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A frequent ice-free Arctic is likely to occur before the mid-21st
century
Zili Shen1, Wen Zhou 1✉, Jinxiao Li2,3 and Johnny C. L. Chan 4

Although the trend of sea-ice extent under global warming has been studied extensively in recent years, most climate models have
failed to capture the recent rapid change in the Arctic environment, which has brought into question the reliability of climate
model projections of sea ice and suggested a potential shift in Arctic climate dynamics. Here, based on the results of a time-variant
emergent constraint method with a weighting scheme, we show that an ice-free Arctic might occur earlier (by at least 5 ~ 10 years)
than previously estimated. In other words, Arctic ice will likely disappear before the 2050 s. The observationally constrained date for
an ice-free Arctic in September under fossil-fuel-based development (i.e., Shared Socioeconomic Pathway (SSP) 5–8.5) scenarios
yields a central estimate of 2050–2054 with a 66% confidence range (equivalent to the IPCC’s ‘likely’ range) of 2037–2066, while an
ice-free Arctic will likely occur for another 20 years and 11 years under ambitious mitigation scenarios (i.e., SSP2-4.5) and SSP3-7.0.
An ice-free Arctic is unlikely to occur under the sustainable development scenario (i.e., SSP1-2.6). Looking forward, this time-variant
emergent constraint may also help detect tipping points in the climate system. Our findings provide useful information to help
policy makers cope with climate change.
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INTRODUCTION
Since the beginning of satellite observations in 1979, Arctic sea ice
coverage and volume in summer has decreased by approximately
50% and 70%, respectively, making it one of the most alarming
signs of climate change1–7. To cope with the impacts of the
shrinking area of sea ice, such as more freshwater storage, more
frequent extreme weather events in the mid-latitudes, and
changes to global shipping and trade passages8–11, adaptation
and mitigation planning are based on credible projections of
Arctic sea ice. Climate models collected in model inter-
comparisons play a central role in formulating various manage-
ment strategies. These strategies are based on probabilistic
predictions about the outcomes of interest under different forcing
scenarios, which are provided by simulations from carefully
constructed model ensembles. However, models feature diverging
projections of Arctic sea ice4,12–18, mainly because of model
differences, such as different model responses to the same
external forcing19. Some models might be biased in the same way
when sharing portions of code, input datasets, or even the
expertise of those developing the model, which could cause the
multi-model mean to be biased low or high. To improve
confidence in model projections and better inform decision-
making, recalibrating the original results provided by model
ensembles is therefore essential.
Phase 6 of the Coupled Model Inter-comparison Project (CMIP6)

forms the basis of the Sixth Assessment Report (AR6) of the IPCC.
The latest emissions and aerosol forcing, according to the Shared
Socioeconomic Pathway (SSP) scenarios, are implemented in the
climate models. CMIP6 models simulate a wider spread of mean
sea ice extent in September than CMIP5 models20; however, a
larger fraction of CMIP6 models reproduce the observed sensitivity
of Arctic sea ice to anthropogenic CO2 emissions, leading to a
multi-model ensemble mean sea ice sensitivity (defined as sea ice

loss to a given amount of global warming) that is closer to
observations21, and an earlier ice-free Arctic (defined as when
Arctic sea ice extent falls below 1 × 106 km2). Therefore, the key
question arises of whether an earlier ice-free Arctic projected by
models is realistic. If so, management actions need to be adjusted
in response to a more rapidly changing climate in the future.
Much effort has been devoted to improving climate projections,
such as evaluating, combining, and weighting models.
The emergent constraint method, which uses an ensemble of

climate models to derive an inter-model relationship between a
simulated but observable predictor in the models and a projected
future change, has gained prominence in recent years and is a
promising approach to reducing uncertainties in climate change
projections18,22–27. For example, in a recent study that used two
independent constraints to select models, the time for the first ice-
free Arctic was projected to occur before 2040 under a medium
emission scenario28. Another study established a simple model
and constrained future sea ice using the mean state of present-
day sea ice and local sea ice sensitivity, projecting that the ‘likely’
date for an ice-free Arctic will occur between 2040 and 2062 in
September under a medium emission scenario, and between 2036
and 2056 under a high emission one29.
Detection methods applied to Arctic sea ice have revealed that

the dynamics of the Arctic system have experienced substantial
shifts since 199530. In this sense, constraining projection
uncertainty by selecting models with good performance in sea-
ice–related aspects (e.g., sea ice mean state, sea ice trends) during
a certain time period (e.g., 1979 to the present, the most recent
period), which many scientists have done2,13,21,27,28, might lead to
unreasonable projections because the climate systems in the
future may not be the same as those in the present. In addition,
using an arbitrary calibration period to sub-select models to
forecast the future is not a good way forward25, because the
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constrained results would somewhat depend on the subjective
choice of the predictor31 and the length of the historical record32.
Changes in the sea ice extent depend on how much more CO2 is
being added to the atmosphere, or how much warming the earth
will undergo33. In other words, it is the amount of remaining sea
ice (depending on the model’s sensitivity to CO2 emissions) rather
than the timing of an ice-free Arctic that we need to constrain.
Thus, all of the aforementioned concerns suggest that using the
same historical constraint for all projected time periods may lead
to biases in the constrained results.
The unstable nature of climate systems has been generally

neglected in previous studies, as well as IPCC assessment reports.
One pioneering study showed how model weights change over
time to achieve a satisfactory fit with the observations, which
further supports the notion that using an arbitrary past
representation does not mean the future is better constrained30.
Taken together, subjective criteria may strongly affect the level of
confidence in projections. In light of this, here we develop a time-
variant emergent relationship between the simulated sea ice
extent (SIE) state and projected SIE change that considers
potential change in the climate system dynamics, thus providing
a more reasonable projection of the future SIE. With this approach,
the projected SIE over different periods during the 21st century
under different emission scenarios is constrained by correspond-
ing objective and optimal predictors. The results based on this
approach provide information for policy makers as to how the
Arctic environment will change in the future, as well as
probabilistic projections of when an ice-free Arctic will likely
occur under various emission scenarios. Further, it also provides us
with a perspective for detecting tipping points in predictands
based on the time-variant emergent constraints method.

RESULTS
We begin by focusing on September Arctic SIE projections in
CMIP6 models under four emission scenarios without applying
emergent constraints (Fig. 1a). The September SIE (SSIE) continues
to decrease from the 1970s to the end of the 21st century under
all emission scenarios; however, 25 CMIP6 models have a wide
spread in the simulated SSIE in both their historical simulations
and under the four emission scenarios. The multi-model ensemble
mean (MMEM; black line), which by definition represents the
response to external forcing, matches well with the observations
(green line) during 1979–2000. However, the MMEM shows a large
divergence from the observed value after the year 2000, with the
observations showing accelerating sea ice loss, but the MMEM still
exhibiting a steady rate of sea ice melt. The failure of the MMEM to
capture the observed change after 2000 might indicate that the
dynamics of the climate system are changing, or that the model
set should be recalibrated to bound the observed system behavior
at present.
The projected trajectories of the SSIE under the four different

emission scenarios are difficult to distinguish at the beginning of
the 21st century but start to diverge from the integration time.
Under the SSP5-8.5 and SSP3-7.0 scenarios, the MMEM result
projects that the Arctic will reach ice-free conditions by the 2060 s
and 2070 s, respectively; however, under the SSP2-4.5 and SSSP1-
2.6 scenarios (blue line), the MMEM of the SSIE remains above
1 km2 at the end of the 21st century, which indicates that without
accounting for the modulation of internal variability on sea ice
variation, the prescribed magnitude of greenhouse gas emissions
could greatly influence the rate of sea ice melting. However, the
uncertainty is large in the projected SSIE by CMIP6, especially
before the 2060 s, with one standard deviation across the models
of 2.2 × 106 km2 (1.9 × 106 km2) under the SSP2-4.5 (SSP5-8.5)
emission scenario in the middle term (2046–2065), which directly
results in the huge spread in the timing of an ice-free Arctic
projected by the CMIP6 models (Fig. 1b). Under a high emission

scenario (SSP5-8.5), raw CMIP6 ensemble estimates indicate that
the Arctic will ‘likely’ (>66% probability) reach an ice-free state by
September 2087.
Compared with CMIP5, the CMIP6 models as a whole project

greater global surface air temperature warming over the 21st
century21, which is caused mainly by higher equilibrium climate
sensitivity (ECS) in response to increasing CO2 than in the case of
CMIP532. In view of the proportional response of sea ice to
cumulative CO2 emissions at long timescales34, we consider the
extent to which the increased climate sensitivity in CMIP6
compared with CMIP5 affects the projected ice-free year. The
inter-quartile range for an ice-free Arctic is 2051–2071 under SSP2-
4.5 and 2044–2061 under SSP5-8.5, compared with 2045 to
beyond 2100 and 2039–2055 in CMIP512,13. The breadth of this
inter-quartile range is reduced by more than 64% under SSP2-4.5
from CMIP5 to CMIP6, possibly due to the higher ECS in CMIP6
models21.
Models that project an ice-free Arctic before 2040 are all high

climate sensitivity models (Fig. 1c). Despite this relationship, the
correlations between the ECS and projected SSIE under all
emission scenarios are unstable and not robust during some time
periods (Supplementary Fig. 1). This could be partially related to
the complex relationship between the ECS and SSIE under
transient climate change scenarios due to the evolving strength
of climate feedbacks at different timescales and inter-model
differences in SSIE internal variability.
Here, we propose to constrain the Arctic SSIE using the

emergent constraint approach35,36. To confirm the robustness of
the emergent constraint, we first provide a physical explanation
for correlation between the two quantities37. The historical SSIE
mean state is used in our study as the constraint for future SSIE in
response to greenhouse gas emission during different periods.
First, the sea ice change is proportional to cumulative CO2

emissions, and models with more sea ice loss in the past indicate
that the feedback is stronger compared with those with slower sea
ice loss. So as long as CO2 increases, this more intensive response
to external forcing implies that more sea ice loss will continue in
the future. In addition, the large spread in the projected SSIE
during the 21st century by model sets from CMIP6 arises mainly
from the biases in their simulated historical SSIE mean state29.
Constraining future SSIE using past SSIE could reduce the
projection uncertainty to the maximum extent. However, if the
dynamics of the climate system are not, in fact, stationary, using
the same historical constraint for different future periods might be
unreasonable.
Considering potential changes in system dynamics, we propose

a time-variant emergent constraint to better capture the evolving
nature of sea ice. As an example, Fig. 2a shows that the highest
inter-model correlation (correlation coefficient: 0.92) between the
historical SSIE changes and the projected SSIE loss over
2021–2025 under the SSP3-7.0 emission scenario across 25 CMIP6
models occurs for the 2016–2020 period. This suggests that
models retaining less sea ice over 2016–2020 are inclined to
project less sea ice in the future. Based on this, we conclude that,
compared with the observed SSIE over earlier periods on the same
timescale or longer timescales, the SSIE mean state over the last
five years could be the optimal constraint for future sea ice over
the Arctic. The strong linear relationship between the simulated
and projected SSIE, in combination with observations, provides an
emergent constraint on the actual SSIE value during 2021–2025—
that is, by using the regression to map from the observed SSIE
during 2016–2020 (Fig. 2b). Our results show that the constrained
SSIE of 4.32 × 106 km2 is 20% lower than that of the original CMIP6
ensemble mean (5.37 × 106 km2), with the uncertainty range
reduced by 60% (Fig. 2c). A similar conclusion can be reached
under the other three emission scenarios (Supplementary Fig. 3),
except there are some differences in their optimal historical
constraints (Supplementary Fig. 2).
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Repeating the same constraint procedure for projected SSIE
during other time periods, we calculate the optimal historical
constraints for 5-year sliding windows extending to the end of the
21st century for 25 CMIP6 models. It can be seen that under the
SSP1-2.6 and SSP2-4.5 emission scenarios, the most useful
constraints for future SSIE change little over time and are
concentrated during 2016–2020 (Supplementary Fig. 4a, b). For
SSP3-7.0 and SSP5-8.5, optimal constraints are relatively stable
from 2025 to the mid-2050s but show substantial shifts beginning
about 2054 and 2056, respectively. Emergent constraints can, to
some extent, be treated as non-traditional model weighting, as
the projections by models with smaller biases in the selected
constraints will stay closer to the constrained changes. Therefore,
the shift in historical constraints can be understood as a change in
model weights, which suggests that the Arctic system is changing

(Supplementary Fig. 4c, d). The scientific community is currently
directing its attention to Earth system components that are
believed to contain tipping points. The close proximity between
the year of the shifts and the estimated optimal ice-free date, as
indicated by the emergent constraint under SSP3-7.0 and SSP5-8.5
(Fig. 3a), suggests that utilizing this time-dependent emergent
constraint could be a valuable approach for detecting future
tipping points in the predictand. As discussed above, the optimal
historical constraints for future SSIE change over time under the
SSP3-7.0 and SSP5-8.5 emission scenarios, particularly after the
mid-2050s, when the projected SSIE loss begins to slow down
(Fig. 1a). It seems that using the same constraint for future SSIE
under different emission scenarios and over different time periods,
as previous studies have done, may actually be inappropriate. This
is because the behavior of the system will change with varying

     September SIE evolution
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Fig. 1 Arctic SSIE change in observations and CMIP6 simulations. a SSIE in CMIP6 historical simulations (gray) and under the SSP1-2.6
(orange), SSP2-4.5 (blue), SSP3-7.0 (green), and SSP5-8.5 (red) scenarios from the MMEM (solid line) with one inter-model standard deviation
(shading). The observations are shown as the black solid line. In the box-and-whisker plots, the band in the box represents the MMEM, the box
represents the inter-quartile range (25th to 75th percentiles), and the ends of the whiskers represent the minimum and maximum simulation
values. b Distribution of the first year in which the SSIE reaches the ice-free condition for all CMIP6 models under the four emission scenarios.
c Projected ice-free year under four emission scenarios; the dots represent individual CMIP6 models, and colors represent the ECS values.
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intensities of external forcing, and the occurrence of tipping
points will necessitate a change in predictors. Therefore, it should
be noted that the optimal constraint for a certain period will not
necessarily be a suitable constraint for another period.
We then use these changing historical constraints over time to

constrain the SSIE in the future. Strong inter-model correlations
exist during all periods under different emission scenarios,
confirming the usefulness of these selected constraints (Supple-
mentary Fig. 5). The constrained mean values of SSIE during the
middle and end of the century are all much lower than the
unconstrained CMIP6 mean results under all emission scenarios
(Fig. 2d), indicating that an ice-free Arctic will occur earlier than
originally estimated from climate models. The observationally
constrained likely ranges for the future SSIE under the SSP3-7.0
and SSP5-8.5 emission scenarios are all below 1 × 106 km2,
suggesting that the Arctic will ‘likely’ (>66% probability) be ice-
free in these scenarios. The likely ranges for an ice-free Arctic are

reduced from the period of 2039 to beyond 2100 to the period of
2041–2071, and from the period of 2044 to beyond 2100 to the
period of 2037–2066 under the SSP3-7.0 and SSP5-8.5 scenarios,
respectively (Fig. 3a). This constraint advances the ‘likely’ date of
an ice-free Arctic by 27 years from 2087 to 2060 under the high
emission scenario (SSP5-8.5). For the medium and low emission
scenarios, an ice-free Arctic will likely occur by 2080 and beyond
2100, respectively (Fig. 3b).
To compare with the results derived using the traditional

emergent constraint (i.e., using the same predictor to continuously
constrain the future predictand over different periods), we adopt a
certain range of predictor choices. Two constraints are produced
based on the SSIE during (a) 2016–2020 and (b) 2007–2011. We
choose these two periods because 2016–2020 is the period closest
to the future climate, and 2007–2011 has previously been used in
CMIP5 models to constrain SSIE projection13. It can be seen that,
compared with the results estimated by the constant constraint,
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our time-variant constrained method brings the ice-free date
forward by around 5 ~ 10 years under SSP3-7.0 and SSP5-8.5
(Supplementary Fig. 6), suggesting that the Arctic is changing
faster than previously conceived, and more efficient mitigation
measures should be adopted as soon as possible to avoid a
permanent ice-free Arctic.

DISCUSSION
Here, we propose a time-variant emergent constraint method for
future SSIE, which considers potential change in climate system
dynamics and provides an approach for detecting tipping points
in the future climate system. Observationally constrained future
SSIE in the SSP5-8.5 scenario by mid-century (2046–2065) is
estimated at −0.37 to 2.03 × 106 km2 (17–83%), and by the end of
the century (2081–2100) at −0.53 to 0.78 × 106 km2. The
constrained mean SSIE is 47% lower by mid-century than the
unconstrained warming simulated by the CMIP6 ensemble. The
observational constraint identified in this study adds another line
of evidence that an ice-free Arctic before 2030 projected by high
ECS from some of the latest CMIP6 climate models is unlikely. We
provide an estimate of the observationally constrained likely range
for the ice-free date based on CMIP6 models from 2037 to 2066
(17% to 83% range) under the high emission scenario. Our time-
variant constrained results bring the ice-free date forward by
around 5 ~ 10 years under SSP3-7.0 and SSP5-8.5 compared with
traditionally constrained methods.
The emergent constraint method, as mentioned above,

assumes that the relationship between the present and future
climate metrics in climate models also holds true in reality.
However, it is theoretically possible that this relationship is an
artifact of the climate models if some crucial processes leading to
the nonlinear reduction of sea ice are missing in the models but
are present in reality. These missing processes would compromise
the emergent relationship and potentially bias the constrained
estimate. However, it would be an extreme situation for all models
to be wrong; in most instances, each model is wrong in a different
way, and the inter-model spread can adequately reflect the

influence of different physical parameterizations on sea ice
variation. Therefore, the models can collectively generate useful
and nearly perfect future predictions when combined with
observations.
However, although scientists have made considerable efforts to

narrow the spread of sea ice projections among the CMIP models,
the predicted time interval for an ice-free Arctic remains large. The
presence of internal variability can sometimes overwhelm a forced
signal on decadal timescales and regulate the occurrence of an
ice-free Arctic by around two decades15,16,21,38–40. In addition, the
effect of internal variability on the SSIE will increase as the sea ice
retreats41, although the relevant physical mechanism is not yet
well understood. Further exploration of the physical processes
responsible for the decadal variability of the SSIE will effectively
improve our ability to provide a more precise estimate for the
timing of a future ice-free Arctic.

METHODS
Observational data
Observed sea ice data are provided by the National Snow and Ice
Data Center (NSIDC). We use several different sea ice concentra-
tion (SIC) observational records obtained with different algorithms
to take observational uncertainty into account: (i) Bootstrap42; (ii)
NASA Team43; and (iii) a synthesis of (i) and (ii) [the NOAA/NSIDC
climate data record CDR)44].
The Arctic sea ice extent is defined as the total area of grid cells

with SIC > 15%. The timing of an ice-free Arctic is defined as when
Arctic sea ice extent falls below 1 × 106 km2 for 5 consecutive
years, because sea ice will persist along the northern coastlines of
Canada, Alaska, and Greenland for a long time.

Model simulations
We use monthly mean sea ice concentration (SIC) data from 25
CMIP6 models (Table S1). The models were selected according to
the availability of variables and scenarios required for our study.
We analyzed the simulations from the all-forcing historical
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experiments (1850–2014) and projections (2015–2100) under four
scenarios, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, which are a
combination of the Shared Socioeconomic Pathways (SSPs)45 and
the forcing levels of the RCPs. The different ensemble members
for each model are averaged to avoid weighting toward any
model that provides more simulations and to eliminate random
errors. The SIE is calculated using the native grid of each model.
The likely (17–83%) ranges of the CMIP6 projections are derived
by ordering projections from the individual models first, and then
linearly interpolating the calculated percentiles. To illustrate SSIE
change with cumulative carbon dioxide emissions, the future
climate is divided into three specific 20-year periods: 2016–2035
(near-term), 2046–2065 (mid-term), and 2081–2100 (long-term).
The effective climate sensitivity (ECS) of the climate models is
estimated based on the following equation:

ECS ¼ �F2xγ (1)

where F2x is the radiative forcing due to doubling of CO2 and γ
represents the radiative feedback parameter, which is negative in
a stable system. Following previous research46, we regress the top-
of-atmosphere (TOA) net downwelling radiative flux anomalies
against the annual mean global surface temperature change in a
CO2-only simulation in which atmospheric CO2 concentration is
quadrupled to estimate the ECS. The estimate is divided by 2 to
represent the ECS with respect to CO2 doubling.

Observational constraint on future projections
We relate the diagnostics of the climate model projections to the
present-day climate. Let Y= y1; y2; ¼ ; ynf gT be the vector of the
projected model values to be corrected (here, the projected SSIE),
in which n is the number of models. Then we suppose that there is
a linear relationship between the historical simulated diagnostic X
(here, the simulated SSIE) and the projected model value Y (here,
the projected SSIE), which can be written as:

Y ¼ 1 β0 þ Xβþ ε; (2)

where 1= 1; 1; ¼ 1f gT is a column vector of size n;
X= x1; x2;¼ ;xn

� �T
. The vector ε represents the uncertainty in the

projections, which can be understood as all the factors related to
the projections of Y not included in X and the nonlinear
interactions between the diagnostic X and the projected model
value Y; β0 and β are the regression model parameters to be
calculated. The model parameters β0 and β can be estimated by a
least squares fit:

β̂0 ¼ 1T1
� ��1

1TY� 1TXβ
� � � NTY� NTXβ; (3)

where N � ð1T1Þ�11. Next, we assume that the linear relationship
between the simulated and projected values in Eq. 2 holds true in
the real climate. Under this assumption, Eq. 2 can be used to
adjust the original projections of Y to y0 using the vector of the
observed diagnostic X0 :

ŷ0 ¼ β̂0 þ XT
0β̂ ¼ NT þ XT

0 � NTX
� �

XTX� XT1NTX
� ��1 ´ ðXT � XT1NTÞ

h i
Y;

(4)

where ŷ0 is the estimate of y0, and the prediction error of the
regression at the value of x= xo can be written as:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2½1þ 1
n
þ ðXo � XÞ2

Sxx
�

s

; (5)

where S2=¼ ðY�ŶÞðY�ŶÞT
n�2 and Sxx ¼ ðX� XÞðX� XÞT.

Following previously established methods47,48, for a linear
regression, based on the assumption that the error of regression
is normally distributed, the Gaussian probability density function

of y given xo is expressed as:

Pfyjx0Þ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp �ðy�ŷ0Þ
2

2σ2

( )

(6)
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