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Fire carbon emissions over Equatorial Asia reduced by
shortened dry seasons
Sifan Wang1, Bin He 1✉, Hans W. Chen 2, Deliang Chen 3, Yaning Chen 4, Wenping Yuan 5, Feng Shi 6, Jianping Duan7,
Wei Wu8, Tiexi Chen9,10, Lanlan Guo1, Ziqian Zhong 1, Weili Duan 4, Zhi Li4, Weiguo Jiang1, Ling Huang11, Xingming Hao4,12,
Rui Tang1, Huiming Liu13, Yafeng Zhang1 and Xiaoming Xie1

Fire carbon emissions over Equatorial Asia (EQAS) play a critical role in the global carbon cycle. Most regional fire emissions (89.0%)
occur in the dry season, but how changes in the dry-season length affect the fire emissions remains poorly understood. Here we
show that, the length of the EQAS dry season has decreased significantly during 1979–2021, and the delayed dry season onset
(5.4 ± 1.6 (± one standard error) days decade−1) due to increased precipitation (36.4 ± 9.1 mm decade−1) in the early dry season is
the main reason. The dry season length is strongly correlated with the length of the fire season. Increased precipitation during the
early dry season led to a significant reduction (May: −0.7 ± 0.4 Tg C decade−1; August: −12.9 ± 6.7 Tg C decade−1) in fire carbon
emissions during the early and peak fire season. Climate models from the Coupled Model Intercomparison Project Phase 6 project a
continued decline in future dry season length in EQAS under medium and high-emission scenarios, implying further reductions in
fire carbon emissions.
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INTRODUCTION
Equatorial Asia (EQAS) contains one of the largest tropical
rainforest areas and is a major carbon pool (Supplementary Fig.
1a, b)1, but increasing human disturbance is converting the region
from a carbon sink to a source, especially with fire carbon
emissions from peat burning and deforestation2. Fires in EQAS
occur mainly on peatlands, which store about 70 Pg of organic
carbon3. During the extreme drought of 1997, carbon released
through peatland fires was estimated to be equivalent to 13–40%
of the mean annual global carbon emissions from fossil fuels at
the time4. Despite most fires resulting from human activities, their
interannual variation is strongly regulated by precipitation
changes associated with large-scale climatic fluctuations5–7.
During El Niño years, for example, abnormal precipitation deficits
in the dry season are associated with severe fires and high carbon
emissions8,9. The Indian Ocean dipole also affects drought
conditions in the region and thus fire carbon emissions10. A
better understanding of the influence of climatic drivers on fire
emissions over EQAS is thus critical for accurately projecting the
future carbon cycle and budget.
Climate changes in the dry season over rainforest regions have

aroused great concerns owing to their impact on ecosystems and
regional carbon cycles11–13. In the Amazon and Congo rainforests,
precipitation decreases have increased dry season length (DSL)
over the recent decades11–13. In the Amazon, the delayed ending
of the dry season has increased the risk of fires and prolonged the
fire season11. Whether precipitation and the associated DSL have

changed over EQAS is unclear. Fires in EQAS usually break out
during the dry season (Supplementary Fig. 1c, d)14, and previous
studies have reported a nonlinear negative response of fire carbon
emissions to dry season precipitation14,15. However, how changes
in the DSL impact fire emissions remains unknown.
In this study, changes in precipitation and DSL in EQAS were

examined using multiple precipitation datasets during 1979–2021,
and their relationships with fire activities and fire emissions were
explored based on active fire counts from the Terra Moderate
Resolution Imaging Spectroradiometer (MODIS) Thermal Anoma-
lies and Fire Eight-Day (MOD14A2)16 data, the monthly Global Fire
Emissions Database v. 4.1 (GFED4s)17, and long-term daily airport
visibility records. Future precipitation and DSL changes and the
reasons for historical and future precipitation increases were
investigated through model projections from the Coupled Model
Intercomparison Project Phase 6 (CMIP6)18.

RESULTS AND DISCUSSION
Increased precipitation and shortened dry seasons
Mean annual precipitation over EQAS increased during 1979–2021
(Supplementary Fig. 2a). Significant precipitation increases were
found in the precipitation datasets from the Climate Prediction
Center Unified Gauge-Based Analysis of Global Daily Precipitation
(CPC-U)19 and the European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis v. 5 (ERA5)20, with trends of
127.5 ± 35.8 mm decade−1 (p= 0.002) and 100.6 ± 33.8 mm
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decade−1 (p= 0.020) during 1979–2021, respectively. Although
there has been no significant upward trend in the precipitation
from the Global Precipitation Climatology Project (GPCP)21 dataset
during 1979–2016, a significant (p= 0.036) turning point in
precipitation trend was identified in 1991 (Supplementary Fig.
2a), and there is a significant positive precipitation trend during
1991–2016 with a rate of 168.1 ± 75.4 mm decade−1 (p= 0.036). In
general, increased precipitation has been observed over most of
EQAS for all months during 1979–2021, especially for April–June
and November–December (Supplementary Fig. 2b–d). Negative
precipitation trends have been observed for only a small region in
southwest Sumatra (Supplementary Fig. 2b–d). As an independent
evidence of increased precipitation over EQAS, the terrestrial
water storage (TWS) retrieved from the Gravity Recovery and
Climate Experiment (GRACE) has also had a significant positive
trend since 2003 (Supplementary Fig. 3). To decide which
precipitation product to use in the further analysis, we calculated
the correlations between annual precipitation from the different
products and the TWS. Relatively strong correlations were
observed between the TWS and the CPC-U product, compared
with the ERA5 and GPCP. Therefore, we used the CPC-U
precipitation product for the following analysis (Supplementary
Table 1).
Associated with increased precipitation, the EQAS DSL shows a

significant negative trend during 1979–2021 in the CPC-U dataset,
with a rate of −10.2 ± 3.5 d decade−1 (p= 0.001) (Fig. 1a). The
shortening of DSL was caused by a larger delay in dry season
onset (DSO) (5.4 ± 1.6 d decade−1, p= 0.002; Fig. 1b) than the
advancement of dry season end (DSE) (4.7 ± 2.2 d decade−1,
p= 0.037; Fig. 1c). During the transition period from rainy to dry
season (April–June, AMJ), precipitation increased significantly
between 1979 to 2021 by 33.7 ± 8.9 mm decade−1 (p= 0.001) in
CPC-U (Fig. 1d), resulting in a significant delay in DSO. Spatially,
the decrease in DSL was extensive in EQAS (Fig. 1e). Regions with
significantly reduced DSL (p < 0.1) were distributed mainly in
northern Sumatra, Kalimantan, Sulawesi, and New Guinea (Fig. 1e).
Areas with the largest DSL changes generally experienced large
delays in DSO (increased precipitation in AMJ) or advancements in
DSE (Fig. 1f-h). The spatial features of dry season changes derived
from the other precipitation products are generally consistent
with the CPC-U patterns for EQAS (Supplementary Fig. 4).
Regarding the increase in precipitation in EQAS, previous

studies have shown a strong correlation between precipitation
in EQAS and the surrounding sea surface temperature22. Due to
the increase of atmospheric carbon dioxide (CO2), the western
Pacific Ocean has warmed more than the central Pacific Ocean,
further strengthening the zonal SST gradient23 and thus enhan-
cing the trade winds and the Walker circulation24, promoting the
transport of ocean currents and warm, moist air towards EQAS,
and also helping to increase local precipitation.
To explore the impact of anthropogenic activities on precipita-

tion and DSL in EQAS, we utilized the hist-nat, hist-aer, and hist-
GHG experiments from the CMIP6 models’ Detection and
Attribution Model Intercomparison Project (DAMIP) simulations25

to simulate precipitation in EQAS from 1979 to 2020 (Supplemen-
tary Table 3) and analyzed the separate responses of precipitation
to anthropogenic aerosols and greenhouse gases (GHG)26. In order
to improve the robustness of our results, we selected 4 from the
12 models that can reproduce the DSL shortening over the
historical period (see “Methods”), and show the results of multi-
model averaging. As shown in Supplementary Fig. 5, the increase
in anthropogenic aerosol emissions has a suppressing effect on
precipitation, while the increase in GHG emissions has a
promoting effect (Supplementary Fig. 5a–c). From a monthly
perspective, the increase in anthropogenic aerosol and GHG
emissions mainly affects precipitation during the rainy season in
EQAS (Supplementary Fig. 5d). Due to the increase in GHG
emissions, the tropical Pacific sea surface temperature gradient is

strengthened, leading to an increase in precipitation in EQAS23.
Therefore, the increase in EQAS precipitation during the historical
period can be attributed to the increase in GHG emissions.

Changes in dry season length regulate fire season length
Precipitation changes and associated dry season changes are
expected to impact fire activities and carbon emissions in
EQAS2,14. To explore how dry season changes have impacted fire
activities, we calculated fire seasons using 8-day fire counts during
2001–2021 (see “Methods”). As shown in Fig. 2, as precipitation
decreased toward the seasonal minimum in early August, the fire
counts increased rapidly, with the fire season beginning in late
July. The fire season peaked during August–October, correspond-
ing to the period with annual minimum precipitation. When
precipitation increased to the annual average in November, there
were no dry conditions to sustain fire activities. The end date of
the fire season in early November was slightly later than the DSE
date.
The annual fire season length (FSL) in EQAS has decreased

significantly since 2001 (−22.8 ± 10.0 d decade−1, p= 0.079).
Given that the dry season leads the fire season, and the physical
connection between dry conditions and increased fire activity, it is
likely that the reduced DSL has led to a shortened fire season (Fig.
2b). To explore how changes in DSL have impacted fire activities
and carbon emissions, dry season fire activities and carbon
emissions were calculated as the total fire counts and fire carbon
emissions from the DSO to DSE, including the months of DSO and
DSE. Both fire counts and fire emissions display a nonlinear
positive response to DSL, indicating that a longer DSL is associated
with more fire counts and higher fire emissions (Fig. 2c, d).
Fire activities and carbon emissions over EQAS are concentrated

mainly in southern Sumatra (6°S–0°, 99°–106°E) and
southern–central Kalimantan (4°S–0°, 110°–117°E; Supplementary
Fig. 1). Dry season fire emissions from these two regions account
for 71% of the total EQAS dry season emissions during 2001–2021
(Supplementary Fig. 1). The DSL in southern Sumatra displays a
trend of first lengthening and then shortening (20.6 ± 6.5 d
decade−1, p= 0.003), while the DSL in southern–central Kaliman-
tan has significantly decreased since 1979 (12.7 ± 4.6 d decade−1,
p= 0.008) (Supplementary Fig. 6). Significant correlations between
DSL and FSL were observed in these two regions, with FSLs
shortening with the reduction in DSLs (R= 0.75, p < 0.001;
R= 0.85, p < 0.001) (Supplementary Fig. 8a, e). To verify these
findings, we also used visibility records from airports in EQAS as a
proxy for fire activities, providing a long-term record since 1992.
The visibility was quantified using an extinction coefficient (Bext),
where a large Bext value indicates low visibility, which is likely
caused by smoke from nearby fire activity. We calculated fire
seasons using daily Bext from 1992 to 2021 (see “Methods”). FSLs
calculated using Bext are reduced in southern Sumatra and
southern–central Kalimantan and are well correlated with DSL
(Supplementary Fig. 8). DSLs in southern Sumatra and
southern–central Kalimantan also have strong nonlinear relation-
ships with dry season fires and Bext (Supplementary Fig. 7).
A previous study found that the start of the fire season peak in

the Mega Rice Project area of central Kalimantan is related to the
date of annual minimum precipitation27. This phenomenon was
observed in both EQAS and southern–central Kalimantan (Sup-
plementary Fig. 9a, g). We also found a strong correlation between
May–July precipitation and fire-season onset in EQAS (R= 0.56,
p= 0.020), southern–central Kalimantan (R= 0.44, p= 0.089), and
southern Sumatra (R= 0.80, p < 0.001), implying a dependence of
fire-season onset on the change of early dry season precipitation
(Supplementary Fig. 9b, e, h). In addition, the end of the fire
season is closely related to the DSE (R= 0.91, p < 0.001 in EQAS;
R= 0.83, p < 0.001 in southern–central Kalimantan; and R= 0.70,
p= 0.004 in southern Sumatra), suggesting that an earlier DSE
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usually causes an earlier end of the fire season (Supplementary
Fig. 9c, f, i).

Early dry season suppression of fire carbon emissions by
increased precipitation
To further explore how precipitation changes have regulated DSL
and thereby fire activities and emissions, we analyzed the trends
in precipitation, fire carbon emissions, and fire counts month by
month in EQAS. To match the time series with fire counts data, we
unified the start time of fire emission data to the beginning of the
MODIS data (2001–2021). Both fire emissions and counts have
decreasing May–October trends in EQAS, with significant
decreases being observed in May (−0.7 ± 0.4 Tg C decader−1,
p= 0.077; and −0.6 ± 0.2 × 103 decade−1, p= 0.005, respectively)
and August (−12.9 ± 6.7 Tg C decade−1, p= 0.068; and
−4.5 ± 1.7 × 103 decade−1, p= 0.016, respectively) (Fig. 3b, c).
Due to the impact of small fires on MODIS-based fire products,
there is a certain degree of uncertainty in the results28,29.
Therefore, we utilized top-down fire CO2 emissions data30 to

analyze the fire emissions trends in May and August in EQAS,
which further confirmed the decreasing trend of fire carbon
emissions in EQAS (see “Data uncertainties”).
Previous studies indicate that the response of fire carbon

emissions to precipitation has a lag of 2–4 months15,31. Here, high
correlations were found between precipitation in April–May and fire
carbon emissions and fire counts in May (Supplementary Fig. 10). Fire
carbon emissions and fire counts in August were strongly impacted
by May–August precipitation (Fig. 3e, f). This result suggests that
increased precipitation in the early dry season suppressed fires in
May and August. The TWS retrieved from GRACE was also used here
to indicate land water conditions. The TWS shows a 2–4-month
lagged response to precipitation (Supplementary Table 2), and a
significant upward trend was observed in May–August (Supplemen-
tary Fig. 11). This suggests that the increase in precipitation in the
early dry season led to an increase in TWS in August, reducing the
degree of dryness and leading to a reduction in fire carbon emissions
in August (Fig. 3a, g).
Spatially, the reduction in fire carbon emissions was observed

mainly in the west and south of Kalimantan and southern Sumatra

h

f

d

b

e

c

a

g

Fig. 1 Dry season changes in Equatorial Asia during 1979–2021. a–d Annual time series and trends in mean dry season length (DSL) (a), dry
season onset (DSO) (b), dry season end (DSE) (c), and April–June (AMJ) precipitation (d). Because GPCP provides pentad (5-day) precipitation,
the 19th to 36th pentads were selected as precipitation for AMJ. Black, red, and blue solid lines indicate the precipitation datasets from CPC-U,
ERA5, and GPCP, respectively. The black, red, and blue numbers indicate linear trends (d decade−1 or mm decade−1) and standard error for
each of the three precipitation datasets, respectively. e–h Spatial patterns in linear trends of the DSL (e), DSO (f), DSE (g), and AMJ
precipitation (h) from CPC-U for 1979–2021. Black dots indicate grids with a significant linear trend (p < 0.1). *p < 0.1; **p < 0.05; ***p < 0.01.

S. Wang et al.

3

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2023)   129 



(Fig. 3c). The fire carbon emissions and fire counts of the two
regions also displayed a downward trend in August, and Bext
values decreased from January to August (Supplementary Fig. 12).
In both regions, increased precipitation from May to August was
found to be associated with decreased fire carbon emissions and
counts in August (Supplementary Figs. 11, 13).

Projection of future precipitation and dry season changes
Given the strong association between precipitation, DSL, and fire
emissions in EQAS, we investigated projected changes in the first
two variables using multi-model ensemble simulations from
CMIP6. Daily precipitation data were collected from 20 models
(Supplementary Table 3), among which 12 models reproduced the
historical shortening trend of DSL from 1979 to 2014 (Supple-
mentary Fig. 14). Accordingly, these 12 models were selected as
skillful models for future DSL changes under the four shared
socioeconomic pathway (SSP) scenarios: SSP126 (low-emission
scenario), SSP245 (medium-emission scenario), SSP370 (medium-
emission scenario), and SSP585 (high-emission scenario; see
“Methods”). Precipitation averages from the 12 models indicate
a continued positive trend from 2023 to 2099, and significant
increases in the trends occurred under the SSP245, SSP370, and
SSP585 scenarios (Supplementary Fig. 15). In the SSP126 scenario,
the multi-model average DSL shows a slight increase, while it
decreases in the SSP245, SSP370, and SSP585 scenarios,

particularly in the SSP370 and SSP585 scenarios (−0.8 ± 0.4 d
decade−1, p= 0.038; and −0.9 ± 0.4 d decade−1, p= 0.015,
respectively; Fig. 4a). The significant delay in DSO is the main
reason for the DSL reduction in the SSP370 and SSP585 scenarios
(Fig. 4b). DSE was advanced in all four scenarios, but only
significantly in the SSP245 scenario (Fig. 4c). Spatially, under the
SSP126 scenario, DSL increased in the central and eastern parts of
the study region (Fig. 4d). Under the other scenarios, DSL was
reduced over most areas (Fig. 4e–g), DSO was significantly delayed
in all regions and DSE changed significantly in a few areas
(Supplementary Fig. 16). However, in southern Sumatra, the future
DSL is projected to have an upward trend, implying a heightened
fire risk in the future. This analysis suggests that the future DSL
change depends on the emission scenarios, with a continuing
decrease under medium- and high-emission scenarios. Consider-
ing the strong influence of DSL on fire activities, future fire carbon
emissions will likely be further suppressed by increasing
precipitation and reductions in DSL in the future.
For future changes in precipitation under different emission

scenarios in EQAS, anthropogenic aerosols and GHG remain the
main driving factors32. We utilized the SSP 245-nat, SSP 245-aer,
and SSP 245-GHG experiments from the MIROC6 model’ DAMIP
simulations (the reason for model selection can be found in the
“Methods” section) to simulate precipitation in EQAS from
2023–2099 and analyzed the separate responses of precipitation

a

b c d

Fig. 2 Relationships between dry season, fire season, and fire activities during 2001–2021. a Relationship between dry and fire seasons,
with precipitation and fire counts averaged over 2001–2021. The red bar chart indicates 8-day fire counts, the orange line indicates the
cumulative 8-day fire counts anomaly, the blue line indicates the 30-day smoothed daily precipitation, and the black line indicates the 30-day
smoothed cumulative daily precipitation anomaly. The inflection points between the black dash line and the cumulative daily precipitation
anomaly curve indicate the day of dry season onset (the maximum point of the curve) and end (the minimum point of the curve), and
inflection points between the black dash line and the cumulative 8-day fire counts anomaly curve indicate the day of fire season onset (the
minimum point of the curve) and end (the maximum point of the curve), respectively. b Interannual variations, trends, and correlation
between fire-season and dry season lengths. The linear trend (d decade−1) and standard error of DSL and fire season length (FSL) are shown in
the top left corners. Correlation coefficients (R) are shown in the lower right corners. c, d Exponential fitting of DSL to dry season fire counts (c)
and fire carbon emissions (d). Shading indicates 95% confidence intervals. The coefficient of determination (R2) is shown in the top left
corners. *p < 0.1; **p < 0.05; ***p < 0.01.
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to anthropogenic aerosols and GHG (Supplementary Table 3). As
shown in Supplementary Fig. 17, similar to the results in the
historical period (Supplementary Fig. 5), GHG emissions have a
promoting effect on precipitation in EQAS, while anthropogenic
aerosol emissions have an inhibitory effect on precipitation in
EQAS. Previous study32 has indicated that by 2100, as anthro-
pogenic aerosol emissions decrease, GHG emissions will dominate
the differences between different SSPs. This is also the primary
reason for precipitation and dry season length changes in EQAS.
In summary, this study indicates a negative trend in DSL over

EQAS due to increased precipitation in the past decades,
contrasting with the positive DSL trend over the Amazon and
Congo rainforests11,12. This change in DSL (−34.4 ± 18.6 d
decade−1) was further found to reduce the FSL (−22.8 ± 10.0 d
decade−1) and lead to reduced fire carbon emissions (May:
−0.7 ± 0.4 Tg C decade−1; August: −12.9 ± 6.7 Tg C decade−1),
highlighting the role of increasing precipitation in controlling fire
carbon emissions. The fire risk is likely to be further suppressed by
the continued increase of precipitation and associated reductions
in DSL in the future. These findings provide a scientific reference

for fire management practices in EQAS. Tropical peatlands play an
important role in the global carbon cycle33, and EQAS has the
largest peatlands in the tropics3, underscoring the importance of
studying the impact of changes in DSL in the region on fire.

METHODS
Study area
In this study, we focused on the relationship between dry seasons
and fire carbon emissions from 2001 to 2021 in EQAS, with this
region being selected according to the regional divisions of the
Global Fire Emissions Database34. According to Climatic Research
Unit (CRU)35 climate data and CPC-U precipitation, the mean
annual EQAS precipitation is almost 2500mm, and the mean
annual mean temperature is 26 °C. Most fire carbon emissions in
the region arise from the burning of peatlands36 caused by human
deforestation activities, on the edges of forest fragmentation, and
during agricultural land clearance37. “Slash-and-burn” is a com-
mon method of agricultural land clearance that leads to a large

a b c

gfe

d

Fig. 3 Fire-related changes in EQAS, 2001–2021. a–c, Monthly trends in precipitation (a), fire carbon emissions (b), and fire counts (c). Error
bars indicate the standard error of linear trends. d Spatial trends in fire carbon emissions in August 2001–2021. Only grid points with annual
mean fire carbon emissions >0.001 Tg C for 2001–2021 are shown. Black dots indicate grids with a significant linear trend (p < 0.1). The inset
shows the annual average fire carbon emissions and their linear trend in August. The numbers show the linear trend (Tg C decade−1) and
standard error of fire carbon emissions. e–g Exponential fitting of precipitation for May–August to fire carbon emissions (e) and fire counts (f)
in August. Linear fitting of precipitation for May–August to terrestrial water storage (TWS) (g) in August. The TWS is for the period 2003–2021.
The coefficient of determination (R2) are shown in the top right corners. Shading indicates 95% confidence intervals. *p < 0.1; **p < 0.05;
***p < 0.01.
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number of out-of-control fires being lit during the dry season38, in
which 89.0% of the EQAS fire carbon emissions are concentrated.
Two main fire regions were selected for analysis: southern

Sumatra (6°S–0°, 99°–106°E) and southern–central Kalimantan
(4°S–0°, 110°–117°E), consistent with previous studies14 (Supple-
mentary Fig. 1). Their dry season fire carbon emissions accounted
for 27.2% (southern Sumatra) and 43.7% (south-central Kaliman-
tan) of the total dry season EQAS emissions, respectively.

Climate data
To examine dry season changes in EQAS, three widely used
precipitation datasets were collected to achieve more robust
results (Supplementary Table 4). We used observational gridded
daily rainfall data from the CPC-U19 at 0.5° × 0.5° resolution for the
period 1979–2021 and 5-day data from the GPCP21 at 2.5° × 2.5°
resolution for the period 1979–2016. CPC-U and GPCP precipita-
tion data are combinations of gauge and satellite observations. A
daily precipitation product from the ERA520 reanalysis with a
horizontal resolution of about 31 km was regridded to a
0.25° × 0.25° resolution for the period 1979–2021 were also used.

GRACE data
We used monthly GRACE products (2003–2021) with a resolution
of 0.5° × 0.5° to monitor changes in TWS in EQAS. GRACE Mascon
solutions (Release 06 (RL06) v2) generated by the National
Aeronautics and Space Administration Jet Propulsion Laboratory
(JPL)39 and the Center for Space Research (CSR)40 at the University
of Texas, respectively, were used. The means of the two products
were used for analysis. Records missing for several months were
replaced by averaged values from nearby months.

Fire data
For fire data, we used satellite-derived biomass-burning carbon
emissions data from the Global Fire Emissions Database Version
4.1 (GFED4s) at 0.25° × 0.25° resolution. This dataset provides
bottom-up estimates of global fire carbon emissions since
199717,41. Zheng et al.30 provided estimates of global monthly
fire carbon emissions for 2000–2021 at a horizontal resolution of
3.75° × 1.9°, using carbonic oxide (CO) inversion from the
Measurements of Pollution in the Troposphere (MOPITT) satellite
and the global atmospheric inversion system. Fire counts data
were obtained from the MOD14A2 (Version 006)16 product
collected by the Terra satellite with a spatial resolution of 1 km
and a temporal resolution of 8 days from 2001 to 2021. Monthly
fire counts are calculated by averaging the 8-day fire counts to
daily fire counts (divided by eight) and adding them up to a
monthly value.
In EQAS, severe fires emit much smoke haze per unit area,

usually causing a decrease in atmospheric visibility. Therefore,
airport visibility data can be used as a long-term proxy for fire
emissions14. Daily visibility records were obtained from the
National Oceanic and Atmospheric Administration Integrated
Surface Database. Visibility records involved three surface stations
at southern Sumatra airports and three at southern–central
Kalimantan airports (Supplementary Fig. 1; Supplementary Table
5). As there is a large data gap during 1989–1991, we selected
records for 1992–2021 for analysis. We calculated daily visibility
data as Bext by using the empirical Kosch-Mieder relationship for
1992–2021, with reports of zero visibility being replaced with
0.1 km9. Bext is used to indicate the degree to which visible light is
attenuated with distance due to aerosol absorption and
scattering.

d

a

e

b

gf

c

Fig. 4 Future dry season trends under different scenarios, and spatial patterns of future linear DSL trends. a–c Multi-model averaged
trends in DSL (a), DSO (b), and DSE (c) calculated using 12 selected CMIP6 models for 2023–2099 under the SSP126, SSP245, SSP370, and
SSP585 scenarios. Error bars indicate the standard error of linear trends. d–g Multi-model averaged trends in DSL calculated using the 12
CMIP6 models for 2023–2099 under the SSP126 (d), SSP245 (e), SSP370 (f), and SSP585 (g) scenarios. Black dots indicate grids with significant
linear trends (p < 0.1). *p < 0.1; **p < 0.05; ***p < 0.01.
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Future precipitation data
Future daily precipitation data were obtained from
CMIP6 simulations. We selected 20 models with daily precipitation
simulations for 1979–2014 (Supplementary Table 3). We used
projections of future precipitation and dry season changes under
four scenarios, SSP126, SSP245, SSP370, and SSP585, representing
low- to high-emissions scenarios. Compared with CMIP5, the new
scenarios in CMIP6 are based on shared socioeconomic pathways
(SSPs) and work in harmony with Representative Concentration
Pathways (RCPs) through shared policy assumptions42.
We utilized the hist-nat, hist-aer, and hist-GHG experiments

from the CMIP6 models’ DAMIP simulations25 to analyzed the
separate responses of historical precipitation to anthropogenic
aerosols and GHG, attributing observed changes in historical
precipitation to natural, GHG, and anthropogenic aerosol emis-
sions (Supplementary Table 3). In order to improve the robustness
of our results, we selected 4 (MIROC6, MRI-ESM2-0, FGOALS-g3,
IPSL-CM6A-LR) from the 12 models that can reproduce the DSL
shortening over the historical period. We also utilized the SSP 245-
nat, SSP 245-aer, and SSP 245-GHG experiments from the MIROC6
and NorESM2-LM models’ DAMIP simulations to analyzed the
separate responses of historical precipitation to anthropogenic
aerosols and GHG, attributing observed changes in future
precipitation to natural, GHG, and anthropogenic aerosol emis-
sions (Supplementary Table 3) and only the MIROC6 model
reflects DSL shortening during the historical period among these
two models (Supplementary Fig. 14). All precipitation simulations
were resampled at 2.5° × 2.5° resolution before being analyzed.

Defining dry and fire seasons
DSO and DSE were defined as the days corresponding to the
maximum and minimum days of the cumulative precipitation
anomaly each year, respectively. The DSL in each grid box was
calculated from the difference between DSO and DSE. This
method had been used previously for the examination of dry
season changes over the Congo and Amazon rainforest areas43,44.
We used a harmonic analysis to determine whether each grid box
experienced one or more dry seasons per year. When the
amplitude of the second or third harmonic was greater than or
equal to the amplitude of the first harmonic, multiple dry seasons
were involved. Double dry seasons in EQAS occurred mainly in
northern Sumatra, and only the second dry season (near the mean
dry season date of EQAS) was selected for analysis. The specific
calculation process involved the relationship

SðdÞ ¼
Xd

i¼t0

ðPi � PÞ (1)

where Pi is the rainfall on day i; i ranged from t0 to the day (d)
being considered; t0 is the date when the harmonic analysis was
used to calculate the minimum of the first harmonic in the annual
mean precipitation cycle of each grid point, which ensures that
the correct dry season is captured; and P is the mean rainfall rate
for all days of all years in mm day−1. S(d) was calculated for each
day from t0 to d and smoothed using a 1–2–1 filter passed 50
times. The inflection point, S, marks the onset and end of the dry
season45.
We also calculated the fire season using Eq. (1) with the 8-day

fire counts and daily Bext. Using the 8-day fire counts to calculate
the fire season, where Pi is the fire counts on 8-day i; i ranged from
t0 to the day (d) being considered, t0 is the first day of the calendar
year, and the day (d) is the last day of the calendar year; P is the
mean fire counts for all 8-days of all years; S(d) was calculated for
each 8-day from t0 to d. Using daily Bext to calculate the fire
season, where Pi is the Bext on day i; i ranged from t0 to the day (d)
being considered, t0 is the first day of the calendar year, and the
day (d) is the last day of the calendar year; P is the mean fire

counts for all days of all years; S(d) was calculated for each day
from t0 to d. The inflection point, S, marks the onset and end of the
fire season. There may be multiple fire seasons in some low-fire
years, in which case we chose the longest fire season between
May and October as that year’s fire season.

Inflection point analysis of variables
Piecewise regression46 was applied in detecting inflection points
in the trends of variables, as follows:

y ¼ β0 þ β1t þ ε; t � α

β0 þ β1t þ β2 t � αð Þ þ ε; t > α

�
(2)

where y is the tested variable, t is the year, α is the year of trend
change, β0 is the y intercept, β1 is the linear trend when t is less
than or equal to α, β1+ β2 is the linear trend when t is greater
than α, and ε is the residual of the fit. Least-squares linear
regression was used to test the significance of trends, with the
statistical significance level (p) being assessed by a two-tailed
Student’s t-test, and with p < 0.1 considered significant.

Long-term trend analysis
Least-squares methods were used to evaluate the linear trends of
the studied variables. Its statistical significance level (p) was
assessed by the two-tailed Student’s t-test to verify.

Correlation analysis
The linear correlation coefficient (Pearson’s R) was calculated
between variables to quantify their concurrent and lagged
association. The significance of the correlation, p, was assessed
using a two-tailed Student’s t-test.

Data uncertainties
Due to the bottom-up nature of satellite-based fire detection, the
detection of small fires can be hindered by smoke and cloud
cover29. In addition, the detection capabilities are limited by the
resolution of satellite sensors. These issues have resulted in both
MODIS and GFED4.1s based on MODIS fire products are
considered to be blind to small fires, particularly the small,
smoldering fires related to agricultural activities47. In addition,
emissions from small fires in GFED4.1s are heavily parameter-
ized28. We calculated the proportion of fire carbon emissions
generated by small fires from 2001 to 2016 in relation to the total
fire carbon emissions. The results show that fire carbon emissions
from small fires account for ~20% of the total fire carbon
emissions (Supplementary Fig. 18). This may affect the trend
changes of fire carbon emissions in EQAS.
To improve the robustness of our results and reduce the

uncertainty in estimating small fire emissions based on MODIS fire
products, we conducted top-down estimations of fire carbon
emissions in EQAS using the MOPITT CO observations and
atmospheric inversions. Due to the spatial heterogeneity and
short atmospheric lifetime of CO distribution in the atmosphere,
as well as advancements in atmospheric inversion techniques,
there is potential for using satellite-based CO monitoring to
estimate fire carbon emissions30. Our results indicate that in EQAS,
the monthly estimated fire CO2 emissions using CO inversion and
the estimated fire carbon emissions using GFED4s are highly
consistent (Supplementary Fig. 18a). Both top-down and bottom-
up estimates of fire carbon emissions show a significant decrease
in May and August in EQAS (Supplementary Fig. 18b, c). This
analysis further confirmed the decreasing trend of fire carbon
emissions in EQAS.
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DATA AVAILABILITY
Peatland distribution data are available at https://archive.researchdata.leeds.ac.uk/
251/. The daily CPC-U precipitation data are available at https://
ftp.cpc.ncep.noaa.gov/precip/CPC-UNI_PRCP/. The climate variables of ERA-5 reana-
lysis are available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-land?tab=overview. The 5-day GPCP precipitation data are available at https://
precip.gsfc.nasa.gov/. The monthly CRU temperature data are available at https://
crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/cruts.2205201912.v4.06/tmp/. The
monthly GRACE products are from JPL https://grace.jpl.nasa.gov/data/get-data/ and
CSR http://www2.csr.utexas.edu/grace/RL06_mascons.html. The fire carbon emissions
data are available at http://www.globalfiredata.org. The fire CO2 emissions data are
available at https://figshare.com/articles/dataset/Global_fire_CO2_emissions_2000-
2021/21770624. The 8-day fire counts data are available at https://
search.earthdata.nasa.gov/search?q=C194001243-LPDAAC_ECS. Daily visibility
records are available at https://www.ncei.noaa.gov/access/search/data-search/
global-hourly. CMIP6 model data are available at https://esgf-node.ipsl.upmc.fr/
search/cmip6-ipsl/.

CODE AVAILABILITY
All computer codes for the process and analysis of the data are available from the
corresponding author upon reasonable request. The codes for calculating the
characteristics of the dry seasons are available through the URL: https://github.com/
rjbombardi/onset_demise_rainy_season.

Received: 4 November 2022; Accepted: 15 August 2023;

REFERENCES
1. Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions

across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).
2. Werf, G. R. V. D., Dempewolf, J., Trigg, S. N., Randerson, J. T. & Defries, R. S. Proc.

Natl Acad. Sci. USA 105, 20350–20355 (2009).
3. Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the

tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).
4. Page, S. E. et al. The amount of carbon released from peat and forest fires in

Indonesia during 1997. Nature 420, 61–65 (2002).
5. Chen, Y. et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscil-

lation. Nat. Clim. Change 7, 906–911 (2017).
6. Pan, X., Chin, M., Ichoku, C. M. & Field, R. D. Connecting Indonesian fires and

drought with the type of El Niño and phase of the Indian Ocean dipole during
1979–2016. J. Geophys. Res. Atmos. 123, 7974–7988 (2018).

7. Huang, X. et al. Smoke-weather interaction affects extreme wildfires in diverse
coastal regions. Science 379, 457–461 (2023).

8. Hendon, H. H. Indonesian rainfall variability: impacts of ENSO and local air–sea
interaction. J. Clim. 16, 1775–1790 (2003).

9. Murphy, K. The ENSO-fire dynamic in insular Southeast Asia. Clim. Change 74,
435–455 (2006).

10. Field, R. D., Van Der Werf, G. R. & Shen, S. S. Human amplification of drought-
induced biomass burning in Indonesia since 1960. Nat. Geosci. 2, 185–188 (2009).

11. Fu, R. et al. Increased dry-season length over southern Amazonia in recent
decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA
110, 18110–18115 (2013).

12. Jiang, Y. et al. Widespread increase of boreal summer dry season length over the
Congo rainforest. Nat. Clim. Change 9, 617–622 (2019).

13. Xu, H. et al. Rising ecosystem water demand exacerbates the lengthening of
tropical dry seasons. Nat. Commun. 13, 1–11 (2022).

14. Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show
persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl Acad. Sci.
USA 113, 9204–9209 (2016).

15. Yin, Y. et al. Variability of fire carbon emissions in equatorial Asia and its nonlinear
sensitivity to El Nio. Geophys. Res. Lett. 43, 10472–10479 (2016).

16. Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire
detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).

17. Van Der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth
Syst. Sci. Data 9, 697–720 (2017).

18. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6
(CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958
(2016).

19. Chen, M. et al. Assessing objective techniques for gauge-based analyses of global
daily precipitation. J. Geophys. Res. Atmos. 113, D04110 (2008).

20. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146,
1999–2049 (2020).

21. Xie, P. et al. GPCP pentad precipitation analyses: an experimental dataset
based on gauge observations and satellite estimates. J. Clim. 16, 2197–2214
(2003).

22. Dayem, K. E., Noone, D. C. & Molnar, P. Tropical western Pacific warm pool and
maritime continent precipitation rates and their contrasting relationships with
the Walker Circulation. J. Geophys. Res. Atmos. 112, D06101 (2007).

23. Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature
gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522
(2019).

24. Ma, S. & Zhou, T. Robust strengthening and westward shift of the tropical Pacific
Walker circulation during 1979–2012: A comparison of 7 sets of reanalysis data
and 26 CMIP5 models. J. Clim. 29, 3097–3118 (2016).

25. Gillett, N. P. et al. The detection and attribution model intercomparison project
(DAMIP v1. 0) contribution to CMIP6. Geosci. Model Dev. 9, 3685–3697 (2016).

26. Ayantika, D. et al. Understanding the combined effects of global warming and
anthropogenic aerosol forcing on the South Asian monsoon. Clim. Dyn. 56,
1643–1662 (2021).

27. Putra, E. I. The effect of the precipitation pattern of the dry season on peat fire
occurrence in the Mega Rice Project area, Central Kalimantan, Indonesia. Tropics
19, 145–156 (2011).

28. Randerson, J., Chen, Y., Van Der Werf, G., Rogers, B. & Morton, D. Global burned
area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci.
117, G04012 (2012).

29. Giglio, L., Van der Werf, G., Randerson, J., Collatz, G. & Kasibhatla, P. Global
estimation of burned area using MODIS active fire observations. Atmos. Chem.
Phys. 6, 957–974 (2006).

30. Zheng, B. et al. Record-high CO2 emissions from boreal fires in 2021. Science 379,
912–917 (2023).

31. Field, R. D. & Shen, S. S. Predictability of carbon emissions from biomass
burning in Indonesia from 1997 to 2006. J. Geophys. Res. Biogeosci. 113,
G04024 (2008).

32. Wilcox, L. J. et al. Accelerated increases in global and Asian summer monsoon
precipitation from future aerosol reductions. Atmos. Chem. Phys. 20, 11955–11977
(2020).

33. Ribeiro, K. et al. Tropical peatlands and their contribution to the global carbon
cycle and climate change. Glob. Change Biol. 27, 489–505 (2021).

34. van der Werf, G. R. et al. Interannual variability in global biomass burning
emissions from 1997 to 2004. Atmos. Chem. Phys. 6, 3423–3441 (2006).

35. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-
resolution gridded multivariate climate dataset. Sci. Data 7, 1–18 (2020).

36. Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global
peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).

37. Jones, M. W. et al. Global and regional trends and drivers of fire under climate
change. Rev. Geophys. 60, 1–76 (2022).

38. Ketterings, Q. M., Wibowo, T. T., Van Noordwijk, M. & Penot, E. Farmers’ per-
spectives on slash-and-burn as a land clearing method for small-scale rubber
producers in Sepunggur, Jambi Province, Sumatra, Indonesia. For. Ecol. Manag.
120, 157–169 (1999).

39. Landerer, F. W. & Swenson, S. Accuracy of scaled GRACE terrestrial water storage
estimates. Water Resour. Res. 48, W04531 (2012).

40. Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C. & Landerer, F. W.
Improved methods for observing Earth’s time variable mass distribution with
GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120,
2648–2671 (2015).

41. Giglio, L., Randerson, J. T. & Van Der Werf, G. R. Analysis of daily, monthly, and
annual burned area using the fourth‐generation global fire emissions database
(GFED4). J. Geophys. Res. Biogeosci. 118, 317–328 (2013).

42. O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for
CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

43. Liebmann, B. & Marengo, J. Interannual variability of the rainy season and rainfall
in the Brazilian Amazon Basin. J. Clim. 14, 4308–4318 (2001).

44. Dunning, C. M., Black, E. C. & Allan, R. P. The onset and cessation of seasonal
rainfall over Africa. J. Geophys. Res. Atmos. 121, 11405–411,424 (2016).

45. Bombardi, R. J., Kinter, J. L. III & Frauenfeld, O. W. A global gridded dataset of the
characteristics of the rainy and dry seasons. Bull. Am. Meteorol. Soc. 100,
1315–1328 (2019).

46. Toms, J. D. & Lesperance, M. L. Piecewise regression: a tool for identifying eco-
logical thresholds. Ecology 84, 2034–2041 (2003).

47. Zhang, T., Wooster, M. J., De Jong, M. C. & Xu, W. How well does the ‘small fire
boost’methodology used within the GFED4. 1s fire emissions database represent
the timing, location and magnitude of agricultural burning? Remote Sens. 10, 823
(2018).

S. Wang et al.

8

npj Climate and Atmospheric Science (2023)   129 Published in partnership with CECCR at King Abdulaziz University

https://archive.researchdata.leeds.ac.uk/251/
https://archive.researchdata.leeds.ac.uk/251/
https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/
https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://precip.gsfc.nasa.gov/
https://precip.gsfc.nasa.gov/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/cruts.2205201912.v4.06/tmp/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/cruts.2205201912.v4.06/tmp/
https://grace.jpl.nasa.gov/data/get-data/
http://www2.csr.utexas.edu/grace/RL06_mascons.html
http://www.globalfiredata.org
https://figshare.com/articles/dataset/Global_fire_CO2_emissions_2000-2021/21770624
https://figshare.com/articles/dataset/Global_fire_CO2_emissions_2000-2021/21770624
https://search.earthdata.nasa.gov/search?q=C194001243-LPDAAC_ECS
https://search.earthdata.nasa.gov/search?q=C194001243-LPDAAC_ECS
https://www.ncei.noaa.gov/access/search/data-search/global-hourly
https://www.ncei.noaa.gov/access/search/data-search/global-hourly
https://esgf-node.ipsl.upmc.�fr/search/cmip6-ipsl/
https://esgf-node.ipsl.upmc.�fr/search/cmip6-ipsl/
https://github.com/rjbombardi/onset_demise_rainy_season
https://github.com/rjbombardi/onset_demise_rainy_season


ACKNOWLEDGEMENTS
This work is financially supported by the Cross Team Project of the “Light of West
China” Program of Chinese Academy of Sciences (No: E0284101), and the National Key
Scientific Research and Development Program of China (Grants 2017YFA0603604).

AUTHOR CONTRIBUTIONS
B.H. designed the study. S.F.W. performed analysis. B.H. and S.F.W. drafted the paper.
H.W.C., D.L.C., Y.N.C., W.P.Y., F.S., J.P.D., W.W., T.X.C., L.L.G., Z.Q.Z., W.L.D., Z.Li, W.G.J.,
L.H., X.M.H., R.T., H.M.L., Y.F.Z., and X.M.X. improved the study.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41612-023-00455-7.

Correspondence and requests for materials should be addressed to Bin He.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

S. Wang et al.

9

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2023)   129 

https://doi.org/10.1038/s41612-023-00455-7
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Fire carbon emissions over Equatorial Asia reduced by shortened dry seasons
	Introduction
	Results and discussion
	Increased precipitation and shortened dry seasons
	Changes in dry season length regulate fire season length
	Early dry season suppression of fire carbon emissions by increased precipitation
	Projection of future precipitation and dry season changes

	Methods
	Study area
	Climate data
	GRACE data
	Fire data
	Future precipitation data
	Defining dry and fire seasons
	Inflection point analysis of variables
	Long-term trend analysis
	Correlation analysis
	Data uncertainties

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




