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Lightning nowcasting with aerosol-informed machine learning
and satellite-enriched dataset
Ge Song1, Siwei Li1,2,3✉ and Jia Xing4

Accurate and timely prediction of lightning occurrences plays a crucial role in safeguarding human well-being and the global
environment. Machine-learning-based models have been previously employed for nowcasting lightning occurrence, offering
advantages in computation efficiency. However, these models have been hindered by limited accuracy due to inadequate
representation of the intricate mechanisms driving lightning and a restricted training dataset. To address these limitations, we
present a machine learning approach that integrates aerosol features to more effectively capture lightning mechanisms,
complemented by enriched satellite observations from the Geostationary Lightning Mapper (GLM). Through training a well-
optimized LightGBM model, we successfully generate spatially continuous (0.25° by 0.25°) and hourly lightning nowcasts over the
Contiguous United States (CONUS) during the summer season, surpassing the performance of competitive baselines. Model
performance is evaluated using various metrics, including accuracy (94.3%), probability of detection (POD, 75.0%), false alarm ratio
(FAR, 38.1%), area under curve of precision–recall curve (PRC-AUC, 0.727). In addition to the enriched dataset, the improved
performance can be attributed to the inclusion of aerosol features, which has significantly enhanced the model. This crucial aspect
has been overlooked in previous studies. Moreover, our model unravels the influence of aerosol composition and loading on
lightning formation, indicating that high aerosol loading consisting of sulfates and organic compounds tends to enhance lightning
activity, while black carbon inhibits it. These findings align with current scientific knowledge and demonstrate the immense
potential for elucidating the complex mechanisms underlying aerosol-associated lightning phenomena.

npj Climate and Atmospheric Science           (2023) 6:126 ; https://doi.org/10.1038/s41612-023-00451-x

INTRODUCTION
Lightning, a prominent cause of natural human fatalities, poses a
significant threat to modern society, resulting in over 4000 deaths
globally each year1,2. Additionally, it leads to significant economic
losses, with the United States alone experiencing around 1 billion
US dollars in damages annually. Timely and accurate prediction of
lightning occurrences plays a vital role in facilitating emergency
preparedness and protective measures. Moreover, lightning serves
as a primary natural source of nitrogen oxides, thereby exerting
considerable influence on atmospheric chemistry3, underscoring
the criticality of lightning prediction in safeguarding human well
being and the global environment.
Lightning commonly occurs during the formation of thunder-

storms, which are typically characterized by high moisture levels
and an unstable atmosphere4–8. Numerical models can explicitly
simulate lightning formation by incorporating parameterized
microphysics processes9,10. However, current numerical models
struggle to strike a balance between high lightning detectability
and low false alarm rates (FAR), thereby limiting their applicability
in lightning forecasting11–13. Additionally, the computational
demands of lightning simulation within numerical models impede
the efficiency of lightning nowcasting, where timeliness is crucial
in domains such as aviation and manufacturing. In contrast,
observation-based data-driven lightning models have emerged as
efficient methods for achieving accurate lightning nowcasts,
leveraging ground-truth samples at a lower computational cost.
For example, Mostajabi et al.14 were pioneers in exploring data-
driven models for lightning nowcasting in the future hour with
remarkable accuracy by solely utilizing weather variables.

Furthermore, the inherent capacity of machine learning models
to capture nonlinear characteristics enables high performance
even with simple and practical feature inputs. So far, a series of
machine learning models have been explored to predict the
occurrence of lightning with meteorological variables either from
weather station, or assimilated meteorological model and weather
radar, including artificial neural network and decision tree15, light
gradient-boosting machine (LightGBM)16, support vector
machines and random forest17 and long short-term memory
recurrent neural network18. Current machine learning models
demonstrate high efficiency; however, they still encounter
challenges with high FAR at high probability of detection (POD)
levels17. This limitation may be attributed to insufficient training
datasets and incomplete feature data utilized in previous models,
which will be thoroughly elucidated in subsequent sections.
First, previous studies primarily relied on ground-based light-

ning detection networks and sensors onboard polar orbit
satellites, which exhibit significant limitations in terms of detection
efficiency and spatial coverage per overpass, thereby constraining
the accuracy of observation-based models for lightning predic-
tion19–22. Along with the development of the geostationary
satellites, real-time monitoring lightning occurrence across the
space becomes available. Particularly, the sensor Geostationary
Lightning Mapper (GLM) onboard the Geostationary Operational
Environmental Satellites (GOES) can capture the detailed char-
acteristics of lightning occurrence at full spatiotemporal coverage
to support analysis including diagnosis of the current numerical
models23,24, investigation on the association of natural events in
the climate system25–27 and risk prevention28,29. Such high

1Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, 430000 Hubei,
China. 2State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China. 3Hubei Luojia Laboratory, Wuhan
University, 430000 Hubei, China. 4Department of Civil and Environmental Engineering, the University of Tennessee, Knoxville TN 37996, USA. ✉email: siwei.li@whu.edu.cn

www.nature.com/npjclimatsci

Published in partnership with CECCR at King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00451-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00451-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00451-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-023-00451-x&domain=pdf
https://doi.org/10.1038/s41612-023-00451-x
mailto:siwei.li@whu.edu.cn
www.nature.com/npjclimatsci


detection efficiency of cloud-to-ground (CG) and intracloud (IC)
lightning derived from GLM has great potentials to provide
reliable lightning occurrence record30 for the observation-based
model for lightning prediction.
Second, a crucial limitation of current machine learning models

for lightning prediction is their exclusive reliance on meteorolo-
gical information, neglecting the significant influence of aerosols
on lightning patterns. However, observational studies have
demonstrated the substantial impact of aerosols on lightning
formation31,32. On the one hand, aerosols can stimulate convec-
tion, promoting particle collision and enhancing charge dissipa-
tion. On the other hand, aerosols possess notable radiative
properties that suppress particle activation33–36. Furthermore,
distinct aerosol components exhibit diverse pathways of influence
on lightning discharges37. Therefore, incorporating detailed
aerosol information becomes essential to enhance the perfor-
mance of lightning prediction models. Satellite-based measure-
ments provide real-time monitoring of aerosol chemical
components at a comprehensive spatiotemporal scale. Addition-
ally, studies have indicated a close relationship between near-
surface aerosols and PM2.5, enabling timely monitoring of near-
surface aerosol distribution38,39. By leveraging well-designed
machine learning models that incorporate aerosol information
and utilizing satellite-enriched datasets, significant improvements
in lightning prediction performance are anticipated.
In this study, we aimed to enhance the existing lightning

nowcasting model by incorporating aerosol information, specifi-
cally the aerosol optical depth and composition, in addition to
conventional meteorological variables and ground-based net-
works. Furthermore, we utilized observations from geostationary
satellite as the primary data source and the label for the lightning
nowcasting model, considering their stability and data availability.
The evaluation results were assessed using common metrics of
nowcasting and forecasting research. Our findings demonstrate
the effectiveness of aerosol-informed machine learning in
predicting lightning occurrences within the next hour, while also
providing valuable insights into the role of aerosols in lightning
formation.
This paper is organized as follows. In the following section, we

present the results and analysis of the lightning nowcasting model
we proposed, utilizing aerosol information and geostationary
satellite observations. Subsequently, we proceed with a discussion
of the findings and draw our conclusions.

RESULTS
Performance and transferability of prediction model
To train and validate the lightning prediction model, we collected
a lightning database comprising observations from Geostationary
Lightning Mapper (GLM) onboard geostationary satellite (GOES-
16). The data was labeled based on the presence or absence of
lightning activity. In addition, meteorological and aerosol data
were obtained from forecast products provided by the Copernicus
Atmosphere Monitoring Service (CAMS) and used as the input
features for the model. Various validation schemes and evaluation
metrics were employed to assess the performance of the model.
Detailed information regarding to the validation methods can be
found in the Methods section, while Table 1 presents the
evaluation parameters and metrics used. Figure 1 illustrates the
performance of the proposed lightning prediction model, which
was trained and cross-validated during the summer of 2020. The
precision–recall curve in the figure depicts the tradeoff between
precision and recall at difference thresholds (labeled as “Cross-
validation in summertime 2020” in Fig. 1). The model exhibited
promising lightning nowcasting ability, as evidenced by a PRC-

Table 1. Parameters and evaluation metrics of model prediction skill.

Parameters
acronym

Full name Definition Expression

TP True Positive Number of correctly predicted lightning-active samples -

FP False Positive Number of lightning-inactive samples wrongly predicted as
lightning-active

-

FN False Negative Number of lightning-active samples wrongly predicted as
lightning-inactive

-

TN True Negative Number of correctly predicted lightning-inactive samples -

POD Probability of Detection Proportion of correctly detected lightning-active samples TP
TPþFN

FAR False Alarm Ratio Proportion of samples predicted as lightning-active but no
lightning is observed

FP
TPþFP

CSI Critical Success Index Ratio of correct prediction of lightning-active samples to all
predictions that need or are made as lightning-active

TP
TPþFPþFN

HSS Heidke Score Skill A measure to evaluate the fractional improvement of the
forecast over the forecast merely due to chance

2´ ðTP´ TN�FP´ FNÞ
ðTPþFNÞ ´ ðFNþTNÞþðTPþFPÞ ´ ðFPþTNÞ

PRC-AUC Area Under Curve of
Precision–Recall Curve

Summary of model binary responses regarding to different
thresholds

-

Accuracy - Proportion of correctly prediction samples TPþTN
TPþFPþFNþTN

Fig. 1 Evaluation of the lightning prediction model presented by
precision–recall curve. The model is evaluated under two schemes:
10-fold cross-validation and out-of-sample validation with testing
set from summertime 2021.
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AUC of 0.727 for the LightGBM model. Notably, the shape of the
precision–recall curve indicates that the model can maintain a low
proportion of false alarm predictions when higher precision is
desired. Specifically, at a threshold where model achieves a POD
of 75%, a common level in existing models, the FAR was
determined to be 38%. Comparing the precision–recall curve of
this LightGBM model with that of a random classifier highlights
the model’s ability to effectively distinguish between lightning
and non-lightning cases.
We further conducted an evaluation of the proposed model

regarding its transferability, which refers to the ability of the
trained model to be applied to a different temporal range of
interest. In this validation scheme, the model was trained using
datasets from summertime 2020 and subsequently tested on data
from summertime 2021. Figure 1 illustrates the performance of
the model when applied to summertime 2021 (labeled as “Out-of-
sample validation in summertime 2021” in Fig. 1). Notably, little
contrast is observed compared to the performance in summer-
time 2020. The transferred model exhibits a slightly reduced PRC-
AUC of 0.699 compared to its application in 2020. This indicates
excellent model transferability, implying the model’s potential to
be incorporated into parameterization models and used for
interpreting lightning occurrence during numerical simulation in
the future.
To evaluate the effectiveness of the proposed lightning

prediction model compared to commonly used baseline models,
namely the Persistence model and the CAPE model (as described
in detail in Supplementary Method 1), we conducted a
comprehensive model intercomparison. Evaluation of these
models is based on established metrics used in previous studies
to compare lightning occurrence models, namely POD, FAR,
Critical Success Index (CSI), and Heidke Skill Score (HSS). The
results are presented in Fig. 2, where the proposed model
achieves the highest POD (0.75 for this model, 0.53 for the
Persistence model, and 0.47 for the CAPE model), CSI (0.53 for this
model, 0.37 for the Persistence model, and 0.13 for the CAPE
model), and HSS (0.66 for this model, 0.55 for the Persistence
model, and 0.20 for the CAPE model). Additionally, the proposed
model exhibits the lowest FAR (0.38 for this model, 0.45 for the
Persistence model, and 0.85 for the CAPE model), indicating its

superior ability to accurately capture lightning occurrence and
outperform the baseline prediction approaches.
In order to emphasize the spatial effectiveness of the lightning

prediction model across the CONUS, the spatial distribution of two
key metrics, POD and FAR, are presented using validation datasets
in Fig. 3a, b. The results demonstrate that both metrics exhibit
higher values in the southeastern CONUS, which aligns with
regions characterized by elevated lightning density. Furthermore,
it is observed that the spatial distribution of model performance
correlates with the distribution of lightning density, as depicted in
Fig. 3c. Specifically, regions with sparse lightning occurrence
exhibit lower POD values, reaching approximately 30% in areas
where flash densities fall below 0.05 flashes per square kilometer.
This phenomenon can be attributed to the imbalanced dataset
used in the machine learning process, where samples with
infrequent lightning occurrences may contribute to the lower
performance in these regions.

Improvement from enriched dataset from GLM
Previous studies have indicated that machine-learning-based
lightning prediction models, which utilize data from radar and

Fig. 2 Evaluation of the applicability of lightning occurrence in
CONUS by comparing this model with other baseline models. The
baseline models include the Persistence model, CAPE model, data-
deplete model which is trained with lightning mapping array (LMA)
and model without aerosol as input. The evaluation metrics include
POD, FAR, CSI and HSS.

Fig. 3 Distribution of model performance in CONUS, and
distribution of lightning densities during 2020 summertime.
a Spatial distribution of recall (POD) in CONUS; b spatial distribution
of precision (1-FAR) in CONUS; and c the spatial distribution of
lightning density during 2020 summertime.
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ground-based lightning networks, demonstrate moderate now-
casting skills. In this study, we present an enhancement to the
model’s accuracy by incorporating data-enriched observations
from GLM onboard the geostationary satellite GOES-16, which
provides full spatial coverage. We compare the proposed model
and the lightning prediction model simulated on the basis of the
publicly accessible lightning mapping array (LMA) observations
(labeled as “data-deplete”model in the following), which has been
widely investigated to study the lightning patterns40,41. In
comparison to the proposed model (data-enriched model), the
data-deplete model utilizes observations from LMA to predict the
lightning. Details of the LMA and their corresponding center
locations are explained in Supplementary Method 2 and
presented in Supplementary Table 1. Figure 2 illustrates the
superior performance of the data-enriched model compared to
the data-deplete model across all evaluation metrics. Although the
POD of data-enriched model (75%) is only slightly higher than
data-deplete model (72%), the FAR of data-deplete model (56%) is
significantly higher than that of the data-enriched model (36%).
Additionally, the CSI and HSS for the data-deplete model (38% and
48% respectively) indicate inherent deficiencies in the model
without the enrichment provided by geostationary satellite
observations.
Such improvement in model performance is also attributed to

the detection stability offered by the geostationary satellite
observations. In comparison to space-borne observations, the
ground-based detection network exhibits a decreasing detection
efficiency as the distance from the network center increases. We
demonstrate that the data-deplete model experiences a decline in
accuracy with increasing distance from the center of the network,
as depicted in Supplementary Figure 1. Specifically, the model’s
CSI decreases by 0.78% and the FAR increases by 1% per 50 km
away from the network center. The slopes of model metrics
regarding to the distance have been determined to be statistically
significant on a one-tailed t-test with p-value of less than 0.05. The
performance of the model based on LMA becomes increasingly
limited in regions where no local LMA equipment is available due
to its dependency on distance. In contrast, the enhanced stability
provided by observations from geostationary satellites protects
the prediction model from reduced robustness and expands its
applicability to a broader range of regions.

Aerosol enhances the predictability of lightning occurrence
Numerous studies have documented the impact of aerosols on
long-range lightning occurrence, with different aerosol compo-
nents exhibiting distinct effects, either suppressing or enhancing
lightning activity37,42,43. This study analyzes the diurnal variability
of lightning and aerosols, aiming to uncover the temporal patterns
of lightning occurrence and aerosol behavior. According to
Supplementary Fig. 2, the distribution of lightning occurrence
exhibits a pronounced preference for the afternoon and evening
hours, with limited observations during the morning hours. This
distinct temporal pattern indicates that predictors with temporal
characteristics possess the potential to forecast lightning occur-
rences. The diurnal variation of aerosol optical depth (AOD), as
depicted in Supplementary Figure 2b, aligns with the pattern
observed for lightning occurrence. This consistency suggests that
aerosol information can serve as a reliable temporal predictor for
lightning events. We further fitted the anomalies of diurnal
variability with mean lightning density in the hours when the
mean lightning density exceeds 0.001 flash/km2, a high correlation
(Pearson’s r= 0.897) is observed as in Supplementary Fig. 2d,
while a lower correlation for temperature (Pearson’s r= 0.772) as
in Supplementary Figure 2e. To further explore the indication
effect of multiple factors, a Time lagged cross correlation (TLCC)
analysis is used to reveal the time-series indication effect of these
factors44. As shown in Supplementary Fig. 3, AOD exhibits

outstanding synchronicity with the lightning occurrence with no
offset and maintains high correlation at offset of −1 h, indicating
the trend of AOD can both well mark the trend of lightning
occurrence at the current moment and predict the lightning
occurrence in the following hour, while meteorological variables
including relative humidity (offset of +4 h) and temperature
(offset of −2 h) show inferior indication of lightning occurrence.
Thus, aerosol observations show great potential to indicate the
occurrence of lightning in terms of temporal variation.
Consequently, enhanced lightning prediction performance can

be anticipated through the utilization of better-designed machine-
learning models incorporating aerosol information. The perfor-
mance of models with and without aerosol information is
compared in application scenarios where a high POD is required,
as shown in Fig. 4. When the POD threshold is below 70%, the
contribution of aerosol information to the predictability of
lightning is minimal. This phenomenon can be attributed to the
information contributed by meteorological data and historical
lightning records. These additional sources of information aid in
capturing the spatial and temporal patterns of lightning
occurrences, thereby reducing the influence of aerosol. However,
at higher levels of POD, the significant contribution of aerosol
information becomes more prominent, dominating the prediction
performance. When the POD threshold is set above 75%, the
difference in correct rejection rates between models with and
without aerosol information exceeds 10%. This indicates that
aerosol data provides valuable information for lightning predic-
tion, as evidenced by the improved correct rejection rates as the
demand for POD increases. However, achieving precise predic-
tions of lightning occurrence with a high POD above 80% remains
challenging without a thorough understanding of the intricate
mechanisms involving aerosols and other factors that quantify the
complete process of lightning formation. While the results suggest
that aerosol information can enhance the predictability of
lightning, there is still room for further improvement in the
model’s performance. This can be achieved by incorporating
additional quantifiable features related to the formation of
lightning.
The statistical distribution of AOD is depicted in Fig. 5a,

revealing that in the majority of cases, AOD values are below 0.2,
accounting for approximately 80% of the total cases. The analysis
then focused on the relationship between model performance
and aerosol loading, as illustrated in Fig. 5b. As AOD increases up

Fig. 4 Differences of model performances at difference POD
levels. The two models (with and without aerosol information as
model input) are compared in terms of the correct rejection rate
(1-FAR) given different conditions of POD.
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to 0.2, both models demonstrate an improvement in terms of CSI
and FAR. In comparison to the model without AOD, the proposed
model exhibits better robustness, with the FAR ranging from 30%
to 50%, while the other model struggles to predict lightning
occurrences with a FAR exceeding 50% for AOD values below 0.1,
which represents around 40% of the total cases. The difference in
CSI between the models remains consistently significant in low
AOD situations. However, as AOD increases to 0.4, the contrast
between the two models gradually diminished. As AOD continues
to rise, potentially indicating an air pollution event, the
discrepancy in model performances further expands. At this
stage, the inclusion of aerosol information can reduce approxi-
mately 40% of false warning reports.
Aerosol observations have a significant impact the temporal

variability of model performance. As depicted in Fig. 5d, the
lightning prediction model with AOD demonstrates stable
performance throughout the day. During local hours before
2 pm, both models exhibit only minor differences. However, after
2 pm, aerosol features play a crucial role in improving the model
performance. The inclusion of aerosol information results in a
reduction of FAR by 0.10–0.15 after 2 pm, indicating that 25% of
false early warnings are avoided by considering aerosol features.
Similarly, for CSI, the aerosol information contributes to an
elevation of CSI with by 0.05–0.10. It is important to note that
the time period during which the model’s performance is
enhanced by aerosol information (3–11 pm) does not entirely
overlap with the time range of relatively high lightning occurrence
(6 pm–2 am). This suggests that the aerosol information does not
directly indicate the immediate occurrence of lightning but rather
provides insight into the trend of future lightning occurrence. This
observation aligns well with the finding presented in Supplemen-
tary Fig. 3.
The contribution of aerosol observations exhibits varying

patterns across different regions. Supplementary Figure 4
illustrates the model’s enhancement through aerosol observations
in CONUS. In most regions, aerosols demonstrate a positive impact
on the POD of the lightning prediction model, particularly in the
southeastern and Midwestern regions of CONUS. The significance
of aerosols becomes evident in the southeastern CONUS, which
experiences the highest flash densities. The results indicate that
the occurrence of lightning becomes more detectable with the aid
of aerosol observations, resulting in a remarkable enhancement of
approximately 10%. Regarding the reduction in FAR due to

aerosols, the distribution of model enhancement follows similar
patterns to those observed in terms of the POD and CSI, with the
southeastern and Midwestern CONUS regions benefiting the most
from aerosol observations. However, there are still certain areas
where the incorporation of aerosol features could potentially
impair the model’s performance, especially in the west coast
regions. This could be attributed to different aerosol effect
regimes, particularly the spatial distribution of aerosols (e.g., black
carbon from wildfires45) on the west coast.

Contribution of aerosol components by model interpretation
The Shapley Additive ExPlanation Approach (SHAP) method serves
as a valuable tool for interpreting machine learning models and
analyzing their features. Figure 6 presents a feature importance
analysis, revealing the top 10 features that contribute the most to
lightning prediction. The complete names corresponding to the
feature acronyms can be found in Supplementary Table 2. Among
these variables, flash density emerges as the strongest predicator
of lightning, while the importance of aerosol components varies.
Sulfate stands out as the most influential predictor for lightning
occurrence, followed by sea salt, black carbon and organic
compounds, which display moderate importance in the predic-
tion. The contribution of aerosol composition and optical depths
underscores their high relevance in lightning prediction. Weather
variables, traditionally used as predictors of lightning, exhibit
moderate ability to nowcast lightning. For instance, relative
humidity demonstrates the highest predictability among weather
variables, aligning with previous knowledge of lightning formation
mechanisms and further supporting the notion that lightning
occurrence favors high moisture levels4–8. The SHAP analysis
proves to be a valuable tool in identifying whether aerosol
composition positively or negatively affects lightning occurrence.
Increasing levels of aerosols components such as sulfate, organic
compound and sea salt correspond to higher SHAP values,
indicating their interpretation as enhancing factors for lightning
according to the machine learning model. Conversely, black
carbon exhibits a negative effect on lightning occurrence. Such
results are consistent with previous research on the impact of
aerosol components on lightning46,47. A more detailed compar-
ison and analysis with the existing knowledge base is provided in
the Discussion section. Consequently, optimizing the prediction
model necessitates a combination of aerosol characterization and
weather variables.

Fig. 5 The model performance regarding AOD and local hours for model with and without aerosol information. a Histogram of data
samples in terms of AOD; bmodel performance in terms of CSI at different AOD levels for the models with and without aerosol information as
input; c histogram of data samples in terms of the local hour; d diurnal distribution of the model performance in terms of CSI for the models
with and without aerosol information as input.
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DISCUSSION
In this study, we propose a highly accurate observation-based
data-driven model for lightning occurrence prediction, utilizing
the LightGBM gradient boosting framework. Our model integrates
aerosol observations and meteorological variables, making it one
of the most precise lightning prediction models currently available
(accuracy = 94.3%, POD= 75%, FAR= 38%, AUC= 0.727). By
incorporating previous observational and modeling studies
examining the relationship between aerosols and lightning, we
demonstrate the significant impact of aerosols on lightning
prediction. Aerosols primarily influence lightning through their
microphysical and radiative properties. Previous studies have
explored various models for lightning occurrence nowcasting,
including numerical simulations and machine learning
approaches. However, these approaches have not yet achieved
the desired level of model performance. Numerous studies have
identified increased lightning flash densities in metropolitan areas
or downwind regions, partially attributable to the microphysical
effects of aerosols48,49. Regional case studies, particularly in
northern and central Africa, have also reported the influence of
different aerosol types on lightning35. These studies highlight that
the dominant effects of aerosols, whether microphysical or
radiative, depends on the aerosol type, ultimately affecting
lightning rates through aerosol loading. However, in the CONUS
the variability in aerosol loading and composition is much higher
than in previous studies, posting challenges in statistically
disentangling the effects of aerosol types and loading alone.
Interpretable machine learning, capable of capturing complex
non-linear relationships within the model, offers a suitable tool for
analyzing the contribution of aerosol compositions. In this study,
leveraging enriched observations from the GLM and employing an
interpretable machine learning model, feature analysis provides
insights into the influence of aerosol compositions on lightning
occurrence. The analysis consistently reveals a negative impact of
black carbon species in aerosols on lightning frequencies, aligning
with theoretical studies emphasizing the heating effect of black
carbon, leading to convection changes and inhibiting lightning
occurrence35,50,51 . Furthermore, the analysis underscores the
significant feature importance of sulfate aerosols, which is in
agreement with previous reports46. As indicated by Jin et al.52,
sulfate aerosols promote ice-phase microphysical processes,

intensifying lightning activity. Regardless of aerosol composition,
a negative contribution to lightning occurrence is observed when
AOD exceeds a certain threshold, supporting observations by Shi
et al.53. Our proposed model also identifies sea salt aerosols as
stimulants for lightning occurrence, although recent reports
suggest that the behavior of sea salt aerosols varies depending
on particle modes37. This discrepancy may be attributed to the
relatively lower sea salt aerosol loading in the CONUS compared
to maritime conditions, combined with the predominance of fine-
mode aerosols on land. Overall, the feature analysis demonstrates
strong agreement with theoretical and modeling studies of
lightning occurrence, offering a potential approach for parame-
terizing lightning occurrence in numerical models in the future.
The Result section has analyzed the applicability of the

proposed model based on the meteorological conditions and
aerosol information. The model demonstrates strong performance
in regions with high lightning densities and moderate and high
aerosol loading. Given that the regions with high demand for
lightning protection largely coincide with the regions where the
model performs well, it can effectively applied in areas where a
precise lightning prediction model is urgently needed to mitigate
economic losses caused by extreme lightning events. However,
the model exhibits limited accuracy in regions with low lightning
frequencies or low aerosol loading, primarily observed in the
western CONUS. In these regions, many cases have been found to
have high uncertainty in predicting lightning occurrence. This
reduced applicability can be attributed to the models’ limited
ability to handle the imbalanced dataset between lightning-active
and lightning-inactive cases. Despite efforts made in this study to
address this imbalance issue, such as Focal Loss as a replacement
for the conventional loss function, this challenge still restricts the
application of the prediction model in lightning-sparse regions. To
improve the model’s applicability in the western CONUS, future
enhancements in machine learning models should focus on
addressing the imbalance issue. By tacking this challenge, the
model’s performance and applicability in regions with low
lightning frequencies can be enhanced.
The development of data-driven models heavily relies on the

quality of observation datasets. In the context of aerosol
observations, the current data is obtained from CAMS forecast
products, which incorporate real-time satellite observations into

Fig. 6 Feature importance demonstrated by SHAP value of the machine learning model. The feature importance is ranked by the mean
absolute SHAP value of the features.
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numerical models to simulate atmospheric composition. In this
study, we propose the utilization of real-time aerosol observations
as predictors for lightning occurrence. Ideally, direct observations
of aerosols from satellites would accurately capture aerosol
composition and enable precise lightning prediction. However,
existing aerosol products face limitations due to incomplete
satellite imagery and inadequate coverage of valid aerosol
information. As advancements in satellite retrievals for aerosols
continue to evolve, it is expected that real-time aerosol-based
lightning prediction models will exhibit improved performance.

METHODS
Lightning occurrence observations from GLM
In this study, the dataset of lightning occurrence observations is
retrieved from the GLM onboard GOES-16 geostationary satellite,
which is a satellite-borne single channel, near-infrared optical
transient detector54–56. The GLM is the sensor onboard a
geostationary satellite that can be used to map total lightning
flashes with continuous regional observations and fine spatial
resolution. The high-resolution GLM sensor (1372 × 1300 pixels) is
equipped with a Charge Coupled Device (CCD) with a narrow
band interference filter operating in the near infrared range
(777.4 nm), with wide field of view (FOV) covering most of western
hemisphere57. The spatial resolution of GLM is 8 km in the nadir,
reaching 14 km at the edges, and it records lightning every ~2ms
and delivers compiled data file every 20 s58,59. GLM provides three
levels of observations: events, groups and flashes, representing
the individual illumination with resolution of 2 ms, lightning
events in the same 2-ms time window and lightning groups that
overlap within 15 km in space 330ms in time, respectively
(Goodman et al., 2013). In this study, we utilized flash level of
GLM products to label the occurrence of lightning within a pixel.
The GLM flash products detect all forms of lightning continuously,
with a fine spatial resolution and detection efficiency of over
70%30. In this study, we retrieved the GOES-R Series GLM L2+ Data
Product (GRGLMPROD) for our analysis. Owing to the above
advantages of GLM, observation of the concentrated region that
includes the contiguous United States with lightning detection
with high temporal resolution (20 s) and full spatial coverage is
possible for enriching the valid samples for observation-based
data-driven lightning prediction model. Figure 3 depicts the
summertime distribution of lightning density across CONUS. The
majority of the lightning flashes occur in the southeastern CONUS,
while the western CONUS does not observe frequent lightning
flashes over the study period. The coastal regions in the
southeastern CONUS show a higher record of lightning occur-
rences than the inland regions. The highest lightning flash density
lies in Florida (mean value of 6.40 flash/km2 and standard
deviation of 5.79 flash/km2).

Aerosol observation
To best characterize aerosols with full spatial coverage, the aerosol
information utilized in this model consists of the aerosol optical
depth of five aerosol components (including black carbon, dust,
organic carbon, sulfate and sea salt), and the surface PM2.5

concentration which represent the lower aerosol level as
supplementary of the aerosol vertical information. In order to
fulfil nowcasting of lightning occurrence, forecast products of
aerosols are obtained in this study. The optical depth of individual
aerosol component is obtained from Copernicus Atmosphere
Monitoring Service (CAMS) global atmospheric composition
forecast products60,61. The dataset is an hourly-level product
provided by real-time forecasting service from the assimilation by
combining a previous forecast with current satellite observations.
The real-time spatially continuous and hourly-level PM2.5

dataset is obtained following a published method by Zeng62,
which uses machine learning models to estimate hourly-level
spatially continuous surface PM2.5 based on meteorological
conditions and auxiliary information. In this method, the funda-
mental in-situ measurements are obtained from Air Quality
System (AQS) monitoring network operated by United States
Environmental Protection Agency. The datasets are validated by a
10-fold cross-validation method with R2 of 0.791 and RMSE of
4.33 μg/m3, shown in Supplementary Fig. 6a. Supplementary
Figure 6b shows the mapped distribution of PM2.5 with spatial
continuity as a result of the model estimation.

Meteorological variables
Same as the previous studies14,17, six meteorological factors that
have certain indications on lightning are selected in the prediction
model, including surface pressure (SP), temperature at 500 hPa
(T500), relative humidity at 500 hPa (SH), 10 m U-component wind
speed at 500 hPa (UW), 10 m V-component wind speed at 500 hPa
(VW)63. To be consistent with the AOD, the selected meteorolo-
gical factors are obtained from the same dataset of CAMS global
atmospheric composition forecasts to avoid any error caused by
the heterogeneity of data sources.
Both CAMS aerosol composition forecast and meteorological

forecast interpolated to grids of 0.25° × 0.25° and one-hour
temporal level by bilinear interpolation. The statistics of all
variables included in the dataset are shown as Supplementary
Table 2.
With the completion of data collection, the GLM dataset and

CAMS products are pre-processed by gridding to 0.25°, followed
by data filtering where suspicious noises and outliers are removed
from the dataset. The noises and outliers are defined as the
lightning occurrence whose flash is recorded less than five times
in 5 min (approximately in 15 files), considering the intrinsic spatial
and temporal continuity of lightning flash.

Fig. 7 Flowchart of the LightGBM model. Flow of the model as to integrate the meteorological, aerosol and auxiliary dataset into the
LightGBM model, and to generate the prediction of lightning occurrence in the future hour.
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Lightning prediction model
In this study, we selected the LightGBM model to forecast the
occurrence of lightning in the next hour (Fig. 7), considering its
excellent performance in classification tasks while maintaining low
computation cost.
As a highly efficient ML-model based on the Gradient Boosting

Decision Tree, the LightGBM has been widely applied owing to its
advantages of low computation cost and high learning accuracies,
especially when processing large and complex datasets64. Given
the large hourly and spatially continuous dataset for lightning
prediction, LightGBM is considered the most suitable tool due to
greatly reduced computation processing time and high accuracy.
The hyperparameters of the LightGBM model were optimized

using a grid search strategy, where various combination of
hyperparameters were tested in batches. The best combination of
hyperparameters was selected based on the results of these tests.
The optimized hyperparameter settings can be found in
Supplementary Table 3.
To address the potential data unbalance problem (low fraction

of lightning-active cases in the total cases), focal loss function is
implemented in the lightGBM model, with the expression of loss
function in Eq. (1). The weighting hyperparameters α and γ were
introduced in the LightGBM layer to emphasize the misclassified
positive classes. In our optimization process, we set α= 0.75 and
γ= 0 (in Supplementary Fig. 5) to achieve the desired balance
between precision and recall in the model’s predictions.

L ¼ �α 1� ptð Þγ log ptð Þ (1)

where:

pt ¼
p; if y ¼ 1

1� p; otherwise

�

The parameters y denotes the ground-truth class and p denotes
the model’s estimated probability for the class with label y= 1.
The LightGBM model can be expressed as Eq. (2), where the

subscript t represents the current moment, while the t+ 1
represents the lightning status in the subsequent hour, which is
the target of prediction. The model prediction result is a binary
classification result, where 0 represents no lightning occurrence
and 1 represents lightning occurrence within the next hour. The
temporal information is captured through the inclusion of the day
of year (DOY) and local hour (HH) as features. To address the
significance of aerosols, the Eq. (3) removes the information on
aerosols to predict the lightning occurrence and compares with
Eq. (2).

½LNtþ1 ¼ LightGBM DOY;HH; T500t; SPt;UWt; VWt; SHt; BCt;ð
OCt;DUSTt; SSt; SO4t; PM2:5t; FlashtÞ�

(2)

½LNtþ1 ¼ LightGBMðDOY;HH; T500t; SPt;UWt; VWt; SHt; FlashtÞ�
(3)

Model evaluation schemes
The study period is 2020 summer (June, July and August) when
lightening is the most frequent across a year, and there are
37,415,530 records for training and testing the LightGBM model.
We also evaluated the model’s transferability by testing it on the
2021 summertime dataset, even though it was trained solely on
the 2020 summertime dataset.
In this study, the model performance is evaluated by 10-fold

day-based cross-validation method, which is a common evalua-
tion approach to assess the model’s overall performance. In each
fold, datasets are divided into consecutive days spanning
approximately 1/10 of total study period and subsequently)
assigned as testing set while other data samples are assigned as

training set. Then, the LightGBM machine learning model is
trained with the training set and its performance is evaluated on
the testing set. The process repeats for 10 times until all samples
have been assigned as testing set for once. The overall
performance of the model is determined by taking the average
of all 10 runs.

Feature importance by interpretable machine learning
module
To interpret the machine learning model and address the insight
of the features, the Shapley Additive ExPlanation Approach (SHAP)
method is applied on the LightGBM model (M1). SHAP has been
widely used in recent studies to interpret the neural-network-
based and tree-based machine learning models65–67. The SHAP
approach distributes the total gains among the players based on
coalitional game theory68. The SHAP can retrieve the quantitative
contribution of each feature in each sample for a well-trained
machine learning model, which can explain the machine learning
model and interpret the importance of feature to a sample-
specific view. In the SHAP theory, the different of a model
prediction by a variable is contributed by its marginal contribu-
tion. Considering the interactive effects between the variables,
every possible variable combination of each sample is com-
puted69. Thus, the results can be interpreted as a linear
summation of feature attributions, as expressed in Eq. (4). By
interpreting the LightGBM model with SHAP, we can obtain the
individual contribution of each feature to the occurrence of
lightning, and the relative importance of each variable can be
derived from that.

LNprob ¼ SHAPoðM; xÞ þ SHAPiðM; xiÞ (4)

where
SHAPi represents the SHAP value of the i variable,
SHAP0 represents the expected value of the model output for

the dataset, LNprob shows the predicted lightning occurrence
probability, a continuous value between 0–1.

DATA AVAILABILITY
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on ground-level sites are retrieved from https://aqs.epa.gov/aqsweb/airdata/. The
CAMS aerosol and meteorological data are retrieved by https://
ads.atmosphere.copernicus.eu/. Derived data supporting the findings of this study
are available from the corresponding author upon reasonable request. Demo
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