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Multi-decadal variation of ENSO forecast skill since the late
1800s
Jiale Lou 1,2,3✉, Matthew Newman 2 and Andrew Hoell2

Diagnosing El Niño-Southern Oscillation (ENSO) predictability within operational forecast models is hindered by computational
expense and the need for initialization with three-dimensional fields generated by global data assimilation. We instead examine
multi-year ENSO predictability since the late 1800s using the model-analog technique, which has neither limitation. We first draw
global coupled model states from pre-industrial control simulations, from the Coupled Model Intercomparison Project Phase 6, that
are chosen to initially match observed monthly sea surface temperature and height anomalies in the Tropics. Their subsequent 36-
month model evolution are the hindcasts, whose 20th century ENSO skill is comparable to twice-yearly hindcasts generated by a
state-of-the-art European operational forecasting system. Despite the so-called spring predictability barrier, present throughout the
record, there is substantial second-year ENSO skill, especially after 1960. Overall, ENSO exhibited notably high values of both
amplitude and skill towards the end of the 19th century, and again in recent decades.
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INTRODUCTION
Seasonal-to-interannual prediction skill and potential predictabil-
ity of El Niño-Southern Oscillation (ENSO) have varied over the
past several decades1–6. Higher forecast skill appears evident
during periods of larger amplitude ENSO events2,7, but whether
such changes in ENSO forecast skill represent inherent changes in
potential predictability remains an active research question8–10.
For example, multi-decadal changes in the climate base states
might modulate ENSO characteristics, making its evolution less
predictable in some decades than in others8–11. How internal and
externally forced processes could combine to drive such base
state changes is itself unclear7. Alternatively, event-to-event
variations in ENSO amplitude and pattern might occur by chance,
driven by unpredictable atmospheric weather, with related long-
term – but similarly unpredictable – variations in ENSO forecast
skill12–16. Some studies have found that ENSO predictions might
be skillful for forecast leads of at least two years, but again with
substantial event-to-event variation in skill7,17–21.
Characterizing decadal variations in ENSO skill requires suffi-

ciently long hindcast records, that is, retrospective forecasts
initialized using only those observations potentially available at
the forecast time. Unfortunately, most hindcast datasets gener-
ated by coupled climate models typically cover only 20–30
years22, due to computational cost and the need for three-
dimensional global analyses for their initialization. Some longer
hindcast records have more recently been developed1,20,22;
however, these datasets are limited, either by restricting the
frequency of initialization to only a few times a year, and/or by
capping the forecast lead times at one year.
Here, the model-analog approach23,24 is used to extend ENSO

hindcasts back to the late 1800s and to investigate the long-term
variation of ENSO forecast skill, including its dependence upon the
seasonal cycle. In traditional analog forecasting, observed states
are found that are (in some sense) close matches to the current
initial state, and their evolution in the past is used to make a
current forecast25. This approach may not be too skillful if the

available library of previous climate states is limited26. However,
climate simulations in excess of 500 years could provide sufficient
data for analog forecasting23. That is, their more extensive
databases can be used to generate ensembles of suitable initial
states. Then, how these states evolve within the model simulations
provides the forecast ensemble, with no additional model
integration needed, making the model-analog climate predictions
computationally efficient. Such model-analog ensembles have
been shown to yield ENSO prediction skill comparable to
traditional assimilation-initialized hindcasts made by the same
operational climate models23. The model-analog technique has
been successfully applied to, for example, seasonal forecasts23,24,
decadal predictions27, and climate projections28.
There are a few additional advantages of using model-analog

ensembles to make hindcasts for an extended historical period.
First, both the initial conditions (i.e., model-analog states) and the
subsequent model-analog ensemble lie entirely within the model
space, which may avoid initialization shock29 commonly seen in
initialized forecast systems, arising primarily from an imbalance
between the initial analyzed state and all model states. Moreover,
the selection of these model-analog states based upon only a few
monthly-averaged variables, such as sea surface temperature
anomalies (SSTA) and sea surface height anomalies (SSHA),
nevertheless appears sufficient to generate hindcasts that capture
monthly tropical Indo-Pacific skill found in operational model
hindcasts. This appears true even for the skill of some variables not
used to choose the initial model-analog ensemble, notably
including precipitation, since any variable output as part of the
model simulations is also immediately part of the output model-
analog forecast ensemble23. Moreover, the large number of pre-
existing climate model simulations (for example, the CMIP6
archive) means that multi-model ensembles, which typically
improve overall prediction skill30, may be easily constructed23.
These advantages make the model-analog technique suitable for
investigating the long-term variations of ENSO forecast skill.
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In this study, we construct model-analog hindcasts for leads of
1–36 months based on over two dozen different CMIP6 models,
with seven different sea surface datasets used both for monthly
model-analog initialization and for hindcast verification, allowing
us to make hindcasts starting in the late 1800s, and (for one
dataset) as far back as 1854. ENSO prediction skill is determined
from both SSTA and sea level pressure anomalies (SLPA),
measured with the NINO3.4 and equatorial Southern Oscillation
(eqSOI) indices (whose definitions are in Methods). Monthly
anomalies used both to determine the model-analogs and to
verify the subsequent hindcasts are computed by removing a fair-
sliding31 climatology, in which a 30-year sliding window behind
the forecast is used as the reference period (see Methods). This
approach avoids introducing information not known at the time of
the hindcast; also, it largely acts to detrend the anomalies.
Complete details of our model-analog approach, as well as the
datasets used, skill metrics, and how the multi-model model-
analog hindcast ensemble was constructed, are in the Methods
section.

RESULTS
Comparison of model-analog and dynamical model hindcast
skill
We begin by comparing the seasonal forecast skill of model-
analog hindcasts for the years 1901–2009, initialized with
observed SSTA and SSHA drawn from the CERA-20C reanalysis,
to the skill of the SEAS5-20C hindcasts1, created with a lower-
resolution version of the European Centre for Medium-Range
Weather Forecasts (ECMWF) operational seasonal prediction
system SEAS532 and initialized with the CERA-20C reanalysis on
November 1 and May 1 of each year, in Fig. 1. Variations of the
seasonal mean skill, measured by anomaly correlation (AC) of the
model-analog NINO3.4 predictions with the CERA-20C SSTA
verifications, are shown in Fig. 1a and b for October and April
initializations. Note that because model-analogs are initialized
with monthly anomalies, a fair skill comparison to traditional
operational models requires using model-analogs starting with
the prior month; e.g., we compare October-initialized model-
analog hindcasts with November 1-initialized SEAS5 hindcasts. AC
skill was computed over 30-year sliding windows, advancing by
increments of one year within the period of 1901–2009, with skill
plotted at the central year of the corresponding 30-year window1.
The October initialization (Fig. 1a) generally has better skill at
shorter time leads than the April initialization (Fig. 1b), consistent
with ENSO phase locking33 and the ENSO spring predictability
barrier34. Also, for both initializations there is a return of skill for
hindcasts verifying during SON/DJF of the following year (that is,
when predicting the second-year ENSO). There also appears to be
a notable increase in skill starting around 1960. These variations of
model-analog hindcast skill (Fig. 1a and b) are largely insensitive
to the SST dataset used as verification (Supplementary Fig. 1).
Both the SEAS5-20C (Fig. 1c and d) and model-analog hindcasts

show generally comparable skill with similar notable features,
including the return to skill for second year ENSO and the
increased forecast skill starting around 1960. We also examined
the root mean square skill score (RMSSS) of the NINO3.4 index for
both sets of hindcasts (Supplementary Fig. 3) and found similar
evolution of skill. Compared to the November 1 SEAS5-20C
initializations, the model-analogs had higher skill – often
significantly so – for hindcasts with leads beyond about 6 months
that verified during seasons ranging from JJA to DJF (also see skill
difference in Supplementary Fig. 2), although these differences are
much greater prior to 1960. In contrast, for both initialization
months, the model-analog hindcast ensemble had more pro-
nounced springtime skill minima than did the SEAS5-20C
hindcasts (hatching area in Fig. 1; see also Supplementary Fig.

2), although this difference was also diminished in the most recent
few decades.
Some of the higher ENSO skill seen comparing Fig. 1a and b to

Fig. 1c and d could be due to aspects of the model-analog
technique. As noted earlier, model-analogs do not suffer from
initialization shock. Additionally, initialization errors in variables
other than SSTA and SSHA could degrade the hindcast skill of
SEAS5-20C but are irrelevant to the model-analogs. This might be
particularly consequential prior to about 1960, when the three-
dimensional fields of the CERA-20C are constrained by fewer
observations. However, at least some of the skill improvement
appears due to the use of a multi-model ensemble; for example,
skill computed from the CESM2 model-analogs alone (Supple-
mentary Fig. 4) shows more modest improvement relative to the
SEAS5-20C November 1 initializations, and slightly lower overall
skill relative to the SEAS5-20C May 1 initializations. Of course, the
boost in ENSO skill from the use of a multi-model ensemble has
been described previously18,30, but it is a notable advantage of
model-analogs since they can be constructed from many different
available model simulations. On the other hand, poorer springtime
skill in the model-analogs prior to the satellite era might reveal a
deficiency of the technique and/or be a consequence of missing
important information that would otherwise constrain the choice
of the analogs; for example, choosing analogs only within the
tropical domain could miss extratropical forcing35 of meridional
modes also relevant to ENSO evolution36–38. In summary, model-
analog hindcasts based upon CMIP6 models, initialized only with
SSTA and SSHA, can largely capture the decadal variations in lead-
dependent ENSO forecast skill found by a traditionally-assimilated
full-field initialization of an operational forecast model, supporting
our extension of the earlier post-1960 model-analog analysis of
ENSO skill variations24 to the entire 20th century.

Seasonal variations of ENSO skill
ENSO forecast skill is known to have a strong seasonal
dependence16 and Fig. 1 seems to suggest this dependence
may itself vary over the 20th century. However, the SEAS5-20C
hindcasts were only initialized twice a year and therefore have
limited utility to fully evaluate the seasonal dependence of ENSO
skill (see also in Ref. 20). On the other hand, because of their
minimal computational cost and comparable skill, model-analogs
can be used for this purpose. Also, given the apparent return of
second-year ENSO skill in Fig. 1, and since there is no additional
cost, we can extend the model-analog ENSO hindcasts to leads of
up to 36 months.
As noted earlier, the model-analog hindcasts reproduce (and,

except for the last few decades, may overdo) the so-called “spring
predictability barrier”, a common feature of both numerical and
statistical ENSO forecasts16,39,40, where predictions made just
before and during boreal spring (i.e., initial month within February
through April) have notably lower forecast skill than those made
during the rest of the year. Nevertheless, there is currently no
consensus on the degree to which the spring predictability barrier
may limit ENSO prediction skill for forecast leads greater than one
year2. In model-analog hindcasts, the springtime forecast skill
minima are quite clear in Fig. 2a–d, which show the seasonal cycle
of skill (as a function of initialization month and forecast lead) for
both the entire record and for the 1901–1930, 1931–1970, and
1971–2009 periods. There is a pronounced tilted forecast skill
minimum for ENSO predictions verifying during boreal summer for
almost all leads (Fig. 2). Interestingly, forecast skill returns for even
longer leads; for example, a forecast initialized in late summer will
see skill that first slowly declines, then more rapidly declines at
leads of ~6–9 months, and then increases with increasing lead to
plateau at about 15 months, finally decreasing again for longer
leads (Fig. 2). The skill minimum might therefore reflect
temporarily lower boreal summer signal-to-noise ratios16 rather
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than a barrier to skill at longer leads. The main features of the
spring predictability barrier appear to be robust over the entire
20th century, since they exist to varying degrees for each of the
periods, despite variations in overall forecast skill. However, the
forecast skill minimum appears much less pronounced, and more
confined to the early summer months, in recent decades; while
skill increases for almost all months and leads between the
1931–1970 and 1971–2009 periods, the greatest increase in skill
(~0.3–0.4; cf. Fig. 2c and d) occurs for hindcasts verifying in late
spring. Moreover, similar features are evident for eqSOI skill (Fig.
2e–h), which also are robust to the SLP dataset used for
verification (e.g., HadSLP2 as shown in Supplementary Figure 5).
We also find some third-year skill for both NINO3.4 and eqSOI

for hindcasts initialized during the latter half of the year (Fig. 2),
although only during the early period (1901–1930) was this skill
statistically significant (Fig. 2b, f). Again, this third-year skill occurs
after a (second) springtime skill minimum. It is possible that the
increased third year ENSO forecast skill found in the early period
may be attributed to data sampling issues or to specific ENSO
events and ENSO precursors during that time, which warrants
further investigation. Notwithstanding, the results here support
the conclusion that multi-year ENSO forecast skill exhibits
substantially higher values in both the early period and recent
decades. Since there is some uncertainty about the robustness of
recent third-year skill, we focus on leads up to 24 months for the
remainder of this paper.
As Fig. 1b suggested, longer-lead ENSO forecast skill notably

increased over the last few decades. For example, in the 1971-
2009 period, NINO3.4 (eqSOI) AC values were above 0.6 (0.5) for

predictions made in summer for the winter that followed about
18 months later (Fig. 2d, h). This recent second-year winter ENSO
forecast skill was especially elevated compared to midcentury skill
for the same leads (Fig. 2c, g), with differences that were
sometimes statistically significant (at the 95% level), especially
for eqSOI (cf. Figure 2g, h). Differences between second-year
winter forecast skill for the 1901–1930 period and the two later
periods were generally not significant (not shown); still, it does
appear that second-year winter skill was at a minimum in
midcentury, although even then statistically significant second-
year winter skill was found for late summer and fall initializations.
Note also that since SLPA were not used to determine the model-
analogs, the similar variations in eqSOI skill act to independently
validate the above NINO3.4 skill variations.

Multi-decadal variations of ENSO forecast skill
Figure 3a shows that, since 1900, there have been pronounced
multi-decadal variations of ENSO skill, with a largely monotonic
increase in ENSO skill starting in midcentury that reaches a high
plateau in the late 20th century. Interestingly, forecast skill appears
to have declined near the start of the 20th century, which raises
the possibility that skill might have been even higher in the late
19th century. To investigate this point, we need to extend the
hindcast period further back in time, but this cannot be
accomplished unless we can use SSTA alone to determine
model-analogs. Therefore, we first evaluate how including SSHA
in the initialization impacts model-analog skill. We find that
model-analog hindcasts based only on SSTA yields hindcast skill

Fig. 1 Comparison of ensemble-mean seasonal-averaged anomaly correlation (AC) skill of NINO3.4 predictions for model-analog and
numerical model hindcasts. Ensemble-mean AC skill of NINO3.4 predictions as a function of hindcast period on the horizontal axis and
forecast lead time on the vertical axis. a, b Model-analog hindcasts initialized in October and April and determined using SSTA+ SSHA.
c, d SEAS5-20C hindcasts initialized on November 1st and May 1st, respectively; note that these are essentially the same as Fig. 1a and b in
Ref. 1. Correlation coefficients for each 30-year sliding hindcast window are shown at the central year (for example, the value for 1940
represents skill for the 1926–1955 period). Hatching indicates the correlation coefficients that are not statistically significant at the 95%
significance level, following Ref. 58. To make a fair comparison (see Methods), the November 1/May 1 initialized SEAS-20C should be compared
to October/April initialized model-analog hindcasts.
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(Fig. 3b) only slightly lower than when both SSTA and SSHA were
used (see difference plot in Fig. 3c). SSHA primarily improves the
forecast skill for longer-lead hindcasts prior to about 1960, which
could mean that CERA-20C SSHA from this period provides some
additional information, beyond SSTA, to constrain the selection of
initial model-analogs. Although the inclusion of SSHA can
modulate the selection of the initial model states and result in
slightly better long-lead ENSO forecast skill (Fig. 3c), the initial
model-analog reconstruction (Supplementary Fig. 6) as well as the
relatively small difference in skill suggest that using SSTA alone
may be largely sufficient to find good model-analog ocean states
whose subsequent evolution matches the observed evolution of
SSTA, at least within the tropical Pacific region. This might be
expected, for example, in the “fast wave limit” where tropical

Pacific monthly upper oceanic anomalies respond relatively
quickly to surface wind anomalies and SSTAs41,42.
However, even early in the 20th century these forecast skill

differences are not statistically significant, which also suggests
that using only SSTA may be sufficient not only to select skillful
model-analogs but also to estimate long-term variations of ENSO
hindcast skill (Fig. 4), albeit with some slightly underestimated
values at long leads prior to about 1960. Using the other six SST
datasets to repeat the SSTA+ SSHA model-analog analysis for the
common period of 1901–2009 also yielded no significant
differences (Supplementary Fig. 7). While maximum skill is clearly
obtained from the CERA-20C SSTA+ SSHA model-analogs, we find
that using either SSTA-only or SSTA+ SSHA model-analogs still
yields the same qualitative picture of variation in ENSO skill as a
function of year, lead time, and season (not shown).

Fig. 2 Ensemble-mean anomaly correlation (AC) skill of ENSO predictions as a function of the initial months. Ensemble-mean AC skill of
(a–d) NINO3.4 and (e–h) equatorial SOI as a function of initialization month (vertical axis) and the forecast lead times up to 36 months
(horizonal axis). The AC skill is computed based on the entire period of (a, e) 1901–2009, and three sub-periods of (b, f) 1901–1930, (c, g) 1931-
1970, and (d, h) 1971-2009, respectively. The verification dataset is taken from CERA-20C. Model-analogs are determined from SSTA+ SSHA.
Hatching indicates the correlation coefficients that are not statistically significant at the 95% significance level following Ref. 58.
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By extending the hindcast period back into the late 19th century
and forward into the 2010s, based on model-analogs conditioned
by SSTA alone, it becomes clearer that ENSO hindcast skill has
been roughly U-shaped (Fig. 4), starting from high values in the
late 19th century, declining to a minimum in the mid-20th century,
and strongly increasing in the late 20th century (Fig. 4). This result
is robust to the choice of SST dataset, as shown in Fig. 4, both for
selecting the initial model-analog ensembles and verifying the
resulting hindcasts. However, there are also some clear quantita-
tive differences amongst different model-analog hindcast datasets
for forecast skill during the early period, which is not surprising
given the uncertainty in SSTA then (see Supplementary Figure 7
and Methods for details). Comparison to Fig. 3b also suggests that
there is somewhat greater skill in the first half of the 20th century
when using the CERA20C SSTAs to both determine and verify
model-analog hindcasts. The increase of second-year ENSO skill
during the late 20th century, however, is quantitatively robust to
the choice of SST dataset. Also, using hindcasts that now extend to
near-present day, it appears that the second-year ENSO forecast

skill increase may have begun to reverse, with some reduction
since the beginning of the 21st century. Note, however, that for
shorter leads, on the order of a few seasons, skill has plateaued
and has not recently decreased.
We find a generally similar multi-decadal evolution of skill for El

Niño and La Niña separately, such as in the probabilistic relative
operating characteristic (ROC) scores shown in Fig. 5, for hindcasts
based on ERSSTv5 SSTA and verified on both ERSSTv5-based
NINO3.4 and 20CRv3-based eqSOI. Note that all the oceanic
NINO3.4 (Fig. 5a, b) and atmospheric eqSOI (Fig. 5c, d) forecast skill
estimates are qualitatively quite similar, showing multi-decadal
skill variations as found above for the deterministic AC skill (for
example, Figs. 3, 4). It is also clear, however, that there are some
differences in forecast skill between El Niño and La Niña, especially
for NINO3.4, and for some periods these differences appear
statistically significant (p < 0.05 comparing Fig. 5a with b, and c
with d), as indicated by the hatching in Fig. 5 (see Methods for
details on statistical testing). We find that in the last few decades,
La Niña predictions have been generally more skillful than El Niño,
at both short and long leads, but that this difference may be a
recent phenomenon. In fact, there are also a few periods, both in
the 1970s and in the beginning of the 1900s, where predictions of
El Niño were significantly more skillful at longer leads (over 12
months), both for NINO34 and eqSOI. Whether the asymmetry in
El Niño and La Niña prediction skill is associated with underlying
dynamical changes or is the result of randomness12,43 is beyond
the scope of this analysis. To address these questions might
require applying model-analogs within a perfect model experi-
ment aimed at investigating potential causes of forecast skill
asymmetry.

Relating variations in ENSO forecast skill to observational
estimates of intrinsic ENSO variability
Finally, we examine whether some aspects of either the model-
analog technique or the observational datasets might spuriously
impact our estimates of the multi-decadal variation of ENSO
forecast skill. Specifically, we investigate whether observational
uncertainties impacting model-analog ‘initializations’ and/or
hindcast verifications, as well as intrinsic ENSO variations, might
affect both the selection of initial model-analogs and the
verification process. Note that this analysis is another advantage
of the model-analog technique, for which evaluation of the impact
of product uncertainty requires only a few fields.
We earlier found (see Fig. 4) that the greater observational

uncertainty in the early part of the record (prior to 1950) leads to
some minor quantitative, but not qualitative, uncertainty in the
multi-decadal variations of ENSO forecast skill. Still, it is worth
further exploring this issue, since it is possible that observational
uncertainty might impact the hindcasts, through the initial
selection of the model-analogs, differently than the verifications.
Therefore, in Fig. 6 we show the predicted AC skill of NINO3.4 and
eqSOI, determined for hindcasts initialized with each SST dataset
and verified against all other datasets, at some chosen forecast
leads. The grey shading shows the range of all the cross-
verifications, where the initial model-analogs are determined from
one particular SST dataset but verified against a different dataset,
providing additional evaluation of uncertainty in the variation of
skill. We can see that prior to about 1960 the uncertainties in skill
are relatively large, with the spread subsequently converging
considerably, consistent with the observational uncertainty. Given
this, we still find that all the hindcasts display broadly similar skill
evolution, including the pronounced midcentury ENSO prediction
skill minimum. It is interesting to note that, in general, the highest
skill for model-analog hindcasts using any given initialization
dataset occurs when they are verified against ERSSTv5 SSTAs,
especially in the early period (not shown); also, the highest skill
overall occurs for hindcasts that are initialized using ERSSTv5, both

Fig. 3 Impact of including SSHA in model-analogs upon the
anomaly correlation (AC) skill variation of NINO3.4 predictions.
Ensemble-mean AC skill variation of NINO3.4 predictions as a
function of lead months up to 24 months on the vertical axis and
hindcast period on the horizonal axis. a, b AC skill based on model-
analogs determined from SSTA+ SSHA and SSTA-only, respectively.
c AC skill difference between SST+ SSH model-analog experiment
and SST-only experiment. The verification dataset is taken from
CERA-20C. All correlation coefficients are shown in the central year
of the corresponding 30-year period, while anomalies are based on
the sliding 30-year window that ends the year prior to the hindcast.
Hatching indicates correlation coefficients that are not statistically
significant at the 95% significance level, following Ref. 58.
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for NINO3.4 and eqSOI in the early period (e.g., light green curve in
Fig. 6), where the ERSSTv5 seems to have the largest variance (Fig.
6d). This may be related to the use of additional observations in
the early record in the construction of the ERSSTv5 dataset, which

may explain its higher ENSO variance in the early period relative to
the other SST datasets44.
Figure 6d and h show the variance evolution of the observed

NINO3.4 and eqSOI over the 30-year sliding windows. We can see

Fig. 4 Ensemble-mean anomaly correlation (AC) skill evolution of predicted NINO3.4 time series since the late 1800’s. Predictive AC skill
evolution of NINO3.4 time series over the 30-year hindcast windows for lead times up to 24 months. The AC skills are both initialized with and
verified against six different SST datasets, (a) ERSSTv5, (b) Kaplan, (c) COBE2, (d) HadISST, (e) ERSSTv3b, and (f) COBE, respectively. Model-
analogs are determined from SSTA-only. All correlation coefficients are shown in the central year of the corresponding 30-year period, while
anomalies are based on the sliding 30-yr window that ends the year prior to the hindcast. Hatching indicates correlation coefficients that are
not statistically significant at the 95% significance level, following Ref. 58.
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that when ENSO variance is relatively high, the corresponding
predictive skill tends to be high as well (also see Fig. 5), suggesting
some relationship between decadal ENSO variability and predic-
tion skill, similar to what has been previously suggested on
interannual time scales16,45. Of note is that, relative to the other
SST datasets, ERSSTv5 SSTAs had both the greatest hindcast skill
and the greatest variance in the late 19th century. The variance
evolution of the traditional Southern Oscillation Index (SOI46,47),
determined from weather station data obtained from Tahiti and
Darwin, is also shown in Fig. 6h. Although coarse resolution of
CMIP6 models cannot properly represent the changes in these
two weather stations, the traditional SOI here nevertheless
provides an independent measurement to qualify the variations
of the atmospheric Southern Oscillation. In particular, it shows a
pronounced maximum in the late 19th century, which is most
consistent with the NINO3.4 amplitude variation in the ERSSTv5
dataset. The eqSOI skill is also relatively high in the late 19th

century. Some studies46,48 pointed out that the 1877/78 ENSO
event in the late 19th century is closest in magnitude and temporal
variation to the 1982/83 ENSO event, and it has also been
suggested that the periods of 1876-1895 and 1976-1995 were

dominated by strong ENSO activity and therefore had similar
ENSO forecast skill7. Finally, it appears that the increase of ENSO
variance may have leveled off in the past few decades (despite the
large 1997/98 event), and likewise the increase in skill has leveled
off (or even declined, as is the case for 18-month leads), although
recent 12-month skill remains quite high.
A related issue is whether both the decadal variability of ENSO,

and the greater uncertainty in our observational estimate of it
during the early part of the record, might impact the ability of the
model-analogs to capture the initial states, and if so whether that
might impact skill variations. We address this by comparing the
initial model-analog states (i.e., reconstructions23) with the
observations (Fig. 7). The observed NINO3.4 time series is well-
represented by the model-analogs throughout the entire record
(Fig. 7a), with an overall reconstruction skill, or temporal
correlation between the initial model-analog reconstruction and
observations, of 0.98 (Fig. 7c). The reconstruction of eqSOI (Fig. 7b)
is not quite as good, with a correlation of 0.87 (Fig. 7d), and the
initial spread of the eqSOI ensemble is also larger than that of
NINO3.4 (indicated in grey in Fig. 7).

Fig. 5 Relative operating characteristic (ROC) score evolution of probabilistic ENSO predictions. Predictive ROC score evolution for (a) La
Niña conditions (NINO3.4 <−0.5 °C) and (b) El Niño conditions (NINO3.4 > 0.5 °C), and (c) upper tercile and (d) lower tercile of the equatorial
SOI, obtained from the 20 CRv3 reanalysis for the period of 1854–2015, over the 30-year sliding hindcast windows. The model-analog
hindcasts are determined from ERSSTv5 SSTA only. All ROC scores are centered in the corresponding 30-year period, while anomalies are
based on the sliding 30-year window that ends the year prior to the hindcast. Hatching indicates where forecast skill for one category is
significantly different from the other (p value < 0.05), based upon a bootstrapping (resampling size of 2000) performed to test the differences
between the upper tercile and lower tercile ROC scores. Note that the categorical forecasts generally outperform reference forecasts derived
from climatology (i.e., ROC score > 0.5), indicating that these probabilistic ENSO predictions are generally skillful.
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The quality of the NINO3.4 reconstruction appears independent
of time, which is seen by recomputing the reconstruction skill for
each index within a 30-year sliding window, where the value for
each year is centered within the window, as shown in Fig. 7c and
d. The initial model-analogs also generally capture the amplitude
of individual ENSO events for both NINO3.4 and eqSOI (Fig. 7), as
well as the observed decadal variation in NINO3.4 amplitude
(Supplementary Figure 8) including the minimum in ENSO
variance during midcentury. Note that this reduced variance did
not lead to a reduction in the NINO3.4 reconstruction skill (cf Fig.
7c). Similar results are obtained when extending back to the late
1800s using ERSSTv5 (Supplementary Figure 9) despite the greater
observational uncertainties in the late nineteenth century. Overall,
model-analogs reproduce both interannual and interdecadal
variations in NINO3.4 observations, suggesting that periods of

lower hindcast skill do not necessarily represent times of relatively
poorer model representation of nature.
However, the quality of the eqSOI reconstruction is not as

consistent. During the mid-20th century, the model-analogs
capture the eqSOI decadal variance minimum but with notably
reduced reconstruction quality (Fig. 7d). Also, the initial spread of
eqSOI (Fig. 7d) in this period is larger compared with other
periods, suggesting there might not be sufficient good SST/SSH
analogs to determine the initial SLPA model states (which are not
chosen using observed SLPA). Whether this represents a change in
the ENSO-related SLPA or an overall reduction in ENSO amplitude
(making model-analog reconstruction of the atmospheric
response more difficult in the presence of noise) remains to be
determined.

Fig. 6 Cross-verification of the ensemble-mean anomaly correlation (AC) skill evolution of ENSO predictions. Predictive AC skill evolution
of ENSO over the 30-year sliding hindcast windows for (a–c) NINO3.4 time series obtained from seven SST datasets, and (e–g) equatorial SOI
time series obtained from three SLP datasets at prediction lead times of 6-, 12-, and 18 months, respectively. d, h variance evolution over the
30-year sliding windows. The model-analogs are determined from SSTA-only. Correlation coefficients and variances are shown in the central
year of the corresponding 30-year period. The grey shading indicates the spread of the cross verifications, where model-analogs are
determined from each SSTA dataset and then verified against other SST and SLP datasets.
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DISCUSSION
In this study, using the model-analog technique23,24 we con-
structed a multi-model hindcast ensemble of the tropics, for
monthly start dates and for leads of up to 36 months, extending
from the late 1800s into the present day. We used this hindcast
ensemble to examine the robustness of multi-decadal variations
of ENSO prediction skill, finding lower skill in the middle of the
20th century and higher skill in the late 19th and 20th centuries
(Figs. 2–6), verifying with both SSTA and SLPA tropical indices.
There also appeared to be a notable increase in prediction skill of
second-year ENSO events in the late-twentieth century (Figs. 2–5),
which was not impeded by the so-called spring predictability
barrier. These results were consistent across all observed SST
datasets used either to identify model-analogs and/or to verify
hindcasts, although some additional skill in the first half of the 20th

century was obtained for model-analogs based on CERA-20C SSTA
and SSHA. The similar results seen for predictions of the SLPA
component of ENSO (e.g., eqSOI) provided independent validation
of these results, since SLPA was not used to choose the model-
analogs. Moreover, while it has been suggested that La Niña
conditions are more predictable than El Niño conditions2, we
found that this has not been generally true since the late 1800s,
raising the possibility that this aspect of La Niña prediction also
may be recent and transient.
ENSO forecast skill evolution exhibits a U-shape (i.e., substan-

tially higher forecast skill towards the end of the 19th century and
in recent decades) over the past century and a half, although the
extent to which this is true depends somewhat upon the SSTA
dataset used to identify the model-analogs and could also be
impacted if we have slightly underestimated skill prior to 1900,
when only SSTA were available for model-analog selection.
Notably, the increased second-year ENSO skill in the late-
twentieth century was not unique, since similarly high ENSO skill
occurred in the late-nineteenth century (Figs 4–6), and it may not
be permanent, since second-year ENSO skill may have recently
begun declining (Figs. 5 and 6), although skill at leads of up to

about a year remains high. Overall, our results (Fig. 6) are
consistent with previous studies16,45 suggesting a robust relation-
ship between ENSO amplitude and forecast skill.
Inhomogeneous observations, particularly prior to 1960, may

also contribute to some apparent variations in ENSO forecast skill.
For example, to the extent that reduced data sampling leads to
underestimated SST variance, we might also expect that the
resulting smaller initial SSTA amplitudes would lead to model-
analogs whose initial amplitudes likewise represent underesti-
mates, thereby leading to weaker predicted anomalies and some
reduction in skill. [Of course, this might be a concern for traditional
forecast approaches and empirical techniques as well.] This could
explain why using model-analogs based upon the ERSSTv5
dataset, whose relatively higher variance prior to 1960 may be
attributable to the incorporation of newer and more diverse data
sources44, yields higher ENSO skill than model-analogs based
upon the other datasets. On the other hand, the relationship
between dataset variance and hindcast skill (e.g., Fig. 6) is not
monotonic, and how dataset uncertainties impact hindcasts and
their skill estimates is likely more complex and deserving of a
more thorough analysis in the future.
In addition to the well-known challenges posed by data quality

issues in ENSO predictions and predictability, another related
question arises: how is a relatively simple model-analog technique
able to produce forecast skill that is ever greater than that
generated by a much more sophisticated prediction system such
as SEAS5-20C (cf. Fig. 1)? One possible explanation is that
traditional assimilation-based initialization forecasts rely heavily
on reliable assimilated full-field initial states, which can be
challenging in periods with large uncertainties in observations,
potentially leading to less skillful forecasts in the early period. In
contrast, the model-analog technique does not require full field
variables and can instead utilize a few, but relatively more
accurate, key variables (e.g., SSTA/SSHA in our study) to efficiently
match the observed states. This advantage of the model-analog

Fig. 7 Model-analog reconstruction of ENSO time series. Time series of (a) NINO3.4 and (b) the equatorial SOI, and the reconstruction skill
evolution of (c) NINO3.4 and (d) equatorial SOI at t ¼ 0 over the 30-year sliding windows. The observed time series are shown in black. The
ensemble-mean reconstructed time series at t ¼ 0 are shown in red. Arbitrary individual ensemble members from 9 CMIP6 libraries and 5
model-analog ensembles are shown in grey. The time series are verified over CERA-20C based on the common period of 1901-2009. The
correlation coefficients between the observed (black) and ensemble-mean reconstructed time series (red) are labelled, which are statistically
significant at the 95% level, following the method described by Ref. 58. The ensemble-mean correlations in (c) and (d) at each 30-year period
are shown in red. Individual ensemble members are shown in grey. The horizontal red line in (c) and (d) indicates the ensemble-mean
correlation throughout the whole period. The correlation coefficients are all statistically significant at the 95% significance level. AC skill for
each 30-year window is shown at the central year. These model-analogs are determined from SSTA-only.
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approach may help explain why it yields comparable forecast skill
to SEAS5-20C.
Still, the past few decades do appear to represent a particularly

sustained period of comparably high ENSO forecast skill, both
deterministic and probabilistic, which might be due to natural
decadal variability9,14,43 but also could be related to either the
enhanced modern observational network31 or to anthropogenic
climate change11,49. A much sparser SST observational network in
the earlier part of the record means greater uncertainty in the SST
reconstructions, which has led to quantitative uncertainty in the
early ENSO forecast skill. On the other hand, it is interesting to
note that ERSSTv5 SSTA44 both generally yields skill that is the
most U-shaped and has relatively higher late-1800s NINO3.4
variance. This is also consistent with the pronounced U-shape of
SOI variance, which is based only on two long station records of
surface pressure observations. Of course, sparser data coverage
during the early period (~1880–1930) also coexisted with higher
ENSO forecast skill, and the monotonic increase in ENSO skill since
mid-century now may be plateauing and even decreasing for
second-year ENSO.
Finally, it is noteworthy that the model-analog hindcast

ensemble was drawn from 9 different CMIP6 model simulations
that all used fixed, pre-industrial radiative conditions. This does
not exclude the possibility that climate change is playing a role in
changes in recent skill; for example, one suggested impact of
external forcing is to change the relative frequency of internal
climate states2,50 rather than to change the states themselves, in
which case it could be sufficient even in a changing climate to use
a fixed climate simulation to make model-analog predictions.
Further model-analog exploration of this point, however, would
likely require the use of large ensembles of historical climate
simulations. This topic will be further addressed in a future study.

METHODS
Model-analog method
Analogs are chosen at each time t by minimizing a distance
between a target state vector x(t) and each library state vector
y(t’), where the target state is defined as the observed anomalous
state at the initialization time, and the library consists of all
anomalous states drawn from a long climate model simulation23.
The library states are restricted to the same calendar month as the
target states, to take account of seasonality. As in previous
studies23,24, to measure the distance between the target state and
each library state, we compute the root‐mean‐square (RMS)
difference between two variables chosen from the full state
vectors x and y, spatial maps of SSTA and SSHA, although we
define this distance within the entire tropics (30 °S-30 °N) rather
than the tropical Indo-Pacific. Note that each variable here is
normalized by its own domain-averaged standard deviation to
equally weigh the variables. Then, these RMS distances are sorted
in ascending order, and the K best simulated states with lowest
RMS distance are chosen as the ensemble of initial states,
indicated by the set y t01

� �
;y t02
� �

; ¼ ; y t0k
� �

; ¼ ; yðt0KÞ with k the
analog index and t0k the time of this analog in the library. The
subsequent evolution of this ensemble within the control
simulation, y t01 þ τ

� �
;y t02 þ τ
� �

; ¼ ; y t0k þ τ
� �

; ¼ ; yðt0K þ τÞ, is the
model-analog forecast ensemble for x tþ τð Þ at lead time τ
months. Results are somewhat sensitive to the model-analog
ensemble size K, with deterministic skill maximizing for a value of
K that logarithmically increases with library size, in contrast with
traditional assimilation-initialized ensembles23. For data libraries
on the order of several hundred years in length, an ensemble size
of K ~ 10–20 was found to give the best results23. In this study,
because of the larger number of model simulations we examined,
we found that K= 5 was sufficient. For more details of the
technique, including perfect model experiments, and comparison

to traditional assimilation-initialized hindcasts made by opera-
tional numerical models, see Ref. 23.

Model datasets
The library datasets consisted of monthly mean output from the
pre-industrial control (piControl) experiments conducted using 25
CMIP6 climate models (see details listed in Table 1) whose
simulations were at least 500 years in length. The pre-industrial
CMIP6 forcings constitute repeating seasonal cycles51, including
CO2 and other well-mixed greenhouse gases, solar irradiance,
ozone, aerosols, and land use52. All datasets are remapped onto a
regular 2° longitude by 2° latitude grid prior to our analysis. For
the CMIP6 model simulations, we first linearly detrend the data to
remove potential long-term climate drifts in these fixed climate
simulations. Then, the fixed monthly climatology defined through
the full length of individual simulations was removed to compute
the monthly anomalies, which effectively removes mean biases
relative to observations.

Observations
We use SSTA and SSHA taken from the CERA-20C reanalysis53 to
select the model-analogs for the period 1901–2009, and to verify
their subsequent skill. We additionally examine the sensitivity of
our results both to the dataset used to initialize (that is, used to
choose the initial model-analog ensemble) hindcasts and to
subsequently verify the hindcasts, using six other SST and three
SLP reanalysis datasets listed in Table 2. Since these SST datasets
cover years prior to 1900, we also extend our hindcast record, but
in this case by using only SST to determine the model-analogs;
how much additional skill the SSH information gives for the
common period is examined in the ‘multi-decadal variations of
ENSO forecast skill’ section. Note that model-analogs make
forecasts of not only the subset of variables used to define the
analogs (e.g., tropical SSHA and SSTA), but also any other model
quantity, such as SLPA, associated with the library states and their
subsequent evolution within the control simulation.

Initialized numerical hindcasts
We compared skill of the model-analog hindcasts to skill of the
SEAS5-20C hindcasts1, which were created with a lower-resolution
version of the European Centre for Medium-Range Weather
Forecasts (ECMWF) operational seasonal prediction system
SEAS532. These hindcasts were initialized using the full three-
dimensional CERA-20C fields, twice yearly (May 1st and November
1st), and were run for monthly lead times of up to two years. The
SSTA of the SEAS5-20C hindcasts was then bias-corrected, by
removing the lead-time dependent forecast climatology. Note that
we compared these hindcasts to model-analog hindcasts initi-
alized with the prior month’s anomaly (i.e., October and April), so
that there would be no extra information in the model-analog
initialization. Then, as in Ref. 23, the lead 1 forecast for the model-
analogs is the November and May monthly mean, which is
compared to the corresponding SEAS5-20C predicted monthly
mean (November 1–30 and May 1–31, respectively).

Determining anomalies
Defining the climatology for anomaly calculations is particularly
important for lengthy records54 since some methods (e.g., using
full length of record as climatology) might spuriously enhance
hindcast skill and thus could be considered “unfair”31. For
example, if we use a reference climatology that contains
information that would have been unknown at the forecast
initialization time, we might create artificial skill in our hindcasts
due to the inclusion of a long-term trend when comparing to
equivalent real-time forecasting. Therefore, for the observations,
the monthly anomalies are computed by removing a 30-year
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sliding climatology. For example, for a prediction made in 1972,
the corresponding climatology is defined based on the 1942–1971
period, which avoids the use of any future information that would
have not been available at the forecast initialization time. This
anomaly calculation is referred to as a “fair-sliding” method31,
where a sliding window behind the forecast is used as the
reference climatology period. The resulting anomalies are used
both to determine the model-analogs and to verify the
subsequent hindcasts. Note that this calculation also acts to
largely detrend the anomalies.
As in previous studies24, we draw from the library states of long

pre-industrial control simulations, which means the model-analog

hindcasts do not include the effects of external radiative forcing.
This issue may be addressed by adding an estimate of the
externally-forced component, determined from the CMIP5 histor-
ical simulations, to such model-analog hindcast ensemble
members24, although this externally-forced trend does not appear
to significantly impact ENSO skill, at least over the 1961–2015
period when it was found that there was no significant secular
trend in ENSO skill24. When we performed a similar analysis using
the CMIP6 historical simulations, we found that the skill results
were similar to simply using the 30-year sliding climatology to
compute anomalies. Therefore, we used that approach in
this study.

ENSO indices
To evaluate hindcast skill, we make use of both SSTA- and SLPA-
related ENSO indices. For SSTA, we use the NINO3.4 index, derived
from the averaged SSTA in the Niño 3.4 region (5°S-5°N, 170°W-
120°W; Supplementary Fig. 10). To evaluate the skill of the model-
analog SLPA hindcasts, we use a measure of the Southern
Oscillation index (SOI). This serves as an independent metric of
skill since SLPA are not used to choose the model-analogs, as
opposed to SSTA and SSHA. Ideally, we would use the traditional
SOI, the standardized SLPA difference obtained from Tahiti and
Darwin weather station data (Supplementary Fig. 10). However,
due to the relatively coarse spatial resolution of the CMIP6 models,
model output cannot entirely represent the SLP see-saw between
these two stations. Therefore, we instead use the equatorial SOI
(eqSOI10,55), derived from the standardized difference between
the standardized SLPA in areas over the eastern equatorial Pacific

Table 2. The verification (target) datasets used in this study.

Variable Dataset Period Reference

SSH CERA-20C 1901-2009 Laloyaux et al. (2018)53

SST CERA-20C 1901-2009 Laloyaux et al. (2018)53

COBE 1891-2021 Ishii et al. (2005)82

COBE2 1850-2019 Hirahara et al. (2014)83

ERSSTv5 1854-2021 Huang et al. (2017)84

ERSSTv3b 1854-2019 Smith et al. (2008)85

HadISST 1870-2020 Rayner et al. (2003)86

Kaplan SST 1856-2021 Kaplan et al. (1998)87

SLP 20 CRv3 1836-2015 Slivinski et al. (2019)88

CERA-20C 1901-2010 Laloyaux et al. (2018)53

HadISLP2 1850-2004 Allan and Ansell (2006)89

Table 1. The 25 CMIP6 pre-industrial control simulations used in this study.

Model name Modeling center Length (years) Ensemble Key reference

ACCESS-ESM1.5 CSIRO 900 r1i1p1f1 Ziehn et al. (2020)59

CAMS-CSM1.0 CAMS 500 r1i1p1f1 Rong (2019)60

CanESM5 CCCma 1000 r1i1p1f1 Swart et al. (2019)61

CESM2* NCAR 1200 r1i1p1f1 Danabasoglu et al. (2020)62

CIESM* DESS-THU 500 r1i1p1f1 Lin et al. (2020)63

E3SM-1.0 LLNL 500 r1i1p1f1 Bader et al. (2019)64

EC-Earth3* EC-Earth Consortium 501 r1i1p1f1 Döscher et al. (2021)65

FGOALS-g3 CAS 700 r1i1p1f1 Pu et al. (2020)66

GFDL-ESM4* GFDL-NOAA 500 r1i1p1f1 Krasting et al. (2018)67

GISS-E2.1-G NASA 851 r1i1p1f1 Kelley et al. (2020)68

GISS-E2.1-H NASA 801 r1i1p1f1 Kelley et al. (2020)68

HadGEM3-GC31-LL* MOHC 500 r1i1p1f1 Kuhlbrodt et al. (2018)69

HadGEM3-GC31-MM* MOHC 500 r1i1p1f1 Senior et al. (2020)70

INM-CM5.0 INM-RAS 1201 r1i1p1f1 Volodin et al. (2019)71

IPSL-CM6A-LR IPSL-CMC 1200 r1i1p1f1 Boucher et al. (2020)72

KIOST-ESM KIOST 500 r1i1p1f1 Kim et al. (2019)73

MIROC-ES2L MIROC Consortium 500 r1i1p1f2 Hajima et al. (2020)74

MIROC6 MIROC Consortium 800 r1i1p1f1 Tatebe et al. (2019)75

MPI-ESM-1.2-HAM MPI 780 r1i1p1f1 Gutjahr et al. (2019)76

MPI-ESM1.2-LR MPI 1000 r1i1p1f1 Gutjahr et al. (2019)76

MRI-ESM2.0 MRI 701 r1i1p1f1 Yukimoto et al. (2019)77

NESM3 NUIST 500 r1i1p1f1 Cao et al. (2018)78

NorESM2-LM* NCC 501 r1i1p1f1 Bentsen et al. (2013)79

SAM0-UNICON* SNU 700 r1i1p1f1 Park et al. (2019)80

UKESM1.0-LL* MOHC 1880 r1i1p1f2 Sellar et al. (2019)81

*The nine CMIP6 models used in the multi-model model-analog ensemble are marked (see text for more details).
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(5°S-5°N, 80°W-130°W) and over Indonesia (5°S-5°N, 90°E-140°E;
Supplementary Fig. 10).
One concern with extending the hindcast dataset back into the

19th century is that uncertainty in observations/verifications might
impact our evaluation of variations in ENSO prediction skill. The
time series of both NINO3.4 and eqSOI (Supplementary Fig. 10)
have considerable uncertainties across multiple datasets in the
early part of the record, eventually beginning to converge around
1950. In addition, due to the pronounced disagreement in the late
19th century and the early 20th century, the temporal correlation of
the eqSOI between 20CRv3 and HadISLP2 datasets dropped to
0.63 for their overlapping period of 1850–2004, while CERA-20C
and 20CRv3 has the highest correlation of 0.91 thoughout the
common period of 1901–2010. It is worth noting that all the
correlations are considerably larger when only the later periods
are considered; for example, the mutual correlations exceed 0.92
from 1950 onwards.

Skill metrics
To measure deterministic ensemble-mean forecast skill, we use AC
skill and RMS error (RMSE), which is defined as

ACC ¼
PN

i¼1 Fi
0Oi

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðFi 0Þ 2

PN
i¼1 ðOi

0Þ 2
q (1)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðOi
0 � Fi 0Þ

2

vuut (2)

where Fi 0 is the ensemble-mean anomaly forecast, and Oi
0 is the

observed anomaly with i ¼ 1¼N representing the verification

months or years. RMSSS is defined as RMSSS ¼ 1�

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

ðOi
0Þ2

s
.

We also examined ROC score, which measures the quality of
probabilistic forecasts that relate the hit rate to the corresponding
false-alarm rate56,57. The ROC score is defined as the area under
the ROC curve. The ROC score of a no-skill forecast is 0.5, and for a
perfect forecast is 1. In this work, oceanic La Niña and El Niño
conditions are defined as NINO3.4 <−0.5 °C and NINO3.4 > 0.5 °C,
and the upper and lower terciles of the eqSOI are used to
compute the probabilistic metrics.
Significance testing of AC skill was conducted following the

approach of Ref. 58, which takes account of the effective number
of degrees of freedom due to serial auto-correlations. Then, a
simple t statistic was applied to assess whether the AC skill is
significant. Fisher Z-transformation was applied to the correspond-
ing AC skill. Then, t test was applied to assess whether the
differences between AC skill are significant. To test if the
differences between two ROC curves are significant, a boot-
strapping method with 2000 perturbations was applied. Each
stratified replicate contains the same number of controls and
cases as in the original sample. For each bootstrap replicate, the
ROC scores of the two ROC curves (i.e., La Niña vs. El Niño
condition) were computed and the difference was stored. The
difference between the original two ROC scores was then
compared to the standard deviation of the bootstrap differences
following D ¼ ðROC1� ROC2Þ=s, where s is the standard devia-
tion of the bootstrap differences, and ROC1 and ROC2 are the ROC
scores of the two original ROC curves. Finally, D was compared to
the normal distribution and p-value is computed. When p<0:05,
we rejected the null hypothesis (i.e., there was no difference
between the two ROC scores).

Constructing the multi-model model-analog ensemble
For this study, we show results for a multi-model ensemble
constructed from a subset of nine CMIP6 models (marked in Table
1) that we found yielded the most skillful combination (Fig. 8). We
identified these models by first applying a bootstrapping method to
randomly choose different nine-model combinations from the CMIP6
library, which was replicated 5000 times. The AC skill of multi-model
ensemble-mean ENSO forecasts was then computed. The spread of
predictive ENSO skill based on different CMIP6 combinations is
reasonably small at all the forecast lead times (Fig. 8). We then
selected the highest-skill nine-model CMIP6 multi-model ensemble
(marked in Table 1) to form our base of library datasets, whose
ensemble-mean skill is generally higher compared to any other
combination. It is worth noting that other numbers of CMIP6 library
models are also tested, which yields indistinguishable results as
presented in Fig. 8. These nine models are also individually the most
skillful of the CMIP6 models, as indicated in the Taylor diagram (Fig. 8).

Fig. 8 Testing the choice of CMIP6 library model combinations.
a AC skill of NINO3.4 predictions verified over CERA-20C for the
period of 1901-2009. The red curve represents the ensemble mean
AC skill derived from the nine best CMIP6 models used in the text.
The grey shading indicates the AC skill range of 5000 bootstrapping
samples. b Taylor diagram of model‐analog forecast skill at lead
times of 1–24 months for NINO3.4 index. Each curve represents a
skill trajectory from one CMIP6 model, with one dot per forecast
lead month ranging from 1 month (opaque dots) to 24 months
(transparent dots) in advance. The nine ‘best’ models are high-
lighted using bigger dots and marked in the legend.
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DATA AVAILABILITY
SST datasets taken from CERA-20C, HadSLP2, and HadISST are accessible through
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/cera-20c, https://
www.metoffice.gov.uk/hadobs/hadslp2/, and https://www.metoffice.gov.uk/hadobs/
hadisst/, respectively. CERA-20C SSH data is accessible upon request to ECMWF. The
rest of the reanalysis datasets can be downloaded from https://psl.noaa.gov/data/
gridded/. CMIP6 datasets can be downloaded from https://esgf-node.llnl.gov/
projects/cmip6/.

CODE AVAILABILITY
The R code used to generate model-analog hindcast investigated in this study is
available at the Zenodo open data repository (https://doi.org/10.5281/
zenodo.8070768). The corresponding ENSO hindcast products (NINO3.4 and eqSOI)
are available at https://downloads.psl.noaa.gov/Projects/LIM/Realtime/Realtime/
webData/MA_CERA20C/, which is also the child directory of https://psl.noaa.gov/
forecasts/seasonal/, where the deterministic and probabilistic hindcasts used in this
study are also accessible in an image browser.
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