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Intensification of heatwaves in China in recent decades: Roles
of climate modes
Jia Wei1,2, Weiqing Han 3, Weiguang Wang 1,2,4,5✉, Lei Zhang6,7 and Balaji Rajagopalan 8

Modes of climate variability can affect weather extremes, posing intractable challenges to our environment. However, to what
extent climate modes can modulate heatwaves in China under a warming background remains poorly understood. Here, we
examine the changes in heatwave intensity in seven distinct regions: three East, two middle, and two west regions over China and
systematically explore the impacts of climate modes, by analyzing observations and performing model experiments using a
Bayesian dynamic linear model and an atmospheric general circulation model (AGCM). Abrupt increases in heatwave intensity are
detected across China during a transition period of 1993–2000, and the intensification remains robust in northern and western
China after the warming trend being removed. The combined impacts of the El Niño–Southern Oscillation (ENSO), Atlantic
Multidecadal Oscillation (AMO), and Indian Ocean Dipole (IOD) explain 62.35–70.01% of the observed heatwave intensification in
East I, Middle I, West I, and West II regions. Decadal changes of atmospheric circulations associated with the negative phase
transition of the Interdecadal Pacific Oscillation (IPO), which is highly correlated with the decadal variability of ENSO, combined with
the positive phase transition of the AMO around the mid-1990s increase surface air temperature and enhance atmospheric internal
variability and climate modes’ impacts, resulting in the abrupt increase of heatwaves in the past two decades. These results
highlight the importance of the concurrent phase transitions of decadal climate modes in regulating heatwaves.
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INTRODUCTION
Heatwaves have major impacts on ecosystems and human
society1. Historically, outbursts of heatwaves have been respon-
sible for detrimental impacts on human health, crops, vegetation,
air quality, and natural hazard2,3. With the increase in global
temperature due to climate change, heat extremes have occurred
around the world and raised increasing public concerns in the
past few decades4–10. Overlying the warming trend, the dominant
modes of climate variability—such as the El Niño and Southern
Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO),
and the Indian Ocean Dipole (IOD)—have been shown to
modulate global hydrometeorological regimes, intensify the
duration and frequency of heatwaves, and induce natural disasters
in various regions around the world11–16. Despite a growing
appreciation of the interplay between anthropogenic warming
and internal climate modes, how strongly climate modes can
modulate heatwaves in China is little known. In particular, our
scientific understanding of the physical processes that lead to
heatwave intensification is limited17,18.
In the past century, China has experienced a clear warming

trend, rapid population growth, and urbanization. The annual
mean surface air temperature over China has increased by more
than 1 °C, accompanied by more frequent and hotter summer
days19–21. The evident warming trend and more frequent
heatwaves can reduce soil moisture and further affect crops,
vegetation and water consumption, leading to detrimental
impacts on food security and water resource sustainability in

China22,23. Meanwhile, the intensity of hot extremes is projected to
increase in the future due to the increased concentration of global
greenhouse gases24. However, studies on heatwaves and their
changing behavior in China focus primarily on the increasing
trends associated with anthropogenic effects (e.g., greenhouse
gas warming, urban heat islands) and isolated drivers at a regional
scale9,25–28. A recent study revealed abrupt (i.e., sudden)
intensification of country-averaged heatwave magnitude over
China around 1996–1997 and alluded the changes to the
increased global temperature29. Systematic assessment of the
abrupt intensification of heatwave in different geographic regions
of China, however, has not yet been done. While large-scale
climate anomalies associated with ENSO, AMO, and IOD have
been suggested to affect the frequency, duration, and intensity of
heatwaves in some areas of China11,20,29, their relative contribu-
tions to the abrupt intensification in different regions and the
underlying mechanisms remain unclear.
Here, we systematically assess the changing behaviors of

summertime (June–August) heatwave intensity and test its
robustness and regionality in China, using reliable meteorological
observations (available from 1961 to 2017) with statistical
techniques. Then we explore the non-stationary impacts of the
dominant climate modes on heatwave intensity using a Bayesian
dynamic linear model (DLM). To help understand the relevant
mechanisms, we analyze atmospheric reanalysis data and perform
model experiments using an atmospheric general circulation
model (AGCM). This understanding is crucial for decadal
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predictions and near-term projections of heatwaves in different
regions over China. The effective simulation of non-stationary
impacts of climate modes and predictive ability presented by
Bayesian DLM can improve the hindcast skill by over 10% and
reduce the mean square error by more than 25% compared to
conventional linear regression model30, leading to a better
forecast for the heat disasters than using a conventional linear
model.

RESULTS
Abrupt changes of heatwaves
Using the Fuzzy C-Means algorithm, we identify seven distinct
regions of heatwave variability over China (Fig. 1 and Supple-
mentary Fig. 1). The three regions in northern China (East I, Middle
I, and West I) and one region in western China (West II; Fig. 1a–d)
have experienced greater increases in heatwave intensity than the
rest three regions in southeast China (Fig. 1e–g). The abrupt

Fig. 1 Temporal variations of heatwave intensity. Time series of June, July and August (JJA)-mean excess heat factor (EHF) in 7 subregions
(black line with squares) from 1961 to 2017 (a–g). The mean EHF values during the pre-abrupt and post-abrupt periods are shown in blue and
red lines, and the year of abrupt change is denoted in red for each panel. The spatial distribution of EHF differences between the post-abrupt
and pre-abrupt periods is shown in (h).

Fig. 2 Bayesian simulation of heatwave intensity. Time series of observed normalized JJA-mean heatwave intensity (Y, black line) from 1961
to 2017 (a–g), its Bayesian dynamic linear model (DLM) simulation (Yfit dlm, red line), and the total effects of all three climate modes (blue line;
see section “Impacts of climate modes”). The standard deviation (STD) for each curve and the correlations between them are shown. The right
bottom panel denotes the location of subregions (h).
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changes exceed 95% significance level in East I, Middle I, West I
and West II regions as well as East II area in both Pettitt and
moving t-tests; however, the rest two southern regions (East III
and Middle II) have inconsistent results from the two different
methods (Supplementary Fig. 2 and Table 1). The mean heatwave
intensities for the post-abrupt change period are 4.8, 6.7, 4.8, and
6.1 times of those of the pre-abrupt period in East I, Middle I, West
I, West II regions, respectively, and the heatwave variability—
measured by the standard deviation (STD) of EHF—also exhibits
evident enhancement in each region. The strong intensifications
of heatwave magnitudes, as shown by the difference between the
EHF averaged for the post- and pre-abrupt period at each
observational station, are also clearly seen in regions of northern
and western China (Fig. 1h). The increased variability amplitude
demonstrates that individual heatwave events become more
intense.
For comparison, the daily-mean air temperatures from NCEP/

NCAR and ERA5 reanalysis products are also used to calculate EHF
(Supplementary Fig. 3). The heatwave intensities averaged over
China from observations, NCEP/NCAR reanalysis and EAR5
reanalysis datasets show consistent abrupt changes in 1996 as
tested by both Pettitt and moving t methods, although the
reanalysis datasets show smaller increase in EHF magnitudes than
the observations from meteorological stations. The abrupt EHF

increases in ERA5 reanalysis agree well with that of station data
across China except for the Tibet plateau area where only a few
meteorological stations are available (Fig. 1 and Supplementary
Fig. 3). By contrast, NCEP/NCAR reanalysis data show reasonable
EHF increase only in northeast China (top row of Supplementary
Fig. 3). Therefore, we will use ERA5 data for further calculations
hereafter. After removing the linear trend, the abrupt increase in
heatwave intensity remains evident for the four northern and
western areas, although the magnitudes are reduced (Fig. 2a–d,
black lines; Supplementary Table 2). This result suggests that the
warming trend—which is attributed primarily to global warming
by previous studies—indeed enhances heatwave amplitudes
across China, but it cannot explain the strong and abrupt EHF
intensity increase (both mean and variability) especially in
northern and western China.

Impacts of climate modes
The impacts of the three dominant climate modes—ENSO, AMO,
and IOD—affecting Asia’s climate are examined. Using the JJA-
mean detrended indices of ENSO, AMO, and IOD as predictors and
detrended heatwave intensity (EHF) as the predictand, the
Bayesian DLM can simulate the observed interannual and longer
timescale variability of heatwave intensity in all regions, including

Fig. 3 Time series of JJA-mean normalized climate mode indices based on monthly observational data with the 1961–2017 mean
removed. a Nino3.4 index; b the Atlantic multidecadal oscillation (AMO) index; c the Indian Ocean Dipole Mode Index (DMI); d the detrended
IPO index (black line) and AMO index (shading) from 1920 to 2017. e Spatial patterns of SST anomalies (SSTA; °C) associated with a positive IPO
over the Pacific and negative AMO over the North Atlantic (color shading); f time series of 8 yr-lowpass-filtered normalized IPO and AMO
indices (black and blue dotted curves), an idealized sinusoidal SSTA that mimics the IPO index (thick solid red) and AMO index but with an
opposite sign, and a sinusoidal SSTA with a 2-year period representing ENSO interannual variability (thin solid red).
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their magnitudes and abrupt intensity increases (Fig. 2, compare
black and red lines). The three climate modes together explain
most of the model-data correlation and observed variances (Fig. 2,
blue lines). During the post-abrupt period, the combined impacts
of ENSO, AMO, and IOD explain 62.35%, 70.01%, 66.20%, and
63.64% (STDmodes/STDEHF) of the observed heatwave intensifica-
tion in East I, Middle I, West I, and West II regions, respectively. For
the Bayesian DLM simulations, the combined impacts of total
climate modes can contribute 85.56%, 89.33%, 86.72%, and
88.11% (STDmodes/STDdlm) to the simulations for the four regions.
There is however a portion of EHF that cannot be explained by
these climate modes, suggesting that other factors (e.g., atmo-
spheric internal variability) can also contribute to heatwave
activities. Note that the amplitudes of ENSO, AMO, and IOD
indices are similar for the pre- and post-abrupt change periods
(Fig. 3a–c), suggesting that the modeled abrupt increases in
heatwave intensity in the Bayesian DLM (Fig. 4a) arise from their
significantly intensified coefficients (Supplementary Fig. 4) rather
than from variations of climate modes’ strength. Physically, these
results suggest that for the same strength of a climate mode, its
impacts are more effective and larger during the post-abrupt
period. Relevant physical causes are discussed below.
The impacts of climate modes have substantial increases during

the post-abrupt period, as can be seen from both the increased
STD of climate modes’ contribution and its correlation with total
DLM simulation in the four regions of northern and western China
(East I, Middle I, West I, and West II) although the correlation
increased little in West II (Fig. 4a). Therefore, we focus on these
four northern and western China regions hereafter. ENSO accounts
for the largest fraction of heatwave intensification in all four

regions and dominates the combined effect of IOD and AMO in
East I, Middle I, and West I (Fig. 4b, d). While the AMO impact is
weak or negligible in these three regions, the IOD impact is larger
and non-negligible in East I and West I. In West II area, ENSO, IOD,
and AMO have comparable effects on the enhanced EHF (Fig. 4d).
The effect of ENSO is weak overall before the 1990s, but after the
year of abrupt change, the DLM coefficient of ENSO becomes
strongly negative and exceeds the 95% confidence interval of the
constant coefficient of the conventional linear regression model in
each region (Supplementary Fig. 4a–d). The negative coefficient
suggests that the negative phase of ENSO (IPO), which
corresponds to La Niña (negative IPO), enhances the heatwave
intensity during the post-abrupt period.
The impacts of AMO and IOD, especially AMO, are more

complex. For instance, during the pre-abrupt change period, the
AMO is in a negative phase overall with significant interannual
variability (Fig. 3b, d), and its impacts on heatwave intensity—
measured by its DLM coefficients (Supplementary Fig. 4e–h)—are
weak in all four regions. During the post-abrupt change period,
the AMO is in a positive phase (Fig. 3b, d); its impacts on
heatwaves (DLM coefficient), however, change from negative
before ~2008 to positive thereafter, indicating its non-stationary
relationship with heatwave intensity. Physically, this suggests that
the sea surface temperature anomalies (SSTAs) associated with the
AMO might have experienced a pattern change around 2008,
resulting in different impacts on China’s climate. Indeed, the AMO
index—the averaged SSTA in the North Atlantic Ocean—is
associated with significantly different SSTA patterns before and
after 2008 (Supplementary Fig. 5). For the IOD, its impacts
enhance during the post-abrupt period with negative IOD

Fig. 4 Contribution of climate modes to heatwave intensity in Bayesian DLM for the pre-abrupt and post-abrupt periods in each of the
seven subregions. a The correlation coefficient between the total climate modes’ contribution (ENSO+ AMO+ IOD) and the full Bayesian
DLM simulations (horizontal segments, left axis), and the standard deviation (STD) of total climate modes’ contribution for the pre-abrupt and
post-abrupt periods (histogram, right axis) for each region. b The STD of heatwave intensity is explained by ENSO, AMO, and IOD, respectively.
c The correlation between DLM simulation and each climate mode’s contribution. d The difference of EHF between pre-abrupt and post-
abrupt periods (post subtracts pre) contributed by each climate mode.
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enhancing the heatwaves as shown by its negative DLM
coefficient (Supplementary Fig. 4i–l). Note that the DLM coefficient
of IOD in the West II area changes sign during the post-abrupt
period, from positive before ~2007 to negative thereafter. We
further perform partial Bayesian DLM to investigate whether this
changing sign of the IOD coefficient is artificial. Compared to the
Bayesian DLM using all three climate modes, the DLM coefficients
of IOD in partial Bayesian DLM also change the sign from positive
before ~2007 to negative albeit with a smaller amplitude
(Supplementary Fig. 6). The reason for this change in the West II
Tibet area is unclear and could be related to the relatively sparse
meteorological stations in the region, atmospheric internal
variability or other forcings on the EHF over the Tibet Plateau.
While our discussions above are based on Eq. (14) with multiple

predictors, we have also examined each climate mode’s impact
with a single predictor (e.g., ENSO index) in the Bayesian DLM.
Then assess the impact of other climate modes using partial
Bayesian DLM, with AMO index and DMI as the predictors and the
EHF residual (with ENSO effect removed) as the predictand
(Supplementary Figs. 7, 8). The dynamic coefficients of individual
predictors show similar variations with the results of multi-
predictors (compared with Supplementary Fig. 4). For example,
the DLM coefficient of ENSO with a single predictor is negative,
indicating that La Niña (negative IPO) acts to intensify heatwaves.
This result is consistent with the ENSO impact of the multi-
predictors simulation. Likewise, the results of the AMO and IOD
impacts are also consistent with those of multi-predictor simula-
tions (Supplementary Figs. 9, 10).
To reveal the spatial patterns of heatwave intensity changes

associated with phase changes of the climate modes, we perform
composite analysis for the EHF using the climate indices (Fig. 5).
Consistent with our discussions above, La Niña and the negative
phase of IPO indeed enhance heatwaves, especially in northern
regions of China relative to their positive phases. For the positive

phase of AMO and IOD, heatwaves intensify across China with the
largest enhancement occurring in northern China relative to their
negative phases, and the heatwaves show the smallest increase
during positive phases of IOD. Note that Fig. 5 shows the EHF
differences between the two phases of each climate mode, rather
than the contributions of climate modes to the abrupt heatwave
intensification since the 1990s.

Relevant physical processes for the abrupt intensification of
heatwaves
In this subsection, we will first analyze the reanalysis product
together with the meteorological station data, to demonstrate
that the enhanced high-pressure system over the Eurasian
continent plays an important role in generating the warmer
surface air temperature and intensified heatwave (i.e., EHF) during
the post-abrupt period. Then we discuss the effects of climate
modes on the Eurasian high and heatwave intensification. Finally,
we hypothesize that atmospheric circulation anomalies associated
with the concurrence of interdecadal phase transitions of the IPO
and AMO during the 1990s increase surface air temperature and
enhance the heatwave magnitudes induced by atmosphere
internal variability and ENSO. We test this hypothesis by
performing AGCM experiments.
Compared to the pre-abrupt period, both sea level pressure and

500 hPa geopotential height have increased throughout China,
especially over the Eurasia that spans northern and western China
(Fig. 6b, c) where strong warming of surface air temperature and
heatwave intensification are observed (Figs. 1h, 6a and Supple-
mentary Fig. 3). A significant high-pressure system with a center
located on the north side of Eurasia controls the mainland China
(Fig. 6c). This result indicates that the warmer surface air
temperature during the post-abrupt period yields stronger
heatwaves.

Fig. 5 Composite maps of heatwave intensity (JJA-mean EHF) changes associated with phase changes of observational climate modes
indices with trend removed for the 1961–2017 period. Hatching indicates statistical significance according to the standard t-test at the 90%
confidence level. a La Niña minus El Niño; b positive minus negative phases of AMO; c positive minus negative phases of IOD; and d negative
minus positive phases of IPO.
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The increased 500 hPa geopotential height and sea level
pressure (Fig. 6b, c) cause anomalous atmosphere subsidence
and therefore reduce cloud cover (Supplementary Figs. 11a, 12a).
The enhanced sinking motion contributes to the surface warming
via adiabatic heating (Supplementary Fig. 11b), and the reduced
cloud cover increases downward solar shortwave radiation which
warms the earth’s surface, especially in northeast China (Supple-
mentary Fig. 12c). In the central and western parts of northern
China, reduced latent heat loss from surface to the atmosphere
(Supplementary Fig. 12e), which corresponds to reduced evapora-
tive cooling at the surface, and reduced outgoing longwave

radiation (Supplementary Fig. 12f) warm up Earth’s surface. The
warmer ground heats up the surface air by increasing upward
sensible heat flux (Supplementary Fig. 12d). In addition to surface
heat fluxes, horizontal advection has significant contributions to
the warm surface air temperature in West II (Supplementary
Fig. 13).
The fundamental dynamics for ENSO and AMO to affect China’s

climate through Gill-type response and atmospheric Rossby waves
have been discussed in existing studies31–33. Located in the East
Asian monsoon region, the climatic condition in China is sensitive
to SSTAs since they can drive persistent anticyclones and

Fig. 6 The differences between the post-1996 period and the pre-1996 period (post subtracts pre) of JJA-mean maps from ERA5
reanalysis data. a Surface air temperature (°C), b sea level pressure (hPa) and surface wind (m s−1), c 500 hPa geopotential height (m). The
black dots indicate the changes significant at the 90% confidence level.

l ENSO+AMO+IOD, difference

h ENSO+AMO+IOD, post-1996

d ENSO+AMO+IOD, pre-1996a ENSO, pre-1996 b AMO, pre-1996 c IOD, pre-1996

e ENSO, post-1996 f AMO, post-1996 g IOD, post-1996

i ENSO, difference j AMO, difference k IOD, difference

Fig. 7 The JJA-mean composite maps of 500 hPa geopotential height anomalies from Bayesian DLM simulation. a–d 500 hPa geopotential
height contributed by ENSO, AMO, IOD, and the sum of three climate modes averaged for the pre-1996 period (1961–1996); e–h Same as (a–d)
but for the post-1996 period (1997–2017); i–l Same as (a–d) but for the differences between pre-1996 and post-1996 periods (post subtracts
pre). The black dots indicate the changes significant at 90% confidence level.
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modulate the associated dynamics34,35. The Bayesian DLM
simulates the strong changes of 500 hPa geopotential height
between the post- and pre-abrupt periods over China (Fig. 7), with
STD ratios between the DLM simulated and ERA5 observed values
>0.86 and correlation coefficients exceeding 0.97 over China
(Supplementary Fig. 14). The three climate modes together can
explain a large fraction of geopotential height enhancement over
northern China. The ENSO contribution is centered in Eurasia
similar to the observed change. The AMO contribution shows
weaker magnitude but it is significant in western areas, while the
IOD contribution is positively centered in East I.
During the 1990s, the IPO (i.e., ENSO decadal variability; Fig. 3a)

transits from a positive to negative phase and the AMO changes
from negative to positive (Fig. 3f). The change in decadal IOD
variability is weak compared to that of the IPO and AMO (Fig. 3f
and Supplementary Fig. 15). Because negative IPO and positive
AMO generally tend to enhance heatwaves (Fig. 5) based on the
negative regression coefficient of IPO and positive coefficient of
AMO (dashed black lines of Supplementary Fig. 4), we hypothesize
that the combined effects of the IPO negative phase transition and
AMO positive phase transition around the mid-1990s cause
atmospheric circulation anomalies, warm the surface air and
enhance the heatwave magnitudes, resulting in the intensification
of heatwaves in China. This also helps explain the enhanced
magnitude of the ENSO coefficient in the Bayesian DLM
(Supplementary Fig. 4). It is also possible that ENSO, the dominant
mode for heatwave intensification, has experienced SSTA pattern
change due to ENSO diversity (i.e., Central Pacific ENSO versus
Eastern Pacific ENSO), and the SSTA pattern in the recent two
decades causes stronger heatwaves. The occurrences of the two
types of El Niño events, however, have similar chances between
the 1980–1996 and 1996–2017 periods (Table 1 of Zhang and
Han36), and thus are not likely the cause for the abrupt heatwave
intensification.
To test our hypothesis, we perform three AGCM experiments

using ECHAM4.6 to assess the impacts of the IPO, the AMO, the

ENSO, the combined IPO and AMO, and the combination of all
three modes. A total of four AGCM experiments are performed:
Exp-IPO, Exp-AMO, Exp-(IPO+AMO), and Exp-(IPO+AMO+ENSO),
which assess the impacts of IPO, AMO, combined IPO with AMO,
and combined IPO, AMO, and ENSO. The spatial patterns of the
SSTAs associated with each climate mode are obtained by
regressing SSTA on the normalized climate mode indices and
then are multiplied by a sinusoidal wave with a 40-year period to
represent the observed inter-decadal changes of IPO and AMO
(Fig. 3f). The effect of ENSO represents interannual SST variability
with an idealized 2-year period, which is superimposed on the
interdecadal SSTAs of AMO and IPO that force Exp-(IPO+AMO)
(Fig. 3f). The control (CTRL) experiment is forced by the
climatological SST. Thus, the impacts of IPO, AMO, IPO+AMO,
and IPO+AMO+ENSO on the heatwaves can be quantified by
comparing the corresponding results with the CTRL experiment.
Note that in these experiments, the IPO and AMO effects are only
at an interdecadal timescale, and ENSO is only at an interannual
timescale with an idealized 2-year cycle (see Fig. 3f for their
idealized indices).
First, we analyze the magnitudes of heatwave changes by

calculating EHF difference between the post- and pre-abrupt
change period using daily results from Exp-IPO, Exp-AMO, and
Exp-(IPO+AMO) (Fig. 8). Exp-IPO shows that the IPO alone
enhances heatwaves in central, northeastern and western China,
and AMO alone (Exp-AMO) weakly enhances heatwave intensity
across southern China. Their combined impacts from Exp-(IPO
+AMO), however, show evident increases in heatwave intensity in
most regions of northern China (Fig. 8d) where abrupt heatwave
intensification is observed. The linear superposition of their
impacts, Exp-IPO+Exp-AMO (Fig. 8c), however, cannot produce
the strong heatwave intensification in northeast China, suggesting
that nonlinear interactions between the IPO and AMO effects,
which are included in Exp-(IPO+AMO), play an important role. The
time series of JJA-mean EHF calculated from Exp-(IPO+AMO) in
each of the four regions of northern and west China also show

Fig. 8 Changes of JJA-mean heatwave intensity measured by EHF from the AGCM experiments. The differences between the last 20-year
mean and the first 20-year mean results. a EHF from Exp-IPO; b EHF from Exp-AMO; c EHF calculated by daily TS from Exp-IPO+Exp-AMO; and
d EHF from Exp-(IPO+AMO).
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heatwave intensification during the post-abrupt change period
(Supplementary Fig. 16). Since only interdecadal SSTAs of the IPO
and AMO are used to force the AGCM, the enhanced amplitude of
interannual EHF in Exp-(IPO+AMO) results mainly from the
interdecadal modulation of atmospheric internal variability by
IPO and AMO.
The above AGCM experiments demonstrate that the inter-

decadal SSTAs associated with the concurrent phase transitions of
the IPO (positive to negative) and AMO (negative to positive)
around the mid-1990s indeed cause heatwave intensification.
Given that the impact of ENSO on EHF is intensified during the
post-abrupt period, we expect that the combined IPO and AMO
interdecadal phase transitions may also enhance ENSO’s inter-
annual impacts on heatwave amplitude. To test this hypothesis,
we analyze the results from Exp-(IPO+AMO+ENSO) (Fig. 9 and
Supplementary Fig. 17). The composites differences of La Niña
episodes between the post- and pre-abrupt periods, which isolate
ENSO impacts and damp the effects of atmospheric internal
variability, show that the same amplitude La Niña events indeed
produce stronger heatwaves during the post-abrupt period in the
East I and West II regions. Even though the AGCM results contain
model errors, the good agreements between our idealized AGCM
results and observational analyses prove that the concurrent
interdecadal phase transitions of the IPO and AMO explain a major
portion of the abrupt increase of heatwave intensity around the
mid-1990s, by modulating atmospheric internal variability and
interannual ENSO’s effects.

DISCUSSION
The strong societal and ecosystem impacts of heatwaves
emphasize the urgency for an improved understanding of their
driving mechanisms and changing behavior on decadal and
longer time scales in a warming climate. Using meteorological
station observations and reanalysis datasets, we detect robust
intensification of heatwave magnitudes over China in the past two
decades, with an abrupt increase in heatwave intensity around the
mid-1990s in northern and western China (East I, Middle I, West I,
and West II regions of Fig. 1). The intensification remains robust in
northern and western China after we remove the multidecadal
linear trend of heatwave intensity, which has been attributed to
anthropogenic warming by previous studies (Fig. 2). By perform-
ing Bayesian DLM and AGCM experiments, we show that the
enhanced impacts of major climate modes (ENSO, AMO and IOD)
during the post-abrupt period explain a major portion of the
abrupt heatwave intensification. Despite the climate mode indices
do not show increased amplitudes (Fig. 3), their impacts on
heatwave intensity intensified as shown by their larger Bayesian
DLM coefficients (Supplementary Fig. 4). Physically, this means
that climate modes generate favorable atmospheric conditions for
strong heatwaves to occur in northern and western China during

the past two decades, which further amplify the already enhanced
heatwaves due to anthropogenic warming.
During the post-abrupt change period, the enhanced Eurasian

high-pressure system causes anomalous atmosphere subsidence,
which contributes to Earth’s surface warming in northern China
via adiabatic heating, increased downward solar shortwave
radiation due to reducing cloud cover, and weakened latent heat
loss. The warm ground heats up surface air through sensible heat
flux, and advection also contributes to the warm surface air in the
West II region. The concurrent interdecadal phase transitions of
the IPO (from positive to negative) and the AMO (from negative to
positive) around the mid-1990s are the main cause for the
observed intensified Eurasian high-pressure system, which warms
the surface air and results in the abrupt intensification of
heatwaves around the mid-1990s. Our AGCM experiments show
that the interdecadal SSTAs associated with the IPO and AMO
enhance the year-to-year heatwave magnitudes by modulating
atmospheric internal variability and interannual climate modes
(e.g., ENSO). The nonlinearity of the atmospheric system affects
the IPO and AMO impacts and is important in some regions.
Further investigation is needed to understand the sources of
atmospheric internal variability and their interplay with climate
modes, and this is an area of our future research.
Our results indicate that the concurrences of interdecadal

phase transitions of the IPO and AMO can aggravate the
intensified heatwaves due to anthropogenic warming in some
decades but weaken them during other decades, causing abrupt
changes in heatwave intensity in different regions of China and
other countries. Continued greenhouse gas warming is altering
the background climatic conditions and likely the dynamics
governing these climate modes37. The warming ocean tempera-
tures may also amplify the impacts of climate modes on the
ecosystems and extreme events (e.g. 38). Thus, it is imperative to
understand the climate modes’ influences and their interplay with
the changing climate. This understanding may help improve
decadal predictions and near-term projections of climate and
extreme events and therefore contribute to informed decision-
making.

METHODS
Data
Daily maximum and minimum temperatures of meteorological
stations from 1961 to 2017 were obtained from China Meteor-
ological Administration and were quality controlled based on a
national standard quality management system. The total 718
meteorological stations used in this study are shown in Fig. 1h and
Supplementary Fig. 1. In this study, the three dominant climate
modes—ENSO, AMO, and IOD—affecting Asia climate are
examined, which are represented by monthly Niño3.4 index,
AMO index, and DMI from June to August, respectively39–41. The

Fig. 9 Changes of JJA-mean heatwave intensity measured by EHF from the AGCM experiment Exp-(IPO+AMO+ENSO). a The differences
between the last 20-year mean and the first 20-year mean results. b The differences in the composites of La Niña episodes between the last
20-year and first 20-year periods.
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Interdecadal Pacific Oscillation (IPO) index42 is also analyzed and
compared with the ENSO index (Fig. 3a); their JJA-mean indices
are highly correlated with a correlation of 0.89 for the 1961–2017
period and 0.78 for their decadal components (8 yr low-passed
filtered values). The high correlations between IPO, Pacific Decadal
Oscillation, and ENSO decadal variability have been shown by
previous studies, with correlation coefficients being 0.89 for the
past century43,44. Therefore, hereafter we use the IPO and decadal
variability of ENSO interchangeably and use the IPO index to
estimate the impact of ENSO decadal variability on the abrupt
change of heatwave intensity. The JJA-mean index of each climate
mode is calculated by averaging June, July, and August values,
with the monthly climatology of 1961–2017 removed. In addition,
monthly global SST from the NOAA Extended Reconstructed SST
V545 is used to conduct the regression analysis.
For comparison, daily-mean air temperatures from ERA5 and

NCEP/NCAR reanalysis products46,47 are also used to calculate
heatwave intensity. To help understand the relevant physical
mechanisms, we also analyze ERA5 reanalysis geopotential height,
sea level pressure, surface zonal and meridional winds, vertical
velocity, total cloud cover, and temperature advection. To assess
the change of surface heat flux associated with heatwave
intensification, the surface latent heat flux, sensible heat flux,
shortwave radiation flux, and longwave radiation flux are also
analyzed.

Definitions of heatwave, identification of homogeneous
regions, and detection of abrupt change
Definitions of heatwave in existing literature are not consistent.
The most commonly used definition is the relative threshold of
90th or 95th percentile daily temperature to evaluate the
excessive heat days and nights in Europe, Australia, and India
(e.g. refs. 48–50). Here, the EHF calculated with daily maximum and
minimum surface air temperatures was selected because of two
improvements compared to the common definition: One is the
incorporation of day and night heat conditions; another is the
consideration of local antecedent heat conditions. The local
antecedent heat condition can enhance or weaken the heat
amplitude for a given day51,52. The EHF was proposed based on
two concepts named excess heat and heat stress. This method has
been intensively tested for reliably detecting heatwave events and
more accurately representing heatwave intensity (e.g. refs. 53–56).
To assess the temporal evolution of heatwave intensities in
different regions over China, we calculate the excess heat factor
(EHF) using daily maximum and minimum temperature data
during summer (06/01–08/31) observed from meteorological
stations for the period of 1961–2017. The excess heat expresses
an unusually high-temperature condition with an average of
maximum and minimum daily temperatures (Tmax and Tmin)
further averaged over a three-day period and comparing it against
a long-term temperature:

EHIsig ¼ Ti þ T i�1 þ T i�2ð Þ=3� T i95; (1)

where T i95 is the 95th percentile of daily mean temperature (T i) for
the entire period of 1961–2017. In our study, the T i95 is calculated
for each day (i) with a 15-day window (from T i�7 to T iþ7) centered
on T i and at each station. The daily mean temperature is defined
as:

T i ¼ Tmax þ Tminð Þ=2; (2)

where Ti is calculated from 1 June to 31 August during the period
of 1961–2017.
The heat stress characterizes a heat anomaly from the

acclimatization over the recent past with the average temperature

over a 3-day period compared against a short-term temperature:

EHIaccl ¼ T i þ T i�1 þ T i�2ð Þ=3� T i�3 þ � � � þ T i�32ð Þ=30; (3)

The EHF considers both EHIsig and EHIaccl and is defined as

EHF ¼ EHIsig ´ max 1; EHIacclð Þ; (4)

which provides a more effective and comprehensive measure-
ment of heatwave intensity.
We classify the regions using the Fuzzy C-Means algorithm,

which is a commonly used clustering method (e.g. refs. 57,58). A
finite dataset X ¼ x1; x2; x3; � � � ; xnf g in a feature space Rs, is
classified by FCM method into c clusters 2 � c<nð Þ. The cluster
center is V ¼ v1; v2; v3; � � � vnf g. The membership matrix is

U ¼ uij
� �

(5)

where uij is the membership degree of the ith data to the jth
cluster. In the FCM, uij should satisfy the following conditions:

uij ¼2 0; 1½ �; (6)

Xc

i¼1
uij ¼ 1; (7)

0<
Xn

j¼1
uij<1: (8)

The optimized objective function of FCM algorithm is

J U; Vð Þ ¼
Xc

i¼1

Xn

j¼1
umij d

2
ij ; (9)

dij ¼ jjxj � vi jj ¼
Xn

j¼1
xij � vij
� �2h i1=2

; (10)

where m is a fuzzy weighted parameter.
The optimized clustering number is determined by validity

indices. In this study, three widely used validity indices, namely
the Fuzziness performance index (FPI)59, partition index (PI)60, and
Extended Xie–Beni index (XB)61 are selected to find the optimal
number of clusters:

FPI cð Þ ¼ 1�
c
N

Pc
i�1

PN
j¼1 uij

� �2 � 1
� �

c � 1ð Þ ; (11)

PI cð Þ ¼
Xc

i¼1

PN
j¼1 uij

� �mjjxj � vijj2
Ni

Pc
k¼1 jjvk � vijj2

; (12)

XB cð Þ ¼
Pc

i¼1

PN
j¼1 uij

� �mjjxj � vijj2
Nmini; jjjvk � vijj2

: (13)

The optimal cluster number is found when the validity indices
become smaller and stable. Note that the values of all three
validity indices become smaller and stable when the cluster
number ≥7 (Supplementary Fig. 1a). Therefore, 7 subregions are
classified (Supplementary Fig. 1b): three east regions (East I, East II,
East III), two middle regions (Middle I, Middle II) and two west
regions (West I, West II).
The EHF averaged for each subregion is used to characterize

regional heatwave intensity variation. Using the Pettitt test62, we
show abrupt increases in heatwave intensities in all seven regions
(Fig. 1a–g and Supplementary Table 1). The years of abrupt
changes vary regionally, ranging from 1993 in region East I to 2000
in East II. The abruptness of heatwave intensity increase is further
tested and supported by the moving t-test (Supplementary Fig. 2),
with the moving step of 10 years to detect abrupt change within
the decadal time scale.
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Bayesian dynamic linear model (DLM)
Given that ENSO and its decadal variability (i.e., IPO), AMO and IOD
have prominent impacts on weather and climate over
China20,29,31,32,63,64, here we investigate their impacts on heatwave
intensity using the Bayesian DLM65. The Bayesian DLM has the
advantage of capturing the nonstationary impacts (e.g., abrupt
change) of climate modes compared to the conventional linear
regression model. We first calculate the linear trends of the
heatwave intensity index and climate mode indices for the
1961–2017 period and then remove them from both heatwave
intensity and climate mode indices to eliminate the effects of
global-scale warming associated with increased greenhouse
gases29. The longer period of 1920–2017 is used to calculate the
AMO trend since the AMO has 60–80 yr periods and exhibits a
positive phase transition during 1961–2017 (Fig. 3d, color
shading).
The conventional multiple-linear regression model has been

widely used to examine the relationship between the indepen-
dent predictors (X1, …, Xn) and predictand, Y. However, nonsta-
tionary relationships between Y and Xi in a real geophysical
system especially under a warming climate cannot be captured by
the conventional linear model, because of the constant regression
coefficients (bi ; see Eq. (15) below) during the examination period.
The Bayesian DLM allows coefficients bi to vary with time and thus
can capture the time-varying impacts of predictors xi on
predictand Y within the temporal period examined.

Y tð Þ ¼ b0 tð Þ þ b1 tð ÞX1 tð Þ þ � � � þ bM tð ÞXM tð Þ þ ε tð Þ; (14)

and

bi tð Þ ¼ bi t � 1ð Þ þ wi tð Þ; (15)

where ε tð Þ � N 0; V tð Þ½ � and wi tð Þ � N 0;Wi tð Þ½ � are independent
white noises or errors, distributed normally with a mean of 0 and
variances of V(t) and Wi(t).
With this advantage, the Bayesian DLM has been recently

applied to investigating the nonstationary effects of climate
modes on oceanic and atmospheric variables66,67. In this study, we
use ENSO, AMO, and IOD indices as predictors because of their
prominent impacts on China’s climate and heatwave intensity as
predictand. Since the correlation coefficient between JJA-mean
Niño3.4 index and DMI is 0.42 for the 1961–2017 period, whereas
the Bayesian DLM requires predictors to be independent, partial
DMI was calculated by removing the ENSO effect from the DMI
before applying the Bayesian model. By doing so the underlying
assumption of the procedure is that ENSO has a unidirectional
influence on IOD. Therefore, ENSO (IOD) impacts might be
somewhat overestimated (underestimated). Since the DMIs with
and without ENSO-effect removed are highly correlated, with the
correlation coefficient reaching 0.91 (Supplementary Fig. 18), the
overestimation/underestimation effects are likely small.
To further ensure the independence of ENSO and IOD impacts

and avoid the overfit by Bayesian DLM, we also apply the partial
Bayesian DLM method66 by using the residual EHF, Y’= Y(t)−(b1(t)
ENSO(t)+ b2(t)AMO(t)), as the predictand and partial DMI as the
predictor. This yields, Y’ = b0(t)+ b1(t)IOD(t)+ ε(t). We compare
the IOD effects and its DLM coefficient in the partial DLM with that
from the original DLM from Eqs. (14) and (15) are mentioned
above (Supplementary Fig. 6). The AMO is independent of ENSO
(r= 0.02) and IOD (r= 0.1) during JJA and serves as an
independent predictor.

AGCM experiments
To investigate the impact of inter-decadal climate variability
associated with the IPO and AMO on the intensification of
heatwaves over China, we perform AGCM experiments using
ECHAM4.668 from Max Planck Institute in Hamburg. ECHAM4.6 has

been widely used to study atmospheric responses to large-scale
sea surface temperature anomaly (SSTA) forcing in the tro-
pics69–72. Four experiments are performed: one control (CTRL) and
three sensitivity experiments (Exp-IPO, Exp-AMO, and Exp-(IPO
+AMO)). The CTRL is forced with the monthly climatological SST
field. In Exp-IPO, the SST anomaly (SSTA) associated with the IPO
over the tropical and subtropical Pacific is added to climatological
SST; In Exp-AMO, the SSTA associated with the AMO over the
North Atlantic is added to climatological SST; In Exp-(IPO+AMO),
both the IPO and AMO SSTAs are added to the climatological SST.
To obtain the SSTAs associated with the IPO (AMO), we first obtain
their spatial patterns by regressing SSTA onto the normalized
Niño3.4 (AMO) index (Fig. 3a, b, e), and then multiply the SSTA
patterns by a sinusoidal wave with a 40-year period to represent
the observed inter-decadal changes of the IPO and AMO (Fig. 3d,
f). Further, one additional experiment including ENSO impacts is
also performed (Exp-(IPO+AMO+ENSO)) to better understand the
modulation of IPO on ENSO and their combined impacts on
heatwave intensity.
For experiment CTRL, the model was integrated for 42 years. For

Exp-IPO, Exp-AMO, and Exp-(IPO+AMO), respectively, the model is
also integrated for 42 years, with the first two years forced by SST
climatology as in CTRL but the subsequent 40 years forced by the
sum of SST climatology and the corresponding SSTAs. The first 2
years are discarded in our analysis of all experiments given that it
takes a couple of years for the model to reach its equilibrium state.
A three-member ensemble is performed for each of the sensitivity
experiments. The 40 yr mean of CTRL represents the effects of
climatological SST forcing, and the three-member ensemble mean
of each sensitivity experiment measures the impacts of the IPO,
AMO, and IPO+AMO, respectively. The solution difference (Exp-
IPO−CTRL) assesses the IPO impact, (Exp-AMO−CTRL) estimates
the AMO impact, and (Exp-(IPO+AMO)−CTRL) measures the
combined effects of IPO and AMO. Note that due to the
nonlinearity of the climate system, the combined IPO and AMO
effects obtained from (Exp-IPO−CTRL)+(Exp-AMO−CTRL) are
different with that from (Exp-(IPO+AMO)−CTRL).

DATA AVAILABILITY
The observations of daily maximum and minimum temperatures are available at
http://data.cma.cn/en. Monthly climate modes indices from the NOAA Physical
Sciences Laboratory are available at https://www.esrl.noaa.gov/psd. The atmospheric
circulation variables and surface heat budget variables from the ERA5 reanalysis
products are available at https://cds.climate.copernicus.eu/cdsapp#!/search?
type=dataset&text=ERA5. Monthly global SST of the NOAA Extended Reconstructed
SST V5 is available at https://www.esrl.noaa.gov/psd/data/gridded/
data.noaa.ersst.v5.html.

CODE AVAILABILITY
The scripts are available from https://github.com/WeiJ2022/heatwave_2023npj/tree/
master.
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