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Predicting extreme floods and droughts in East Africa using
a deep learning approach
Kalpesh Ravindra Patil1✉, Takeshi Doi 1 and Swadhin K. Behera 1

The East African region is highly susceptible to severe floods and persistent droughts, which greatly impact the livelihood of
millions of people. Early warnings, at least a few seasons in advance, would help implement mitigation measures. However, most
prediction systems using dynamical models perform poorly at long lead times. In this study, we propose a statistical deep learning
approach based on a convolutional neural network (CNN) to predict extreme floods and droughts during the short rains season
(October–December). The proposed CNN model captures the phase of extreme floods and droughts two to three seasons ahead,
except for a few cases. By diagnosing the model’s skills using heatmaps, we find that predicted extreme floods and droughts are
linked with the sea surface temperature anomalies of the Indian Ocean Dipole at shorter leads and with western and southern
Indian Ocean, equatorial Pacific, and southern Atlantic Ocean at longer leads. Although there were a few poorly predicted
exceptions, the superior skill of our CNN-based predictions at longer leads provides a significant advantage in developing
mitigation measures.
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INTRODUCTION
East African countries rely on rain-fed agriculture, and their
economies are highly dependent on the seasonal variability of
rainfall. Extreme floods and droughts are therefore posing a
serious threat to East African countries1,2. During extreme floods,
millions of people are displaced due to loss of property and lack of
safe drinking water. In addition, malaria and other water-borne
diseases put a strain on poorly equipped health systems, often
resulting in life-threatening situations1,3. In the most recent floods
in 2019, an estimated 1.5 million people were affected1. Droughts
are equally damaging, with child malnutrition, livestock deaths
and lack of safe drinking water posing critical problems for
millions of people4. These problems become even more
dangerous during prolonged droughts, such as the recent one
in 2021, which left 20 million people struggling to survive2.
Accurate seasonal rainfall forecasting is therefore urgently needed
in East Africa. This would greatly improve socio-economic
activities by reducing disruption to the various sectors affected.
East Africa mainly receives rainfall during two seasons in a year,

the first in March-April-May, known as the ‘long rains’, and the
second in October-November-December (OND), known as the
‘short rains’. The amount of rainfall in the long rains season is
relatively greater5. However, the interannual variability of the short
rains is more intense6 due to the rapid southward movement of
the inter-tropical convergence zone7, which is relatively slower
during the long rains. Although both seasons pose considerable
threats to the region3–5, the large-scale climate drivers of long
rains variability are lesser known8,9 affecting its predictability skills
and usefulness to society.
However, the interannual variability of the short rains is found to

be strongly linked to SST variability over the Indian10–14,
Pacific8,15–17, and partly over Atlantic Ocean18,19 and thus represent
a major source of moisture variability. Among these teleconnec-
tions, the Indian Ocean is primarily responsible for above- or
below-normal precipitation during short rains10–12 due to its

independent phenomenon known as the Indian Ocean Dipole
(IOD), in which the western part [50°E-70°E, 10°S-10°N] of the
Indian Ocean is anomalously warmer (cooler) than the eastern part
[90°E-110°E, 0°-10°N], creating a zonal positive (negative) SST
gradient known as the Dipole Mode Index (DMI) (see “Methods”)10.
The above-normal rainfall is due to the reversal of the usual
westerlies in the Indian Ocean, which become easterlies11,20,21

during the strong positive IOD events (pIOD)11,20,21, as a result of
the warmer western Indian Ocean compared to a much cooler
eastern part, thus bringing more moisture to East Africa11,20,21. On
the contrary, during negative IOD (nIOD), these westerlies become
even stronger20,21 and sweep the equatorial Indian Ocean,
diverting moisture away from East Africa20,21 and resulting in
below-normal short rains. Additionally, the region of the south-
western Indian Ocean, west of Madagascar, is also strongly linked
with above- and below-normal short rains via modulation of the
south-easterlies22,23 during its high and low phases, respectively.
Similarly, the equatorial Pacific Ocean has been shown in several
previous studies to influence the variability of short rains by
modifying the Walker circulation. During the warm (cold) phase of
the El Niño/Southern Oscillation (ENSO), short rains are observed to
be above (below) normal with a positive correlation8,13,15, whereas
anomalies in the western Pacific are negatively correlated17.
However, there is an arguable difference when such an effect is
analyzed during pure ENSO events when the correlation is
moderate but importantly negative11. Hence, the effect of ENSO
on the short rains is suggested to be effectively mediated via the
state of the Indian Ocean11,12,14, thus suggesting the preeminent
role of the Indian Ocean. Additionally, the southwestern Atlantic
Ocean also partly influences the variability of short rains by altering
the south-easterlies18,19. These global teleconnections, therefore,
imply the possibility of skillfully predicting short rains a few
seasons in advance.
Various dynamical model-based seasonal prediction systems are

quite good at predicting short rains, but only at short-lead times
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(when initialized from August/September)24–26. Moreover, their
skill decreases rapidly at longer lead times26,27 (when initialized
from April/May) and thus exhibits more false alarms25,26,28. Such
an inability of the dynamical models to predict short rains at long
lead times is supposedly associated with failure in simulating the
mean state of the Indian Ocean24,29,30, which plays a vital role in
controlling the variability of the short rains, and the spring
predictability barrier phenomenon31, where the predictive skill of
the forecasts declines rapidly when initialized during/before
spring26,31. Similarly, seasonal predictions of short rains have also
been studied in the past using the statistical models by training
them on these various teleconnections32–34. Interestingly, a
slightly superior skill was observed in them as compared to the
dynamical models at longer lead times; however, several extreme
floods and droughts events during the short rains season were
largely missed25,32,34. Moreover, the predictive skill of these
statistical models was considered to be biased due to the
estimation of the teleconnections over the entire training-
validation period, which should rather be estimated separately
during each period, thus overestimating the predictive skill35.
The strong teleconnections between short rains and SST

variability in different oceanic regions, as well as the shortcomings
in dynamical and statistical seasonal prediction models in
predicting short rains at long leads, particularly extreme floods
and droughts, to which East Africa is more prone, motivated us to
investigate the predictability of short rains at both short and
longer leads. To bridge this gap, we proposed a methodology
based on the ‘convolutional neural network’ (CNN), a deep
learning tool. In this study, we used SST anomalies (SSTA) and
vertically averaged subsurface temperature anomalies (VATA) as
predictors from September (short lead) and May/April (long lead)
to develop an ensemble of CNNs to predict the East African short
rain index during the OND season (hereafter EASRI). The
predictability of various extreme floods and droughts that
occurred over East Africa during a recent 39-year period
(1983–2021) is discussed in the “Results” section, and the
predictive skill is further diagnosed using CNN heatmap analysis
to measure the self-sufficiency of these oceanic state-based
predictors.

RESULTS
EASRI predictability assessment
The EASRI is predicted using global monthly anomalies of SSTA
and VATA as predictors from April, May, and September

initializations for the 1983–2021 period, using the procedures
discussed in “Methods”. As mentioned in “Methods”, the ensemble
mean of CNN predicted (hereafter: CNN predicted) EASRI is
evaluated using Global Precipitation Climatology Project (GPCP)36

estimated EASRI (hereafter: observed). For the September, May,
and April initializations, the anomaly correlation coefficient (ACC)
between CNN predicted and observed EASRI was 0.64, 0.64, and
0.61, respectively, significant at the 95% level (See Fig. 1). Such
consistent ACC of the CNN predicted EASRI at different initializa-
tions is related to efficient extraction of precursors from oceanic
predictors (discussed in more detail in subsequent sections). On
the contrary, when evaluated over a similar time period, the
leading seasonal dynamical prediction systems show a very poor
to moderate ACC in predicting short rains. For example, the Scale
Interaction Experiment-Frontier ver. 2 (SINTEX-F2) observes an
ACC below 0.45 for September and June initialization25, the
coupled forecast system model version 2 (CFSv2), the Global
Environmental Multiscale Nucleus for European Modelling of the
Ocean (GEM-NEMO), the Canadian Centre for Climate Modelling
and Analysis Coupled Climate Model v.4 (CanCM4I), the Center for
Ocean-Land-Atmosphere Community Climate System Model v.4
(COLA_CCSM4), the Geophysical Fluid Dynamics Laboratory
(GFDL)-A, and the GFDL-B observed moderately poor ACC of 0.4,
0.4, 0.26, 0.24, −0.42, 0.06, and 0.40 (<0.4, 0.19, 0.24, −0.54, 0.04,
0.41, and 0.47)26, respectively, in May (April)-initialized predictions.
Such poor predictive abilities of dynamical models to forecast
EASRI from April/May initialization are reportedly linked to the
spring predictability barrier26,31 and bias in simulating the Indian
Ocean’s mean state24,29,30. However, it is possible to improve these
poor skills by using a hybrid statistical-dynamical model approach.
This approach has been shown to improve the correlation of May-
initialized predictions for a few dynamical models25,26. Interest-
ingly, we found that the CNN model performs even better than
those dynamical and hybrid models in predicting EASRI from
different initializations and is least affected by predictability
barriers.
Given East Africa’s high vulnerability to extremes, we further

examine CNN predictions during extreme floods and droughts.
These extremes were classified using the 90th and 10th
percentiles of the observed EASRI; if the EASRI exceeds either of
these thresholds in a given year, it is referred to as an extreme
flood/drought. During the validation period, 11 extreme events
were observed, five of which were extreme floods: 1994, 1997,
2006, 2010, and 2019, while six were extreme droughts: 1996,
1998, 2005, 2010, 2016, and 2021. We also include the recent 2021

Fig. 1 CNN ensemble mean prediction of EASRI. Comparison of observed EASRI (black-dashed) with CNN predicted using global SSTA and
VATA as predictors from September (blue), May (orange), and April (blue) over a period from 1983 to 2021. Gray lines show the 90th and 10th
percentile bounds. Ensemble mean ACC at different lead times is significant at the 95% significance level using a two-tailed t-test.
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drought in the extremes, even though it was above the 10th
percentile criteria because it was part of a series of recurrent
droughts. Fig. 2 compares the CNN predictions of these various
extreme floods and droughts from different initializations.

Extreme floods
The CNN models generally predicted most of the extreme flood
events, although with slight variations in the predicted ampli-
tudes, for different lead times (Fig. 2). In particular, the phases of
the two most severe floods of 1997 and 2019 are well predicted
from different initialization months, due to the co-occurrence of
pIOD and El Niño events. Similarly, the floods of 1994 were also
predicted with high agreement with observations for all initializa-
tions. However, the prediction of the 2006 and 2011 floods was
challenging for the CNN models during some initializations. The
2011 flood was predicted with very high agreement for the April
initialization but was poorly predicted for the May and September
initializations. The 2006 flood was predicted in phase with the
April and May observations but failed the September initialization.
Investigating the cause of this high prediction skill during

extreme floods using CNN heatmap analysis described in
“Methods”, we observe a pIOD-like pattern in heatmaps as shown
in Fig. 3. Such a pIOD pattern has been found to produce severe
floods11,12 in East Africa due to the reversal of the usual westerlies
to easterlies20,21 bringing with it abundant moisture; such a strong
pIOD pattern is profoundly noted in the September initialization
heatmaps (Fig. 3a–e), and these findings are consistent with
previous analytical investigations11,12,14.
Similar predictive skills are observed for May-initialized CNN

predictions as in September, where all six extreme floods are
predicted in phase with observations and with reasonable
amplitude, while only one extreme (2011) is underestimated.
The heatmap analysis for May-initialized CNN predictions (Fig.
3f–j) also reveals a pIOD-like pattern, though the intensity is
slightly lower than in September heatmaps. Because of the
early signals observed prior to the peak season, the pIOD-like
pattern signals in May-initialized heatmaps (Supplementary Fig.
1: b1-c5). The pIOD-related prediction is aided by the anomalies
in western, central, and eastern Pacific regions during a few of
the extreme floods, as noted in previous studies15–17.
As the initialization month shifts to April, the intensity of the

pIOD-like pattern for extreme flooding in the heatmap further
decreases drastically, and a part of the southwestern Indian Ocean
north of Madagascar, the Mascarene High (MH High), is seen to
contribute significantly (Fig. 3k–o). The region above the MH high
has a profound influence on the south-easterly winds, which

intensify during its high phase and bring abundant moisture to
East Africa, as do the unusual easterlies. Such a region is also
investigated as a long-lead precursor of short rains in some
important studies22,23. Also, we note a slightly greater contribution
from the equatorial Pacific in April-initialized heatmaps, compared
to the other initializations, as potential long-lead precursors of
short rains13,15. In addition, a contribution from the southwestern
Atlantic is also observed, which may be due to its effects on the
southeastward flow18,19.
Despite the skillful prediction of various extreme floods, CNN

did not predict the 2006 flood from September and under-
estimated the 2011 flood from September and May (Fig. 2). CNN’s
poor September-initialized predictions in 2006 and 2011 could be
attributed to strong MJO activity during those years37,38, whereas
the 2011 May-initialized predictions could be attributed to a weak
pIOD in the presence of a strong La Nina (see Supplementary Fig.
1: b4), both of which are known to affect short rains in opposite
ways13,38. But CNN correctly predicted the phase of the 2011 flood
because of the pIOD.

Extreme droughts
In a similar analysis for extreme droughts, we discovered that CNN
predicted droughts in 1996, 1998, 2010, 2016, and the most recent
2021 with high agreement with the September initializations (Fig.
2) but with an underestimation for the 2005 droughts. Whereas
four out of six extreme droughts were predicted in-phase in May,
two (1996 and 2005) were incorrectly predicted (Fig. 2). However,
when compared to May, April-initialized predictions show
consistent underestimation, with predictions of two of the six
extreme droughts out of phase (i.e., 2005 and 2021) and
underestimating the droughts of 2010. Extreme droughts are
subjected to the same heatmap analysis as extreme floods, as
shown in Fig. 4.
The high skill of September in predicting extreme droughts was

found to be closely related to the nIOD-like pattern in the Indian
Ocean (Fig. 4a–f), in contrast to the pIOD during extreme floods
(Fig. 3a–e). Similar strong nIOD patterns were observed during the
entire September initialization (Supplementary Fig. 2: a1–a6); such
nIOD events further enhance the usual westerlies, diverting
moisture away from East Africa and further leading to the
droughts20,21, similar findings can be noted in many previous
studies11,12,14. In addition to the Indian Ocean, the equatorial
Pacific Ocean is also observed to contribute but with slightly less
intensity.
During the May-initialized heatmaps (Fig. 4g–i), the nIOD-like

pattern is slightly reduced in intensity compared to the
September-initialized heatmaps (Fig. 4a–f). In addition, the
contribution from the southwestern Indian Ocean, which has
been studied as a potential cause of droughts22, is seen to
increase in intensity, along with a slightly increased contribution
from the equatorial Pacific.
Furthermore, in the April-initialized CNN heatmaps (Fig. 4m–r),

this nIOD-like pattern further decreases compared to the May and
September-initialized CNN heatmaps, along with an increase in
intensities in the southwestern Indian Ocean and the equatorial
Pacific Ocean. A contribution from the southern Atlantic is also
detected, similar to the extreme flood heatmaps initialized in April.
Similar to extreme floods, there are a few cases where CNN has

incorrectly predicted or underestimated droughts. These poor
predictions of the 1996 and 2005 droughts from May may be
related to the non-stationary relationship between the Indian
Ocean and short rains in the former case, as in recent years39,40,
and to the warmer Indian Ocean (Supplementary Fig. 2: b3)
favoring floods in the latter case28. Similarly, the poor predictions
during the April 2005 drought initialization were also related to
the warmer Indian Ocean (Supplementary Fig. 2: b4), while the
poor predictions for the 2010 and 2021 droughts could be due to

Fig. 2 CNN predicted extreme floods and droughts at different
lead times. Comparison of CNN-predicted extreme floods and
droughts initialized in September (blue), May (orange), and April
(green) with observed GPCP precipitation anomalies (black).
Extreme floods and droughts are sorted using the 90th and 10th
percentile bounds (see Fig. 1) of EASRI. The standardized DMI (circle)
and Niño3.4 (cross) indices calculated using OISSTv2 over
September–November and November–January are overlaid.
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the stronger MH high (Supplementary Fig. 2: c4, c6), which has
been studied to favor floods22,23. In a further section, we discuss
the results of the current study in terms of the comparative skill of
the dynamical models and the differences in teleconnections
observed for extreme flood and drought events.

DISCUSSION
The prediction of extreme floods and droughts has been
elaborated over the last 39 years (1983–2021) using deep
learning-based CNN models trained with global monthly anoma-
lies of SSTA and VATA. The ensemble means of the CNN models
show excellent skill in predicting extreme flood and drought years
in short rainy seasons from September initialization, compared to
May and April (Fig. 1). The ACC of the CNN predictions from May
and April are observed to be much higher than the various
dynamical and hybrid models25,26 that have the potential to
resolve the physical linkages and associated dynamics. Such
improved long-lead prediction skills of CNN were related to its
ability to capture early precursors of predictors (Figs. 3 and 4),
including the obvious pattern of IOD, low and high phases of MH,
anomalous warm and cold phases of the equatorial Pacific, and
anomalies in the South Atlantic, in part. Interestingly, the short-
lead precursors (Figs. 3a–e and 4a–f) were observed mainly in the

Indian Ocean, especially in the western and eastern tropical Indian
Ocean, with weak signals in the northern Indian Ocean and the
equatorial Pacific Ocean. On the other hand, these precursors with
long leads (Figs. 3f–o and 4g–r) show a slight shift toward the
southern Indian, equatorial Pacific and southern Atlantic Oceans.
Such precursors detected by CNN models are consistent with
several studies investigating large-scale drivers of short rains.
Moreover, the efficient extraction of these precursors also helped
CNN to reduce the effect of the spring predictability barrier;
however, dynamical models experience a rapid reduction in
predictive skill25,26 due to such a barrier, leading to false
predictions. For example, CFSv2 predicted the drought of 2016
as a flood from April, perhaps due to the lasting memory of the
earlier 2015 El Niño26. However, CNN models trained on long-
observed datasets correctly predicted the extreme floods of 1997
and 2019, and the withering droughts of 2010, 2016, and the most
recent 2021 from May (Fig. 2). Nevertheless, there were a few
cases of poor predictions for both extreme floods (2006 and 2011)
and droughts (1996, 2005, 2010, and 2021). Such poor predictions
can be partly attributed to the non-stationarity relation between
the Indian Ocean and the short rains, the unfavorable warming of
the western and southwestern Indian Ocean, and the co-
occurrence of opposite states of IOD and ENSO. In addition,
high-frequency weather and climate variations such as the MJO,

Fig. 3 Oceanic regions linked to predictions of extreme floods in CNN heatmaps. CNN gradient-based heatmaps observed during extreme
flood prediction at different initializations of September (a–e), May (f–j) and April (k–o). Heatmaps are extracted from the first convolutional
layer for the best ensemble member among ten others. The shading, red (blue), denotes the positive (negative) relationship with EASRI. The
color bar at the bottom denotes the strength of the gradients from each region; higher strengths suggest a stronger influence on EASRI
variability. The pIOD is highlighted with a solid black box in the western [50°E-70°E, 10°S-10°N] and eastern [90°E-110°E, 0°-10°N] Indian Ocean,
and the Mascarene High in the southwestern Indian Ocean [60°E-90°E, 20°S-30°S] and while Niño3.4 is highlighted with a dotted black box.
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which are not resolved by the monthly data used here, may also
play a role in these poor predictions. Nevertheless, further study
using dynamical models or heatmap-driven machine learning
models with high-frequency data may help to understand such
exceptional extreme cases.
In summary, the CNN-based models show a high degree of

predictability for both extreme floods and droughts over East
Africa at different lead times over the recent 39 years (1983–2021),
especially for September initialization. This consistency is also
evident for May and April initializations barring a few exceptions.
The IOD pattern emerges as a dominant precursor for extreme
floods and droughts, with a particularly strong impact in
September initializations. This is in addition to the South Indian,
Atlantic, Western and Central Pacific regions with longer lead
times. However, a few cases were poorly predicted at longer lead
times. Those were strongly associated with a weak DMI at the time
of initialization, allowing factors other than IOD to degrade the
relationship. The skills shown by CNN models for predicting
extreme floods and droughts two to three seasons ahead are
promising and will greatly help in organizing mitigation efforts to
manage extremes, especially in cases such as the prolonged
droughts of 2021.

METHODS
Estimation of EASRI
EASRI is estimated over the East African region [35°E-46°E, 5°S-
5°N]. This study region (see Supplementary Fig. 3) includes most of
Kenya, followed by southeastern Somalia, southern Ethiopia, and
northern Tanzania. Rainfall anomalies over this region were
calculated by subtracting the actual rainfall values from the
long-term climatological mean calculated over the period
1981–2010. These anomalies were then averaged for the OND
season. This procedure is repeated for the Global Precipitation
Climatology Center (GPCC)41 and GPCP rainfall datasets to prepare
EASRI for the training and validation of CNN models.

DMI
The DMI is calculated by taking the difference in spatially
averaged SSTA between the western [50°E-70°E, 10°S-10°N] and
eastern [90°E-110°E, 0°-10°N] Indian Ocean, as described by Saji
et al.10. The SSTA were calculated by subtracting the SST from its
long-term climatological mean from 1981 to 2010. The NOAA
Optimum Interpolation (OI) SST V2 (OISSTv2)42 monthly data sets
were used to calculate the DMI.

Fig. 4 Oceanic regions linked to predictions of extreme droughts in CNN heatmaps. Same as in Fig. 3, but observed during extreme
droughts at different initialization from September (a–f), May (g–l) and April (m–r).
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CNN
We have attempted to predict EASRI using SSTA and VATA as
predictors from the months of September, April, and May in
separate experiments using an ensemble of CNN43. Here we
describe in detail the structure of the CNN used. The proposed
CNN involves convolutional processes over the global monthly
SSTA and VATA to extract useful patterns from them in relation to
the EASRI. This process is briefly elaborated by Eq. 1. Several key
constituent parameters of the CNN are listed in Supplementary
Table 1, and these are optimized using a random search
algorithm44 over a range of values for each hyperparameter in
the specific domain as listed in Supplementary Table 1. In a
random search algorithm, 300 trials with different combinations of
different parameters are considered, and CNNs are trained and
evaluated for each of these 300 trials. The selection of 300
different combinations of CNN was considered in relation to the
number of hyperparameters of the CNN (i.e., 10, see Supplemen-
tary Table 1) and an arbitrary ratio of 30, which is sufficiently large
for such analysis44. For validation, we retained the top ten CNNs
out of 300 based on high ACC criteria to estimate the ensemble
mean skill. The number of ensemble members is equal to the
number of hyperparameters, as the performance of the CNN is
highly sensitive to variations in each of them44. The “Results”
section elaborates on the predictive skill of EASRI based on the
ensemble mean of the top ten CNN models.

EASRIt ¼
XL

l¼1

avgP
XF

f¼1

X

INPt�ld

σ
Xfw ´ fh

i¼1

WiflRilð Þ þ bfl

 ! ! !
(1)

where;

INPt�ld�

global SSTA; VATAmap of size ðlat x lonÞ; for first convolutional layer;

featuremaps for subequent convolutional layer of size

lat � fhþ 1ð Þ=2; log�fw þ 1ð Þ=2ð Þ

F � size of convolutional filter height ðfhÞ;widthðfwÞ

Ril � regionwhere ‘F’ is focusing on part of complete input image INPt�ld

Wifl � weight matrix of size ‘F’; shared over various regions of INP

bfl � bias vector of convolutional filters

avgP � average pooling over region focused by ‘F’

L � number of convolutional layers

Training procedure of CNN
The training input attributes of the CNN, namely monthly SSTA
and VATA, were derived from the Centennial in situ Observation-
Based Estimates ver. 2 (COBEv2)45 (sea surface temperature) and
Simple Ocean Data Assimilation (SODA)46 (subsurface tempera-
ture) datasets. These training attributes cover the period
1871–1980 with a spatial resolution of 5° × 5°, regridded from
the original grid size by bi-linear interpolation to reduce the
number of CNN parameters. In addition, the data were
preprocessed by standardization followed by normalization (range
−1 to +1) at each grid point. The target EASRI for CNN is
calculated using GPCC datasets. The prediction of EASRI is
performed using lagged monthly SSTA and VATA with a
corresponding central month of the short rainy season (i.e.,
November). Different initializations are considered starting from
April, May, and September monthly SSTA and VATA, where the

distance between the initialization month and the central month
of the seasonal EASRI is termed the lag. April, May, and September
initializations are considered to have a lead of 7, 6, and 2 months,
respectively.
We validate our proposed CNN model using SSTA obtained

from OISSTv2, VATA obtained from the Global Ocean Data
Assimilation System (GODAS)47 and the target EASRI index
estimated based on GPCP rainfall anomalies (see Supplementary
Fig. 4). These datasets are different from those used in the CNN
training process, as similar sources may produce biased and non-
robust predictions48.
A threefold cross-validation procedure was used to train the

CNN, where the training data (1871–1980) was divided into
several parts, and the CNN was trained on each part to ensure
robust learning over data periods (see Supplementary Fig. 4). The
hyperparameters of the CNN (see Supplementary Table 1) are
optimized over training and cross-validation data sets using a
mean square error-based loss function between observed and
predicted EASRI. Model validation was performed over the period
from 1983 to 2021. The training of the CNN was performed in an
open-source Python environment based on Keras49 as the front-
end APIs and Tensor-flow50 at the back-end, using the Earth
Simulator at the Japan Agency for Marine-Earth Science and
Technology (JAMSTEC).

Measures against overfitting
To overcome the overfitting problem in the CNN, several other
layers are added in addition to the convolutional layers before the
pooling layers. These are the drop-out layer51, the batch normal-
ization layer52, and the l2 regularization layer43. The respective role
of each layer is to filter out unnecessary parts of the predictors, to
normalize the output after each convolution process to the limits
of the transfer function, and to penalize the large trained weights.
Apart from these measures, the training and cross-validation
losses are also monitored, and the trials with validation losses
lower than the training losses are avoided when choosing an
ensemble member.

CNN heatmaps
The gradients of the trained CNN models from the first
convolutional layer are extracted as heat maps to assess the
importance of a specific region in the global ocean in controlling
the variability of EASRI. The larger the gradients from a particular
region, the more control it has over variability53. These gradient
heatmaps differ from those used in some recent past studies48,54

where activation values were multiplied by gradients to produce
heatmaps; however, such heatmaps are prone to contamination
by large predictor values and thus misrepresent the importance of
specific regions53. Equation 3 details the gradient-based heatmap
extraction from the first convolution layer of trained CNN models.
The heatmaps shown in Figs. 3 and 4 are extracted from the first
convolutional layer for the best ensemble member (i.e., the first
with the highest ACC) among the top ten ensemble members.

Om ¼
XF

f¼1

X

INPt�ld

σ
Xfw ´ fh

i¼1
WiflRilð Þ þ bfl

� �
(2)

∂L
∂Xi

¼
XM

m¼1

∂L
∂Om

´
∂Om

∂Xi
(3)

where;

M� number of convolutional filters

Om � Activationmap ðoutput of indeterminate convolutional layerÞ
∂L
∂Xi

� gradients from convoutional layer ðheatmapsÞ
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DATA AVAILABILITY
The various reanalysis and ocean data assimilation data for the experiment used in
this study are publicly available. The Centennial-scale sea surface temperature
analysis version-2 (COBE-SST 2), NCEP Global Ocean Data Assimilation System
(GODAS), NOAA Optimum Interpolation (OI) SST V2, Global Precipitation Climatology
Project (GPCP) and Global Precipitation Climatology Centre (GPCC) Monthly Analysis
Product is available through the NOAA PSL, Boulder, Colorado, USA, from their
website at https://psl.noaa.gov. Simple Ocean Data Assimilation (SODA) v 2.2.4 is
acquired from http://apdrc.soest.hawaii.edu/las/v6/constrain?var=4787.

CODE AVAILABILITY
The deep learning experimental analysis in this study is performed on python
environment with tensorflow (https://www.tensorflow.org/) and keras (https://
keras.io/) package and code can be obtained upon request to the corresponding
author. Figures for this study are plotted using python matplotlib (https://
matplotlib.org/) library and Microsoft excel software.
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