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Climate change impact on hurricane storm surge hazards in
New York/New Jersey Coastlines using machine-learning
Mahmoud Ayyad1✉, Muhammad R. Hajj1 and Reza Marsooli 1

Recent hurricane losses in the New York Metropolitan area demonstrate its vulnerability to flood hazards. Long-term development
and planning require predictions of low-probability high-consequence storm surge levels that account for climate change impacts.
This requires simulating thousands of synthetic storms under a specific climate change scenario which requires high computational
power. To alleviate this burden, we developed a machine learning-based predictive model. The training data set was generated
using a high-fidelity hydrodynamic model including the effect of wind-generated waves. The machine learning model is then used
to predict and compare storm surges over historical (1980–2000) and future (2080–2100) periods, considering the Representative
Concentration Pathway 8.5 scenario. Our analysis encompassed 57 locations along the New York and New Jersey coastlines. The
results show an increase along the southern coastline of New Jersey and inside Jamaica, Raritan, and Sandy Hook bays, while a
decrease along the Long Island coastline and inland bays.
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INTRODUCTION
The heavily populated New York metropolitan area covers a
region of narrow rivers, estuaries, islands, and sand barriers with
elevations that are <5m above mean sea level1. Millions of
residences and transportation, energy, and water infrastructure
systems in this area are highly prone to storm surge events. Since
2010, tropical cyclones (TCs) Irene in 2011, Sandy in 2012, Isaias in
2020, Fay in 2020, and Ida in 2021 killed tens of people, damaged
thousands of houses, and caused interruptions in clean water and
electricity supplies2–7. ExtraTropical cyclones (ETCs) are equally
hazardous. The Great Appalachian Storms in 1950 produced storm
surges that were only 13% smaller than that of Hurricane Sandy
(after removing the trend in sea level)8.
The expectation that climate change will result in an increase in

the frequency of very intense (Categories 4 and 5) hurricanes and
an eastward shift in their tracks9,10 points to a potentially
significant change in the level of storm surge hazards to this
region over the coming decades. These hazards are quantified by
assessing the change in the N-year peak storm surge height (or
water level) return periods, defined as the height that has 1/N
percent chance of being exceeded in any given year. While
Roberts et al.11 and Lin et al.12 found that the impact of ETCs’
climatology change would not be significant in this region, other
studies showed differing impacts of climate change on TC-
induced storm surge levels. Lin et al.13 used the ADvanced
CIRCulation (ADCIRC) hydrodynamic model and found that the
100- and 1000-year total water level return periods at the Battery
will, respectively, increase by 10% and 5.5% due to climate
change. In another study, Lin et al.14 determined that sea level rise
and TC climatology change will result in an 85% increase in the
100-year return periods. Garner et al.15 used ADCIRC and showed
that the 100- and 1000-year storm surge return periods will,
respectively, decrease by 9% and 1.5%. Marsooli et al.16 showed
an increase in the 100-year return period in the New York
metropolitan area ranging from 4% to 12% for the future period
between 2075 and 2095. Marsooli et al.17 studied the impact of
climate change on hurricane flood hazards in Jamaica Bay, NY

using a data set for the future period of 2080–2100. Their results
showed that the 100- and 1000-year total water levels, excluding
wave effects, will increase by 10% and 14%, respectively. The wave
setup contributes to the total water level by transferring the
radiation stresses from breaking waves to the water column,
which in turn increases the water level by 5−35%, based on the
continental shelf size and slope18–20. However, none of the
previous studies included the effect of wind-generated waves on
storm surge heights and return period levels.
Reliable estimates of the N-year flood levels under different

climate change scenarios must be based on data from
n × 10 × N × f storms21, where n is the number of climate models,
and f represents the annual storm frequency. Ayyad et al.22

estimated that, for the 1000-year return period, 600,000 storm
scenarios should be considered when assuming a frequency of
five storms per year and an ensemble of six climate models. Given
the limited number of historical storms, numerical modeling and
simulations of synthetic storms must be used in estimating low-
probability high consequence events such as 100 and 1000-year
return periods. Performing hydrodynamic simulations for a large
number of storm scenarios is a computationally intense task. To
reduce the computational burden, simplified hydrodynamic
models (e.g. SLOSH) or coarser computational meshes are used,
which could compromise and lead to lower confidence in the
results. An alternative approach to performing an extensive
number of hydrodynamic simulations is to use Artificial Intelli-
gence tools. Lee et al.23, Tseng et al.24, Lee et al.25, De Oliveira
et al.26, and Kim et al.27 used artificial neural network (ANN)
models to predict surge levels due to synthetic or historical
Typhoon data. Hashemi et al.28 used ANN models to predict
maximum water elevation based on synthetic TCs, while Lee
et al.29 predicted the peak storm surge height using tropical
cyclone time series. Tiggel et al.30 predicted hourly surge time
series of the global tide and surge model forced using atmo-
spheric variables. Jia et al.31,32 and Kyprioti et al.33 used surrogate
models to comprehensively assess risk and coastal hazard. Ayyad
et al.22,34 were the first to demonstrate the use of ANN and
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machine learning (ML) models to reliably predict the N-year return
periods for the idealized computational domain and real domain,
respectively. They used high-fidelity numerical simulations of
synthetic TCs to train, validate, and test different ML models that
predicted the peak storm surge height. Then, they used the
predicted storm surge heights to generate return period curves.
The generated curves from one of the ML models showed good
agreement with those generated from the hydrodynamic simula-
tions but at a small fraction of the computational time and
resources.
In this study, we implement a machine learning model34 to

assess variations in probabilistic flood hazards from storm surges
due to TC climatology change. Furthermore, we include the
effects of wind-generated waves that were not considered in
previous studies. Because of uncertainties in the TCs timing, we
neglect the effect of tides. As demonstrated in recent events, the
storm surge could coincide with low tides and cause less hazards
as in the case of hurricane Isaias 202035, or with high tides as in
the case of hurricane Sandy 201236, which caused significant
damage. The peak storm surge heights used to train the ML
model are calculated using numerical simulations of the coupled
ADvanced CIRCulation and Simulating WAves Nearshore
(ADCIRC+ SWAN) model20. These simulations are used to train
different ML models at 57 sites in the New York metropolitan
area. The sites cover a combination of open coast and inner bay
sites. The trained ML models are then used to predict the peak
storm surge height considering the influence of wind setup, the
inverted barometer effect, and wind-generated waves from TC
synthetic storms. Data sets for storms covering the historical
period of 1980–2000 (late twentieth century) and the projected
future period of 2080–2100 (late twenty-first century) are used to
determine the impact of climate change. The TCs in the future
period are generated under the representative concentration
pathways (RCP) 8.5 greenhouse gas concentration scenario.
Historical and future TC data sets are based on projections from
four global climate models. We also utilize TC data sets generated
for the observed climate of the historical period of from the
National Centers for Environmental Prediction (NCEP) reanalysis37

to correct any bias resulting from the climate models. Here, we
used the predicted storm surges from the ML models to
determine probabilistic flood events up to the 500-year return
period to avoid the large statistical uncertainty in higher return
periods, which is due to the limited number, between 1800 and
2000, of synthetic TCs in each dataset.

RESULTS AND DISCUSSION
Tropical cyclones climatology
Assessing the impact of tropical cyclone (TC) climatology change
on probabilistic flood hazards requires a large number of TCs. Due
to the limited number of historical events, synthetic TCs must be
used. For the purpose of this study, we use the synthetic TC data
sets from Marsooli and Lin17. These synthetic TCs were generated
using the statistical/deterministic hurricane model of Emanuel
et al.38. This hurricane model generates synthetic TCs for
atmospheric and oceanic conditions determined from either
observations or climate models. Synthetic TCs from the observed
climate over the historical period of 1980–2000 (late twentieth
century) were generated based on the National Centers for
Environmental Prediction (NCEP) reanalysis37. Synthetic TCs were
also generated based on the modeled climates of the same
historical period and the future period of 2080–2100 (late twenty-
first century). Four global climate models, namely the GFDL5
(Geophysical Fluid Dynamics Laboratory Climate Model, USA)39,40;
HadGEM5 (Hadley Centre Global Environment Model, U.K.
Meteorological Office)41; MPI5 (Max-Planck-Institute for Meteorol-
ogy, Germany)42; and MRI5 (Meteorological Research Institute,
Japan)43 were used to generate the synthetic TCs. A total of nine
TC data sets were generated. Four climate models were used to
generate eight data sets for historical and future periods and the
observed climate was used to generate one data set for the
historical period. The histograms, density maps, and storm surge
return period results of the future period are bias corrected using
the NCEP data set and presented as the weighted average over
the four climate models, as described in the methods section.
We consider TCs that pass within a 350 km radius of the New

York metropolitan area. Tracks of a random sample of the
generated synthetic TCs for the historical and future periods are
shown in Fig. 1a. About 1800 synthetic TCs from each climate
model for the historical and future periods are considered. The
number of TCs in the NCEP data set is around 2000. One important
characteristic of the TC, used in their classification, is its intensity
defined by the maximum sustained wind speed. Because the wind
speed varies as the TC travels along its track, we define the TC
intensity by its wind speed at the closest location to the Battery.
Histograms of TCs’ maximum sustained wind speed at the closest
location to the Battery for the historical and future periods are
shown in Fig. 1b. The historical period histogram shows TCs of the
NCEP data set, while the future period histogram shows the
weighted average of the TCs from the four future climate models.
The histograms show right-skewed distributions. More impor-
tantly, the plots show an increase in the number of intense

Fig. 1 Synthetic TCs information from the NCEP and the four climate models data. a Tracks of a random sample of the synthetic TCs that
pass within 350 km of the New York metropolitan area. The red diamond shows the location of the Battery station. b Weighted histograms of
TCs’maximum sustained wind speed at the closest point to Battery for historical (1980–2000) and future (2080–2100) periods. H1–H5 indicate
the five hurricane categories.
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hurricanes, i.e. Categories 3 and above, and a decrease in the
number of less intense TCs that reach the New York metropolitan
area in the future period. The percentages of every category out of
the total number of storms in the historical and future periods
data sets are presented in Table 1. The TC data sets show that the
percentages of tropical storms and Category 1 hurricanes that
reach the metropolitan area would decrease in the future period,
while that of Category 3 hurricanes would triple in the future.
Although the data sets show no storms higher than Category 3
reached the study area in the historical period, they show some
high-intensity storms (Categories 4 and 5) reach this area in the
future period. This projected increase in TC intensity in the future
climate is consistent with most other projections10.
The difference in the weighted density distribution of the TC

tracks over our study area is presented in Fig. 2. The density
distribution is defined as the number of TCs that cross through a
grid box of size 0.5° × 0.5° and normalized by the area of this grid.
The historical period density distribution is calculated using the
NCEP data set while that of the future period is the weighted
average over the biased corrected density distribution of the four
data sets. Then, the difference between the density distributions
of both periods is shown in the plot. Figure 2a, which shows the
density plot of all the TCs, indicates an eastward shift in storm
tracks by the end of the twenty-first century. The TC data sets
show more TCs would travel toward Delaware Bay, Cape May, and
south of Atlantic City, impacting Delaware and the southern part
of the NJ coastline. A lesser number of TCs would impact the
western side of Long Island. These findings are consistent with
those of Garner et al.15 who noted an offshore shift of storm
tracks. Figure 2b, which shows the density plots of the intense
hurricanes only, shows a higher number of intense hurricanes
would travel parallel to the NJ coastline in the future. The TC data
sets show that a smaller number of these hurricanes would either
make landfall on the NJ coastline or on the east side of Long
Island. Since the highest wind speeds are encountered on the
right side of the hurricane’s center, where the total speed is the
sum of the hurricane’s forward speed and its rotational speed,
notable effects on the storm surge height will depend on its track,
whether to the right or left of the site of interest.

Study area
We assess the effect of climate change on storm surge levels at 57
locations along the NJ and NY coastlines, as shown in Fig. 3. These
sites are chosen to broadly investigate the spatial variation of the
storm surge levels along the NJ and NY coastlines. Specifically, the
sites cover five highly populated regions that include the NJ open
coastline, Rockaway and Long Beach barrier islands at Long Island,
Jamaica bay, upper bay, and lower bay. The locations included 38
equally distributed sites that are 5 km apart along the NJ open
coastline between Cape May and Sandy Hook, seven sites along
Rockaway and Long Beach barrier Islands in Long Island, NY, five
sites along the perimeter of Jamaica bay, six sites in Lower, Raritan,
and Sandy Hook bays to capture the effect of topography change
and the Battery. Of these locations, we choose six representative
sites of the five regions for a detailed assessment of the impact of
climate change.

Future return period flood levels
The effect of climate change is assessed by studying the low-
probability high consequence flood levels. Because just about
2000 TCs were generated for each climate model, the maximum
number of years for a reliable return period is limited to 500 years.
Figure 4 shows the Pareto distribution fit of the peak TC storm
surge heights return period along with the 90th percentile
confidence interval for the six representative study sites for both
historical and future intervals. The plots show a negative or no
change in the return periods between historical and future periods
at Battery and Long Island. In contrast, increased flood levels are
noted at the other stations in the future period due to climate
change, especially in the 500-year return period levels. The highest
impact is in Raritan Bay.
Figure 5 shows the spatial variation along the NJ coastline and

in the New York metropolitan area of the 100- and 500-year return
periods of the historical period. The plot also shows corresponding
percentage changes between the future (ηf) and historical (ηh)
periods, defined as

Percent of change ¼ ηf � ηh
ηh

� 100%; (1)

For the historical period, the 100- and 500-year storm surge
return periods are noted to have higher flood levels along the
southern parts of the NJ coastline (south of Atlantic City) than the
northern part of the NJ coastline and the inner bays. This happens
because the TCs move parallel and close to the NJ coastline, as
discussed above, and due to the topography of the southern part
of the NJ coastline. Along the coastline of Long Island, higher
flood levels are because this coastline faces the track of most TCs.

Table 1. The weighted proportions of tropical storms and the five
hurricane’s categories at the closest location to Battery for the
historical (1980–2000) and future (2080–2100) periods (%).

Tropical storm Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5

History 71.3 25.7 2.3 0.7 0 0

Future 68.2 21.9 3.7 2.1 0.5 0.2

Fig. 2 The change in the TC track over future (2080–2100) and historical (1980–2000) periods. Differences in the weighted density
distribution of a all TCs’, and b intense hurricanes’ tracks over future (2080–2100) and historical (1980–2000) periods.
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Also, the inner bays (Sandy Hook, Raritan, Jamaica, upper, and
lower bays) experience relatively large 100- and 500-year peak
storm surge return periods because the bays have a concave inlet,
which amplifies positive surges through the coastal funneling
effect35,44.
In the future period, the 100-year return period flood levels

along the northern part of NJ coastline would decrease slightly by
percentages up to 3.5%. In contrast, along the southern part of the
NJ coastline, climate change would induce an increase in the 100-
year return by up to 4%. This happens because the number of TCs,
in the synthetic data sets, traveling toward the Northern area of
our domain would decrease, while more TCs could make landfall

or be directed toward the southern part of NJ and Delaware bay,
as shown in Fig. 2a. Because more intense hurricanes in the future
period could track toward the coastline, as deduced from Fig. 2b,
the percent changes of the 500-year return period along the NJ
coastline ranges from zero in the northern part to 12% in the
southern part. In contrast, negative changes in the 100- and 500-
year return periods are noted along the coastline of Long Island as
the calculated density of synthetic TCs that pass by this area
would decrease in the future period in comparison to that in the
historical period. Also, most of the intense hurricanes in the data
set would not reach the Long Island coastline and deviate
eastwards, such that this coastline will be on the west side of
hurricanes, which is less prone to high storm surges. On the other
hand, the changes in the 100-year return period are between
−3.5% at the Battery and 1.5% in Jamaica bay because the density
of the TCs that pass by this area would decrease. However, a 12%
increase in the 500-year return periods would occur at Sandy Hook
and in Raritan Bay, while up to 5% increase would occur in the
upper- and lower bays and in Jamaica bay. This is because the
storm data sets show that in the future period, more intense
hurricanes would approach the southern part of the bays’
entrance, as shown in Fig. 2b.
Predicting low-probability events while considering uncertain-

ties in climate change and using different approaches is
challenging. As such, it is important to compare the above results
to those that have been previously published under different
assumptions. Garner et al.15 predicted a negative change in the
storm surge height return periods at the Battery, which matches
our findings. The reason for the difference in the percentage may
be because they used different data sets and different domains.
Also, their future projections were not bias-corrected and their
study did not account for the effect of waves. Another study by
Marsooli et al.16 showed an average increase of 6% in the 100-year
return period at the southern part of the New Jersey coastline

Fig. 4 TC storm surge height return period curves for the six representative stations. The lines show the Pareto distribution fits of both
historical and future periods, while the shaded areas show the corresponding 90th percentile confidence interval at a Upper Bay entrance,
b Long Island, c Jamaica Bay, d Raritan Bay, e North NJ, and f South of NJ study sites.

Fig. 3 The map showing the study sites in blue circles, and red stars
for representative sites.
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which is slightly larger than our 4% prediction. Also, Lin et al.14,
and Marsooli et al.16 showed positive changes in the Battery which
contradicts our findings and those of Garner et al.15. This
discrepancy might be because Lin et al.14 and Marsooli et al.16

considered the effects of tides. They also used a different
computational mesh. The same reason applies to the predictions
of percentage change in Jamaica bay by Marsooli et al.17 who
showed a positive change but with slightly higher magnitudes
than current predictions.
When considering the above results, it is important to recognize

the sources of uncertainties associated with the projections. One
uncertainty results from the nonlinear interaction between tides
and storm surge, which could impact total water level, especially
in the case of low-tides45,46. However, adding tides to the surge
adds large uncertainties in predicted water levels because of the
high uncertainty in the hurricanes’ timing. Another source of
uncertainty is the small variation in the size of the synthetic TC,
represented by the radius of maximum sustained wind speed. The
considered radii range varied between 40 and 60 km restricting
the ML model to this range. Moreover, using the ML model to
predict the storm surge heights of more severe TCs than those

provided in the training data set would include higher uncertain-
ties. These variations can be incorporated into future studies when
more data on synthetic storms becomes available.
The study of the effect of greenhouse warming on the

vulnerability of coastal areas to flood hazards is important for
long-term development and planning. Such studies require a large
number of TCs, which are not available in the historical data. We
use thousands of synthetic TCs to determine the impact of climate
change on storm surges along the shores of New York and New
Jersey. Previously, high-fidelity hydrodynamic models were used
to predict storm surge heights from these TCs, which is
computationally expensive. To reduce the computational burden
and consider a broader TC distribution, we develop machine
learning models to predict the peak storm surge height from the
TCs. The modeling and analysis were applied at 57 different
locations along NJ, Long Island coastlines, and the Raritan, Sandy
Hook, Jamaica, lower, and upper bays. The ML model was trained,
validated, and tested using a data set generated from the
ADvanced CIRCulation and Simulating WAves Nearshore
(ADCIRC+ SWAN) coupled model, including the effects of waves
on storm surge levels. TC parameters including, maximum

Fig. 5 TC storm surge height return period results over the 57 study sites. The a 100-year, and b 500-year return period curves over the
57 study sites. The left panels show the storm surge height return periods, in meters, for the historical period, while the right panels are the
percent of change between historical and future return periods based on the RCP 8.5 scenario.
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sustained wind speed, upper- and lower-latitudinal, right- and left-
longitudinal distances at three different moments, and the
minimum distance between the study site and TC eye, constituted
the input features to the ML model. To discern the effects of TC
climatology change, we applied the ML model to synthetic storms
over historical (1980–2000), and future (2080–2100) periods.
Analysis of these storms shows that while climate change would
cause more high-intense hurricanes to reach higher latitudes
including the study area, most of them would shift further to the
east. The analysis also shows a higher probability that storms
would make landfall in the southern part of the NJ coastline in the
future period. The ML-predicted storm surge heights were used to
generate return period curves. The results indicate a decrease in
the 100- and 500-year storm surge return periods at the Battery
and Long Island coastline, in agreement with some previous
results. In contrast, an increase in the storm surge levels is noted
over the southern parts of NJ coastline and in the inner bays, also
in agreement with previous results. These results demonstrate the
capability of using ML models, at a fraction of the computational
cost of high-fidelity simulations, when performing risk-informed
coastal planning, development, or management that require
consideration of uncertainties associated with climate change.

METHODS
Training data set, TC parameters, and feature selection
The training data set of the ML storm surge model was generated
from the coupled ADCIRC+ SWAN simulations of storm surge
resulting from 10,300 synthetic TCs that were used in Ayyad
et al.34 but for different stations except for Battery and stations
close to Atlantic City. Thus, the used data sets have the same
characteristics when compared to that used in Ayyad et al. (2022).
The used data set spans all five hurricane categories and tropical
storms. The data set was imbalanced such that the majority of the
simulated TCs generate a peak storm surge height of more than
0.5 m. Training an ML model using this imbalanced data set
generates a surrogate model that underestimates the predicted
storm surge heights. Thus, we followed the procedure of Ayyad
et al.34 by dividing the data set into two smaller ones. The two
data sets include TCs that pass within and outside a radius of
100 km from the location of interest, referred to as DS-1 and DS-2,
respectively. Following the findings of Ayyad et al.34, the ML
model input features include six parameters that identify the TC
characteristics, namely the maximum sustained wind speed,
radius of maximum wind, upper and lower latitudinal distances,
and right and left longitudinal distances, at three-time steps,
namely 6-h post, 0-, and 6-hours prior to the time of the closest TC
location to the study site. Also, the minimum distance between
the TC location to the study site is added to the ML model features
which makes a total number of 19 features used. Feature selection
was conducted by Ayyad et al.34 using the correlation coefficient
and mutual information values between the input feature and
corresponding simulated storm surge height of the training part
of the two data sets separately. Only 13 different features for each
of the two data sets were chosen. The radius of maximum wind
speed, left longitudinal and upper latitudinal distances were
removed from both data sets, while the lower latitudinal and right
longitudinal distances were removed from DS-1 and DS-2,
respectively.

Machine learning model and performance metrics
For each of the 57 study sites, we generate two ML models, one
for the DS-1 data set and the other for the DS-2 data set. Thus, a
total of 114 ML models are trained. Different ML algorithms can be
used to train the surrogate model. Ayyad et al.34 found that
Adaptive Boost (AdaBoost) algorithm with support vector
regressor (SVR) as the base estimator has the best performance

among seven different ML algorithms. Tuning the hyper-
parameters is crucial to avoid generating either an under- or
over-fitted model. To tune the model, we firstly divided the DS-1
and DS-2 models to 60% for training, 20% for validation, and the
rest for testing the model’s performance. The training was
performed using the scikit-learn library on Python47. The used
hyper-parameters were tuned using the cross-validation grid
search method, by trying all possible combinations of the hyper-
parameters and getting the best-performing configuration for
training. Ayyad et al.34 found that the tuned hyper-parameters of
DS-1 data set differ from those of the DS-2 data set. For DS-1, the
learning rate is set to 0.09, the number of weak learners is set to
15, and the regularization and epsilon-insensitive loss parameters
of SVR are set to 90 and 0.09, respectively. For the DS-2 data set,
the learning rate is set to 0.05, the number of weak learners is set
to 50, and the regularization and epsilon-insensitive loss
parameters of SVR are set to 65 and 0.03, respectively. Exponential
loss function is used for the two data sets.
The predicted peak storm surge height from the trained

machine learning model (ηp) should be evaluated against those
calculated from ADCIRC+ SWAN model (ηa). In this study, we used
the correlation coefficient (R), defined as

R ¼ cov ηa; ηp
� �

σηaσηp

, (2)

coefficient of determination (R2), defined as

R2 ¼ 1�
PN

i¼1 ðηa i � ηp iÞ
2

PN
i¼1 ðηa i � ηa iÞ2

, and (3)

Root mean square error (RMSE), defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

ηa i � ηp i

� �2

vuut (4)

to evaluate the ML model’s performance, where cov(. , . ) and σ,
respectively represent the covariance and standard deviation, N is
the size of the data set, and the overline represents the average
value. A perfect match is considered when R and R2 are equal to
one, while RMSE is equal to zero.

Statistical model and bias correction
The probabilistic flood hazard assessment, shown in Figs. 4 and 5,
is presented in terms of the peak storm surge height at the
57 study sites. The return period (T) of storm surge height (ηTC)
that exceeds a given threshold (h) is given by14

T ¼ 1
F 1� P ηTC � h½ �ð Þ (5)

where the equation assumes a stationary Poisson distribution for
the storm’s arrival. F is the TC annual frequency and P ηTC � h½ � is
the cumulative density function of the TC storm surge heights
where its long tail is modeled using the generalized Pareto
distribution (GPD). The GPD threshold value is selected by trial and
error so that the modeled CDF well represents the data points. The
GPD controlling parameters are estimated using the maximum-
likelihood method.
Global climate models (GCMs) are designed to model the

climate globally and, as such, they may be biased. We used the
approach adopted by Lin et al.14, and Marsooli et al.16,17 to correct
the bias in the TC frequency, density, and return period curve
estimates for each GCM. The bias is calculated by subtracting the
model-based estimates, i.e. results based on the GCM data set, for
the historical period from the NCEP-based estimates, i.e. results
based on the NCEP data set. Then, this bias is removed from the
model-based estimates for the future period.
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The presented results in this study are the weighted average of
the results of the four used GCMs. A weighting factor (Wi) is
allocated for each GCM (i) which is given by

Wi ¼ Si
P4

i Si
(6)

where Si is the Willmott skill score of GCM i. This score is
determined by comparing the NCEP-based storm surge height
return period with the one projected by the GCMs for the
historical period, which is defined as48,49

Si ¼ 1�
PN

j¼1 XjGCMi
� XjNCEP

2

PN
j¼1 XjGCMi

� XjNCEP þ XjNCEP � XjNCEP

� �2 (7)

where, Xj is the jth-year storm surge return period which is summed
over the N years, and Xj is the mean value of Xj. The skill value
ranges between zero and one with a perfect agreement at one. The
weights of the four climate stations are presented in Fig. 6. The
weights range between 0.16 and 0.34. The weights show that the
historical data of MPI5 and MRI5 GCMs matches those of the NCEP
data along the NJ coastline, while the weights of all GCMs are

almost the same over the other regions. This approach was used
previously by Lin et al.12, and Marsooli et al.16,17.

Model validation
To establish the goodness of the model fit, we compare peak
storm surge heights as predicted from the ML model and those
calculated from ADCIRC+ SWAN model for the 57 study sites. The
trained ML models are tested using the DS-1 and DS-2 test data
sets. The performance metrics, namely the correlation and
determination coefficients and the RMSE, are presented in Fig. 7.
The plots show that the minimum values of correlation coefficient
(R) and coefficient of determination (R2) of the two data sets are
0.84, and 0.71, respectively. The RMSE ranges between 6.5 and
11 cm for data set DS-1, which has a maximum storm surge height
value of 2.2 m, and between 2.5 and 4.5 cm for data set DS-2,
which has a maximum storm surge height value of 90 cm. Given
that peak surge heights are respectively up to 2.5 and 0.9 m for
data sets DS-1 and DS-2, the relatively low RMSE values assert the
goodness of the ML predictions. The scatter plots of Fig. 8,
showing peak storm surge heights calculated using ADCIRC+
SWAN model with those predicted from the ML models, confirm

Fig. 6 The weighting factors of the four GCMs. The weighting factors of a GFDL5, b HadGEM5, c MPI5, and d MRI5 global climate models
over the 57 study sites.
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Fig. 7 Performance metrics of the ML models at the 57 study sites using the test data set. The a correlation coefficient (R), b coefficient of
determination (R2), and c Root Mean Square Error (RMSE) at the 57 study sites. The left and right panels show the validation of data sets DS-1
and DS-2, respectively.
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further the goodness of the ML model. The plots are presented for
the six representative stations. For a perfect fit, the scatter points
should fit a diagonal line having a slope of 1. The slopes of the
linear fit for the representative sites range between 0.985 and
1.001. The mean, and standard deviation of the error, defined by
the difference between the storm surge height calculated using
ADCIRC+ SWAN and predicted from ML models for the two test
data sets, at the six stations are, respectively, near zero and 7.8 cm.
The reference lines, represented by dashed lines, in Fig. 8 indicate
the 95th and 99th percentiles calculated from the normal
distribution fits of the errors, on average 53 out of 2072 storms
are outside the 99th percentile range and 107 are outside the 95th
percentile range. These results show that, to a great extent, the
peak storm surge heights predicted from the ML models match
those simulated by the ADCIRC+ SWAN model.

DATA AVAILABILITY
The trained machine learning models are available in the GitHub repository https://
github.com/m-ayyad/ML_Hurricane_Surge_NY_NJ.git. While the training and climate
models data sets are available upon request.

CODE AVAILABILITY
A Jupyter notebook example on how to use the machine learning models is available
in the GitHub repository https://github.com/m-ayyad/ML_Hurricane_Surge_NY_NJ.git.
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