal lifting of cloud tops and is supported by an
increase in the clear-sky water vapor mixing ratio of the upper
troposphere. Although a full explanation of such observed
decrease in upper-tropospheric CTT and the corresponding land-
ocean differences requires further in-depth investigation (e.g., a
process-level understanding of the link between the relevant
clouds and the global warming-induced changes in thermody-
namics), our findings challenge the validity of the FAT and PHAT
hypotheses and suggest additional trapped thermal energy within
the Earth-atmosphere system due to the overall decreased CTT
and barely changed CF of upper-tropospheric clouds. Moreover,
the observed decrease in CTT is not captured in current GCM
simulations for a future warmer climate, indicating important
missed processes regulating upper-tropospheric clouds and
consequently a potentially underestimated warming rate for
climate projections.
We are aware that uncertainties may stem from the limitations

of our observational dataset, and the indirect identification of anvil
temperature, and there is no perfect way to decouple cloud
response to climate warming from the response to other natural
variability factors. Nevertheless, the consistent decrease in high-
level CTT using the AIRS measurements further supports our
findings. In summary, the consistently shifted CTT distributions,
the decadal robust global trends, the almost-universal geographi-
cal distribution of this trend, and the observed increase in water
vapor mixing ratio for given temperatures suggest a physically
based cooling response of upper-tropospheric CTT to climate
warming and the resultant global changes, which requires more
in-depth research of the underlying mechanisms.

METHODS
Data
Three datasets are used in this work, spanning December 2002 to
November 2021 (12.2002–11.2021):
(1) The monthly products of the 5th generation of Atmospheric

Reanalysis data from the European Centre for Medium-Range
Weather Forecasts (ERA5)43. They offer uniformly sampled atmo-
spheric data validated as the most reliable for climate trend
assessments44. The variables of land-sea mask (LSM), ST (the
theoretical surface temperature that satisfies the surface energy

balance), sea surface temperature at single levels45, and atmo-
spheric temperature (T) at 450, 400, 350, 300, 250, 225, 200, 175,
150, 125, and 100 hPa are used46. The original horizontal
resolution of ERA5 is 0.25°, but we resample it to 1° to maintain
the same resolution as the cloud products.
(2) The level 3 (L3) daily product of MODIS aboard Aqua satellite

(MYD08-D3-C61)25. It has a horizontal resolution of 1° and is
derived from the 5 km × 5 km L2 orbital-swath products. We use
the data between 60° S and 60° N to avoid retrieval problems
related to the bright areas near the poles. Daytime data (solar
zenith angle ≤85°) is chosen to ensure the availability of COD
measurements. Consequently, observation time can be pinned
down to ~13:30 (local solar time) from approximately 23° S to 23°
N, and can shift by up to 100min for regions located poleward of
23°25. In addition, the Aqua satellite hasn’t drifted26, and MYD08-
D3-C6.1 is well-calibrated by multiple independent observations.
Issues like sensor aging and unphysical patterns are also carefully
corrected in MYD08-D3-C6.147.
We use the CF (Cloud_Fraction_Day_Mean), CTT (Cloud_Top_-

Temperature_Day_Mean), COD (Cloud_Optical_Thickness_Combi-
ned_Mean), minimal CTP (CTP_Min, Cloud_Top_Pressure_Day_
Minimum), CTP-Max (Cloud_Top_Pressure_Day_Maximum), and
joint histograms of COD and CTT for ice clouds (Ice_COD_CTT_J-
Histo, Cloud_Optical_Thickness_Ice_JHisto_vs_Temperature) in the
main analysis. In the supportingmaterial, the cloud top height (CTH,
Cloud_Top_Height_Day_Mean), maximal CTH (CTH-Max, Cloud_To-
p_Height_Day_Maximum), and minimal CTT (CTT-Min, Cloud_Top_-
Temperature_Day_Minumum) are used. Parameters with the name
suffix “Mean” are computed by taking an unweighted average of
the L2 data in each L3 grid box; those with the name suffix
“Maximum”/“Minimum” are defined as the maximum/minimum
value of the L2 data in each L3 grid box. The Ice_COD_CTT_JHisto
contains L2 pixel counts showing the distribution by comparing
COD (12 bins bounded by 0, 0.5, 1, 2.5, 5, 7.5, 10, 15, 20, 30, 50, 100,
150) against CTT (13 bins bounded by 190, 200, 210, 220, 225, 230,
235, 240, 245, 250, 255, 260, 265, 270 K) for ice clouds. For mid to
high-level clouds (e.g., we focus on upper-tropospheric clouds),
Cloud top pressure (CTP) is determined using the CO2 slicing
approach, and the CTT/CTH is calculated based on the CTP using
meteorological profiles25. The CO2 slicing technique has been
widely applied in cloud top properties retrievals, and is most
sensitive to high clouds.
(3) The L2 daily and L3 monthly product from AIRS, aboard the

Aqua satellite (L2_Daily_RetStd and L3_Monthly_RetStd, Version
7)48,49, with a horizontal resolution of 1°. In the main analysis, the
atmospheric T (Temperature_TqJ_A) and the water vapor mass
mixing ratios (H2O_MMR_TqJ_A) at 400, 300, 250, 200, 150, and
100 hPa from L2_Daily_RetStd are used. The high-level CTT
(CoarseCloudTemp_TqJ_A) from L3_Monthly_RetStd is used in the
supporting material. The name suffix “TqJ_A” of the parameters
indicates data collected during the ascending orbit (daytime,

T
 (

)

Year Year Year

Dglobal Docean Dland(a) (b) (c)

Fig. 6 Contour plots of the standard anomaly of clear-sky water vapor mass mixing ratio (unit: g kg-1) over different domains, plotted
against time (in 1 year intervals, from December to the following November) and clear-sky atmospheric T (in 2 °C intervals) using local
annual data. a Dglobal; b Docean; and c Dland. The water vapor mixing ratios and atmospheric T at pressure levels of 400, 300, 250, 200, 150, and
100 hPa from AIRS are considered. To aid visualization, we first subtract the mean water vapor mixing ratio per T bin to obtain the anomalies
and then divide by the standard deviation of results over Dglobal to obtain the standard values.
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except near the poles), with the collective quality control being
used across all fields and levels.

Cloud and domain classification
To provide a latitude-following standard that captures a nearly
normal CTT distribution, we define in the main analysis upper-
tropospheric clouds as daily measurements with CF > 0 and CTP-
Max ≤450 hPa. Measurements not identified as upper-
tropospheric clouds are considered 0 for calculating upper-
tropospheric CF but are ignored for calculating upper-
tropospheric CTT and CTH (used in the supporting material). To
evaluate the sensitivity of our findings to the definition of upper-
tropospheric clouds, we conduct a complimentary analysis,
presented in the supporting material, defining the upper-
tropospheric clouds as daily measurements with CF > 0 and CTT-
Max ≤ –20 °C, and with CF > 0 and CTH-Min ≥6 km. The local (per
grid box) monthly cloud properties are then calculated as CF-
weighted means of daily measurements. The CF weighting is
performed to reduce the contribution of samples with smaller
cloud coverage. The local monthly anomalies used for calculating
domain averages and trend estimations are the deviation of local
monthly data from the means of each given month over the
whole study period.
To examine more closely the trend in convective anvil CTT,

which is regarded in the FAT hypothesis, we employ a specific
subset of anvil clouds, defined by using the Ice_COD_CTT_JHisto.
Per the grid box, ice pixels with COD values ranging between 5
and 30 (corresponding to the 5th–9th COD bins) are classified as
anvil clouds. The chosen COD thresholds are based on previous
studies11,15,40, and our results are not sensitive to these thresholds
(checked, not shown). Then, we estimate the local anvil CTT as the
Ice_COD_CTT_JHisto-weighted mean of the CTT bins (central
values: 195, 205, 215, 222.5, 227.5, 232.5, 237.5, 242.5, 247.5, 252.5,
257.5, 262.5, and 267.5 K) that regard the anvils COD chosen bins.
The local anvil CF is calculated as the product of the local CF and
the fraction of anvils out of the clouds in the pixel. In addition, to
assess the water vapor concentration (for validation of the FAT),
we identified the clear-sky atmospheric T and water vapor mass
mixing ratio, in daily measurements obtained for days with no
clouds (CF= 0) and for cloudy days with no upper-tropospheric
clouds (CF > 0 and CTP-Min > 450 hPa). The local monthly data is
initially calculated based on these clear-sky daily measurements
and then used to calculate the local annual data (Fig. 6).
To account for the clear distinction in climate trends between

the land and oceans, we conduct separate analyses for Dglobal,
Docean, and Dland. Dglobal is determined from 60° S to 60° N. Docean

is defined as grid boxes with LSM-values ≤ 0.2 between 60° S and
60° N, while Dland is defined as grid boxes with LSM-values > 0.2
between 60° S and 60° N. Since the area of each 1° × 1° grid box
depends on latitude, we performed an area weighting for the
calculation of any spatial averages (area-weighted). The area of
each grid box is estimated as the product of arc length at the
corresponding latitude and longitude by regarding the Earth as an
oblate spheroid with a radius of 6378.137 km at the equator and
6356.752 km at the poles. In addition, we incorporate CF
weighting (CF-area-weighted) to account for the dependence on
the cloud coverage when analyzing spatially averaged values of
cloud top properties (and summed areas in Fig. 5b, d). For these
spatial averages (and summations in Fig. 5b, d), the CF weights are
computed as the CF climatology for a specific cloud subset,
throughout the entire study period (e.g., the CF weights for upper-
tropospheric clouds that were determined using a threshold on
the CTP-Max, as presented in the main text, are given in Fig. 1a).

Oceanic Niño Index (ONI)
To identify and measure the state of ENSO, we calculated the ONI31.
It is defined here as the 3-month running mean of the sea surface

temperature anomaly over the Niño 3.4 region (5° N–5° S and
170°W–120°W, area-weighted). For each month, the corresponding
average of 1950–2021 is subtracted from the monthly sea surface
temperature data (deseasonalization) before calculating the ONI.

OLS regression
We perform the OLS regression to estimate the linear trend in the
ST and CTT series50. The statistical significance of the correspond-
ing trend (the OLS regression slope) is assessed by checking
whether it is significantly different from zero at a confidence level
of 0.95. Hence, a trend identified as significant in this work can be
approximately considered as having a p-value < 0.05. The under-
lying regressions are performed with Matlab using the function ‘fit’
with the ‘robust’ option to exclude potential biases from outliers.
The statistical significance of trends is estimated in Matlab by the
function of ‘confint’.

DATA AVAILABILITY
All data used in this work is publicly available. ERA5 data was downloaded from the
Copernicus Climate Change Service Climate Data Store (https://doi.org/10.24381/
cds.f17050d7 and https://doi.org/10.24381/cds.6860a573; accessed at 12-March-2023
and 14-March-2023). MODIS data was obtained from NASA’s Earthdata Search (https://
search.earthdata.nasa.gov/search?q=MYD08_D3; accessed on 9 May 2022). AIRS data was
downloaded from NASA’s Earthdata Search (https://search.earthdata.nasa.gov/search?
q=AIRS3STD%207.0 and https://search.earthdata.nasa.gov/search?q=AIRS3STM%207.0;
accessed at 15-June-2023 and 25-March-2023).

CODE AVAILABILITY
The analysis used to generate results is conducted by the standard functions/
algorithms offered by the programming languages of Matlab (https://
www.mathworks.com/products/matlab.html; accessed on 11-June-2018) and Python
(https://www.python.org/; accessed on 04-June-2019). The OLS regression is
performed with the Matlab function, ‘fit’ (https://www.mathworks.com/help/
curvefit/fit.html). The statistical significance of trends is estimated with the Matlab
function, ‘confint’ (https://www.mathworks.com/help/curvefit/cfit.confint.html).
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