
ARTICLE OPEN

Anthropogenic impact on the severity of compound extreme
high temperature and drought/rain events in China
Wanling Li 1, Bo Sun 1,2,3✉, Huijun Wang1,2,3, Botao Zhou 1, Huixin Li1,2,3, Rufan Xue 1, Mingkeng Duan1,2, Xiaochun Luo4 and
Wenwen Ai4

Compared with individual extreme events, compound events have more severe impacts on humans and the natural environment.
This study explores the change in severity of compound extreme high temperature and drought/rain events (CHTDE/CHTRE) and
associated influencing factors. The CHTDE and CHTRE intensified in most areas of China in summer (June–July August) during
1961–2014. Under global warming, the increased water-holding capacity of the atmosphere and the decreased relative humidity
led to an increase in the severity of CHTDE. The severity of CHTRE is increased because of enhanced transient water vapor
convergence and convective motion. Anthropogenic climate change, especially greenhouse gas forcing, which contributes 90% to
the linear change in the severity of CHTDE and CHTRE, is identified as the dominant factor affecting the severity of CHTDE in China.
In addition, the historical natural forcing (hist-NAT) may be related to the interannual-to-decadal variability in the severity of
CHTDE/CHTRE.
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INTRODUCTION
Over recent years, extreme precipitation events, extreme drought
events, extreme high temperature events and extreme storm
events have occurred frequently and have had devastating
impacts on human life and the ecological environment in many
places1–4. For example, 38.305 million people were affected by the
extreme high temperature event in China during the summer of
20225. In the summer of 2021, China experienced many extreme
rainfall events, each of which caused property losses of
approximately US$12 billion6. Furthermore, the Lancet Count-
down Regional Centre in Asia reported that hundreds to
thousands of people lose their lives in extreme floods each year
in China, and millions to tens of millions of people cannot drink
water because of extreme droughts7. In particular, in the context
of global warming, compound extreme weather and climate
events, which are multivariate extremes at multiple temporal and
spatial scales that can further exacerbate the risks and effects of
individual extreme events, have become more frequent. Com-
pound extreme events have great impacts on crops, grassland
ecosystems and vegetation3,8–10. Thus, climate change has
become one of the most severe challenges facing humankind.
Attaching great importance to the change in different types of
compound extreme events and research it is the key to preventing
and mitigating natural disasters and ensuring economic develop-
ment and human happiness.
Since the Intergovernmental Panel on Climate Change Special

Report on Climate Extremes (IPCC SREX) first explicitly proposed
the conception of compound extreme events in 201211, the
definition of compound extreme events has been continuously
enriched and expanded3,12. For compound extreme high tem-
perature and drought/rain events (CHTDE and CHTRE), the
quantitative identification methods can be classified into three
categories12–14. One category is that the concurrent extremes of

different variables should be greater than or less than their
specified extreme thresholds15–17. Another category is to recog-
nize compound events based on empirical statistical models of
meteorological indicators such as compound drought and the
heat wave magnitude index8,18–20. The third category is to
implement the probability statistic indicator based on joint
distributions of multiple single-event indicators. In this category,
the effects of dependence and interaction between multiple
extreme driving factors and compound extreme events are
investigated14,21,22. The Standardized Compound Event Indicator
developed from the Standardized Precipitation Index (SPI) and
Standardized Temperature Index are good examples of this
category23. However, most of these indicators are obtained based
on data at the monthly time scale, whereas the variation at the
daily time scale is smoothed out. In addition, the interaction
between different time scales and physical meteorological
elements is not well considered, and the extreme degree of
compound events is not well quantified at present13,24.
Increasing attention has been given to CHTDE in recent years.

The IPCC AR63 report indicates that the occurrence probability of
CHTDE has been increasing at the global scale since the 1950s,
and the frequency and intensity of CHTDE have increased with
high confidence. Wang et al.25 investigated the spatiotemporal
changes in CHTDE over global land using SPI and the copula
method. They demonstrated that the significant increase in the
probability of CHTDE depends on the increase in the negative
correlation between temperature and SPI. In China, monthly
CHTDE shows a significant increasing trend, especially in North-
east China, where the occurrence probability of CHTDE has
increased by 0.05 per decade26–28. In addition, the continuous and
stable high-pressure system anomaly is conducive to the
formation of downdrafts and low-level thermal anomalies, which
can effectively reduce cloud cover and increase solar radiation. As
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a result, CHTDE are intensified in China and display daily
variations10,29,30. However, few studies have focused on the
regional characteristics of CHTDE and reproducibility in the
simulations of CHTDE from the Coupled Model Intercomparison
Project Phase 6 (CMIP6) on a daily time scale. In addition,
compared with the simulations of CHTDE by CMIP5, the
performance and uncertainty range of CHTDE by CMIP6 are not
well understood.
In addition to CHTDE, CHTRE also has important effects on the

environment. When intensified extreme heavy precipitation
events occur together with extreme high-temperature events
more frequently, a higher frequency of CHTRE can be found in
both daytime and nighttime16. In addition, it is almost impossible
for extreme precipitation events and extreme high-temperature
events to occur consecutively within a week in China. However, it
has become more likely that a once-in-50-year extreme precipita-
tion event and an extreme high-temperature event occur together
within a week in recent decades31. However, our understanding of
CHTRE is very limited, the mechanism of CHTRE is not clear, and
little attention has been given to the study of the severity of
CHTRE based on reliable observations and numerical models at
present.
To investigate the extent to which climate change is caused by

anthropogenic activities, many studies on extreme events have
been conducted and confirmed that anthropogenic activities,
especially emissions of greenhouse gases, are the main reason for
the increase in extreme temperature events, extreme precipitation
events and drought events on both regional and global
scales4,32,33. In recent years, human influence on compound
extreme events has gradually attracted more attention. Some
studies have found that anthropogenic activities are likely to
influence the occurrence frequency and intensity of global
CHTDE26–28,34. Specifically, under global warming, the influence
of excess heat on CHTDE has been larger than that of precipitation
deficiency in recent decades25,35. However, the understanding of
the changes in CHTDE and CHTRE influenced by anthropogenic
activities and natural forcings in different regions of China is still
less than sufficient.
The present study uses a bivariate joint probability distribution

between the total number of days and the maximum duration of
compound extreme events and multimodel results of CMIP6 to
study the changes and potential causes of the severity of CHTDE
and CHTRE over different subregions of China. The relative

contributions of external forcings, including anthropogenic
activities and natural variability, to the changes are also explored.

RESULTS
Observed changes in CHTDE and CHTRE
In this study, the combined probability of the days and duration of
simultaneously occurring high temperature and drought (rain)
events were considered, and the severity of the compound event
(see Methods) was quantified. Here, smaller CHTDE and CHTRE
indexes (CHTDEI/CHTREI) represent a more violent and severe
CHTDE/CHTRE. Therefore, a downward trend in CHTDEI/CHTREI
indicates an increasing trend in the severity of CHTDE/CHTRE, and
vice versa. To determine the optimal fitting copulas for calculating
bivariate joint distribution, three criteria were used to compare the
performance of different copulas36,37. According to the results, the
CHTDEI and CHTREI based on Clayton and Gumbel are shown in
Fig. 1 (see Methods).
Specifically, according to the linear trend analysis (see

Methods), the observed CHTDEI in Northwest China (NWC),
Northeast China (NEC), the Tibetan Plateau (TP) and the coastal
region of South China (SC) exhibits a statistically significant (at the
95% confidence level) decreasing trend of approximately 0.04 to
0.1 per decade from 1961 to 2014 (Fig. 1a). This means that the
severity of CHTDE is increasing significantly during summer in
most areas of China except for Eastern China (EC). In contrast, the
CHTREI displays a significant decreasing trend of approximately
0.02 to 0.1 per decade in the northern TP and southern NWC
(Fig. 1b). The intensified severity of the CHTRE in NWC under the
background of increasing warming and humidification deserves
more attention38. In addition, there is a decreasing trend of
approximately 0.02 to 0.06 per decade only in the northern part of
NEC. Moreover, the spatial patterns of the observed trends in the
severity of CHTDE and CHTRE show that CHTDE and CHTRE
increased significantly in areas where the frequencies of CHTDE
and CHTRE were higher and the durations tended to be longer
(Supplementary Figure 1, Supplementary Figure 2).

Underlying mechanisms of increased severity of CHTDE and
CHTRE
Based on the spatial distribution of the linear trend in CHTDEI and
CHTREI over China, we further explored the potential causes of the
increased severity of CHTDE and CHTRE.

NWC

TP

NEC

EC

SC

a                     CHTDE b                                CHTRE

(decade-1) (decade-1)

Fig. 1 Linear trends of CHTDEI and CHTREI. Observed linear trends of (a) CHTDEI and (b) CHTREI based on CN05.1 in the summers from 1961
to 2014 (units: decade−1) over China. The dotted area indicates that the linear trend is significant at the 95% confidence level. The five
subregions of China are shown in (a), including Northwest China (NWC), the Tibetan Plateau (TP), Northeast China (NEC), Eastern China (EC)
and the coastal region of South China (SC).
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According to the Clausius-Clapeyron equation, due to the rapid
increase in temperature under global warming, the water vapor
content that can be held in the air keeps increasing38, leading the
saturation water vapor pressure (qs) to increase significantly.
Historically, since the increase rate of actual water vapor pressure
(q) usually increases at a slower rate than the saturation water
vapor pressure39,40, the ratio between q and qs is generally
reduced, so the relative humidity

RH ¼ q
qs

(1)

may be decreased. The lower relative humidity is not conducive
to water vapor saturation, so it may inhibit precipitation. As shown
in Fig. 2, the water vapor content increased over China (Fig. 2a, b),
and the relative humidity decreased significantly, especially in the
TP (Fig. 2c). In addition, since the beginning of the 21st century,
the increased level of black carbon aerosols has caused warming
of the middle and upper troposphere and intensification of zonal
wind vertical shear in South Asia. This warming and increasing
wind shear strengthened the vertical convection and cloud
condensation in the atmosphere over South Asia, leading to more
water vapor converging over the Indian subcontinent, which is the
main external water vapor transport source for precipitation in the
TP region41,42. Therefore, the water vapor transported to the TP
region decreased during summer. With decreased water vapor
transport, the relative humidity has decreased dramatically since
the 2000s (Fig. 2d), making it more difficult for water vapor to
reach saturation over the TP. Hence, less precipitation and severe
drought will occur on the TP. In summary, the significant increase
in the severity of CHTDE in most areas of China, especially on the

TP, may be largely linked with the decrease in relative humidity
under global warming.
The increase in severity of CHTRE is mainly concentrated in

western China (Fig. 1b). The climatology and linear trend of the
total number of days and maximum duration on CHTRE also
indicated that western China was the key area for the intensified
CHTRE (Supplementary Figure 2). Therefore, we analyzed the
potential mechanism of increased severity of CHTRE in western
China (red rectangles in Supplementary Figure 2 and Fig. 3,
80–102°E, 32–38°N). The Clausius-Clapeyron rate indicates that the
intensity of extreme precipitation increases significantly at higher
temperatures with a faster-increasing rate than that of the water-
holding capacity of the atmosphere. The response intensity of
convective precipitation to atmospheric warming is much greater
than that of the Clausius-Clapeyron rate, which could lead to more
extreme precipitation events43. Thus, when the water-holding
capacity of the atmosphere is increased, convective motion
triggered by favorable transient motion can cause more extreme
precipitation.
The composite differences (Fig. 3) between the relatively warm

period (1988–2014) and the relatively cold period (1961–1987)
show that transient water vapor transport (Fig. 3c) increased
significantly during regional CHTRE events (i.e., CHTRE events
occurred in more than 10% of the grid points over western China).
The increased transient water vapor transport over western China
during the relatively warm period mainly came from the Bay of
Bengal. Composite differences in the transient surface wind
(Fig. 3d) indicate that the convergence of water vapor flux over
western China in the warm period is mainly due to the effect of
wind divergence; that is, abnormal transient south winds can
transport water vapor from the Bay of Bengal to western China,
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Fig. 2 Linear trends of total column water vapor and relative humidity. Spatial distribution of observed linear trends in (a) total column
water vapor (units: kg m−2 year−1) and (c) surface relative humidity (units: % year−1) in the summers from 1961 to 2014 over China; Regional
average time series of (b) total column water vapor and (d) surface relative humidity over China in the summers from 1961 to 2014. Dotted
area and * indicate that the linear trend is significant at the 95% confidence level. In (b) and (d), the red line denotes the corresponding linear
trend (units: kg m−2 year−1 for total column water vapor and % year−1 for relative humidity) and the gray line denotes the climatology (units:
kg m−2 for total column water vapor and % for relative humidity).
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and a large amount of water vapor can accumulate over western
China. Therefore, as shown in Fig. 2, the water-holding capacity of
the atmosphere has increased significantly in western China, so
the total column water vapor increased significantly in western
China (at the 95% confidence level).
In addition, the transient convective available potential energy is

significantly increased during the relatively warm period (Fig. 3b, e),
indicating that the atmospheric instability is increased, which leads
to increased convergence of the near-surface winds (Fig. 3d) and
enhanced convection in the atmosphere (Fig. 3f) over western
China. In brief, the increased air temperature resulted in enhanced
transient water vapor convergence and transient convective
motion, which intensified the severity of CHTRE in western China
(Fig. 3a, b).

Model performance
In general, the accuracy of detection and attribution depends on
the performance of a large number of climate models. To select
the optimal simulations, the capabilities of the twelve CMIP6
models for the simulation of climatological spatial patterns of
temperature and precipitation in China were evaluated based on
Taylor analysis (see Methods). A good model simulation should

have three characteristics, i.e., the standard deviation and
correlation are close to unity and the root mean square error
(RMSE) is close to zero44.
As shown in Fig. 4a, b, most models can reproduce the

climatological spatial pattern of mean temperature and total
precipitation in the summers of 1961–2014. In particular, CanESM5
and MIROC6 have relatively poor capability in simulating the
climatological spatial pattern of mean temperature, with relatively
small spatial correlation coefficients of 0.89 and 0.893 between
simulation and observation for CanESM5 and MIROC6, respectively
(Supplementary Figure 3). For the climatology of total precipita-
tion, the spatial correlation coefficients between the observed
precipitation and simulations are approximately 0.8, and the
RMSEs are smaller than 0.75 for all twelve models except FGOALS-
g3, which shows a relatively poor performance with a spatial
correlation coefficient of 0.53 and an RMSE of 0.77 (Fig. 4b). The
differences in total precipitation between the simulations of
CMIP6 models and observation indicate that the deviation mainly
comes from the overestimation in the TP and underestimation in
EC and SC (Supplementary Figure 4). When focusing on the mean
temperature and total precipitation in summer, although the
observed temperature and precipitation were within the range of

20 kg m-1 s-1 0.5 m s-1

precipitation 

(mm)

temperature 

water vapor flux divergence surface wind divergence 

(kg m-2 s-1)
CAPE 

(J kg-1)

vertical velocity
(s-1)

(Pa s-1)

x10-5 x10-6

Fig. 3 Composite differences in precipitation, temperature, energy and water vapor transport between the relatively warm period and
relatively cold period during the regional CHTRE. Differences in (a) precipitation (units: mm), (b) mean temperature (units: °C), (c) vertically
integrated water vapor flux divergence (units: kg m−1 s−1), (d) surface wind divergence (units: s−1), (e) convective available potential energy
(units:J kg−1) and (f) vertical velocity at 500 hPa (units: Pa s−1) between the relatively warm period (1988–2014) and the relatively cold period
(1961–1987). The dotted area indicates that the differences are significant at the 90% confidence level. The vectors in (c) and (d) denote the
differences in vertically integrated water vapor transport (units: kg m−2 s−1) and surface wind (units: m s−1), respectively, where the
differences are significant at the 90% confidence level. The red rectangles denote western China (80–102°E, 32–38°N).
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one standard deviation of the twelve models (Supplementary
Figure 5), the CESM2 and MIROC6 models significantly deviate
from the observed mean temperature and total precipitation
(Fig. 4c).
Overall, combined with the evaluation of the performance of

the twelve models regarding regional summer average values and
Taylor spatial skill scores (see Methods), four models, i.e.,
CanESM5, CESM2, FGOALS-g3 and MIROC6, show relatively poor
skills (Fig. 4d, the Taylor spatial skill scores are lower than the
comprehensive Taylor skill scores (ATS)), and their simulations are
excluded from the study. The multimodel ensemble median
(MME) of the remaining eight models, ACCESS-CM2, BCC-CSM2-
MR, CNRM-CM6-1, GFDL-ESM4, HadGEM3-GC31-LL, IPSL-CM6A-LR,
MRI-ESM2-0 and NorESM2-LM, were thus used for further analysis
(Supplementary Table 1).

Detection and attribution
Considering that the CHTDE and CHTRE in different regions of
China have different long-term trends (Fig. 1) and the underlying
reasons may be different, the following discussion focuses on the
detection and attribution of CHTDE and CHTRE trends in five

subregions of China, NWC, TP, NEC, EC and SC, as shown in Fig. 1.
Based on the simulations of the eight CMIP6 models, the linear
trends of CHTDEI and CHTREI under different forcings were
obtained (Fig. 5). As shown in Fig. 6, the downward trends of
CHTDEI and CHTREI are –0.13 and –0.07, respectively, indicating
that the severity of observed CHTDE and CHTRE has significantly
increased across China at the 95% confidence level. The results
show that the observed intensification of CHTDE and CHTRE
severity can be captured by CMIP6 models from historical all-
forcing (hist-ALL) simulations in most areas of China (Fig. 5a, g).
Specifically, for CHTDE, the MME response to historical green-

house gas forcing (hist-GHG) is similar to its response to historical
anthropogenic forcing (hist-ANT), which is obtained by subtract-
ing the historical natural forcing (hist-NAT) simulation from the
hist-ALL simulation. The hist-ANT and hist-GHG simulations exhibit
an intensifying severity of CHTDE (Fig. 5c, e), especially in NWC, TP
and NEC (Fig. 6a). However, the spatial distribution of historical
aerosol forcing (hist-AER) is likely to offset the decreasing trend of
CHTDEI in the TP, EC and SC (Fig. 5b, Fig. 6a) and thus alleviate the
intensification of CHTDE. It is worth noting that there is a
significant upward trend in the severity of CHTDE under other

Fig. 4 Taylor analysis of mean temperature and total precipitation in summer. Taylor diagram showing the climatological spatial patterns
of (a) mean temperature and (b) total precipitation. Scatter plot of (c) total precipitation vs. mean temperature in summer over China. Taylor
skill score 1 (marks “/” and “\”) and Taylor skill score 2 (marks “x” and “+”) on (d) mean temperature and total precipitation of twelve models
(represented by different colors and shapes above histogram) in summer over China, respectively. The black horizontal and vertical lines in (c)
represent the average of the observed total precipitation and mean temperature, respectively. The red horizontal lines in (c) represent the
average of Taylor skill score 1 and Taylor skill score 2 on both temperature and precipitation. Symbols with different colors and shapes
represent simulations of different models and MME of the preferred model as well as observations.
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historical anthropogenic forcings (historical other anthropogenic
forcing (hist-OA), estimated by subtracting the response to hist-
GHG and hist-NAT from hist-ALL45), including land use and ozone
(Fig. 5f, Fig. 6a). External forcings may increase the severity of
CHTRE under hist-ALL (Fig. 5g), hist-GHG (Fig. 5i) and hist-ANT
(Fig. 5k) over China. Additionally, the result based on the MME of
hist-AER shows an increasing trend of CHTREI in the TP and

eastern China, suggesting that aerosols are favorable for reducing
the severity of CHTRE in TP (Fig. 5h, Fig. 6b).
Based on the above observations and external forcings of MME,

the optimal fingerprint method46,47 was used to quantify the
influence of external forcings on the observed CHTDEI or CHTREI
during 1961–2014 (see Methods and Supplementary Method 1).
Single-signal analysis was used to detect the effects of different

a b c

d e f

g h i

j k l

(decade-1)

Fig. 5 Linear trends of CHTDEI and CHTREI under different forcings. Linear trends of (a–f) CHTDEI and (g–l) CHTREI in response to different
forcings (a and g for historical all forcing; b and h for historical aerosol forcing; c and i for historical greenhouse gases forcing; d and j for
historical natural forcing; e and k for historical anthropogenic forcing; f and l for historical other anthropogenic forcing) during the summers
from 1961 to 2014 (units: decade−1) over China. The dotted area indicates that the linear trend is significant at the 95% confidence level.
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natural and anthropogenic forcings on the severity of CHTDE and
CHTRE. To examine the relative contributions of anthropogenic
activities and natural forcing and separate the hist-NAT and hist-
ANT signals from each other48, two-signal analysis, which
regresses observed CHTDEI/CHTREI onto hist-ANT and hist-NAT
simultaneously, was applied for further analysis. Moreover, the
observed CHTDEI/CHTREI were regressed onto hist-AER, hist-GHG,
hist-OA and hist-NAT simultaneously by four-signal analysis to
clarify the relative effects of various external anthropogenic
forcings on the changes in CHTDE and CHTRE compared to the
effects of natural forcing signals49,50.
Figure 7a presents the scaling factors obtained by regressing

the time series of observed CHTDEI anomalies onto the MME
response to a single forcing for the period of 1961–2014. Across
China, the scaling factors for hist-ALL, hist-ANT, hist-GHG, hist-OA
and hist-NAT are significantly greater than zero, suggesting that
the effects of both anthropogenic forcing and natural forcing on
CHTDE can be detected in China. For different subregions, the
best estimates of scaling factors in hist-ANT and hist-GHG are very
close to unity, indicating that the severity of CHTDE under
anthropogenic external forcing, especially under hist-GHG, is in
good agreement with the observed severity of CHTDE. Hist-OA
can be detected in the TP and SC. Moreover, the scaling factor of
hist-AER in the TP and SC is negative, which is consistent with the
spatial pattern of the hist-AER trend. In addition to anthropogenic
forcing, the scaling factors and 90% uncertainty ranges of hist-NAT
in the TP and SC are greater than zero, but the uncertainty ranges
are much larger than those under other forcings (Fig. 7a). In
conclusion, the impacts of anthropogenic factors on the severity
of CHTDE in most areas of China, particularly in NWC, TP, NEC and
SC, can be detected. Hist-GHG is an important forcing for the
change in the severity of CHTDE in China. In contrast, hist-AER can

reduce the severity of CHTDE in China, and this effect is most
significant in the TP and SC.
For the scaling factors from the two-signal (Fig. 7c) and four-

signal (Fig. 7e) analysis of CHTDEI, the residual consistency test
indicates that all the results have reached the 90% confidence
level, suggesting that the multisignal regression model fits the
observed data well. It is clear that the signals of hist-ANT (two-
signal analysis) and hist-GHG (four-signal analysis) can be
regarded as the main external forcings that lead to changes in
the severity of CHTDE in China. Furthermore, the signals of hist-OA
and hist-NAT can also be detected robustly in multiple-signal
analysis, which may be different from previous studies26,27. When
focusing on each individual subregion in China, the impact of hist-
ANT can be separated from that of hist-NAT to dominate the
severity of CHTDE (the forcing signals can be considered
attributable signals in single-signal analysis and can be success-
fully detected in multisignal analysis concurrently) in NWC, NEC,
and SC. Hist-GHG can be separated from other forcings to
dominate the severity of CHTDE in NWC, TP, and NEC. In general,
hist-ANT and hist-GHG are the primary causes for the increasing
severity of CHTDE, and they can be separated from other forcings
to dominate the severity of CHTDE in China.
Similarly, Fig. 7b, d and f show the scaling factors of CHTREI

from a single signal, two signals and four signals, respectively.
Across China, the 90% confidence interval of the scaling factor
under hist-NAT is greater than zero and includes unity, suggesting
that the severity of CHTRE can be largely attributed to hist-NAT. In
addition, hist-ANT and hist-GHG can be detected robustly. The
scaling factor of hist-AER in China is negative, which suggests the
offsetting role of hist-AER on the decreasing trend of the CHTREI.
In terms of different subregions, changes in the severity of CHTRE
in the TP can be attributed to both hist-ANT and hist-NAT. The
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Fig. 6 Linear trends of regional average CHTDEI and CHTREI from observations and simulations. Regional average trends for
nonoverlapping three-year mean (a) CHTDEI and (b) CHTREI from observations and MME under external forcing across China and in different
subregions of China (units: decade−1). The asterisks denote that the trend is significant at the 95% confidence level.
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scaling factors of hist-ANT and hist-GHG are greater than zero and
include unity in NWC, which means that both hist-ANT and hist-
GHG can be separated from other forcings to dominate the
increasing severity of CHTRE in NWC. Additionally, hist-ANT can
dominate the increasing severity of CHTRE in NEC. However,
according to the single-signal case, the detected signals for hist-
ALL, hist-ANT and hist-GHG overestimated the observed change in
CHTRE. Overall, both hist-ANT and hist-NAT are favorable for the
increasing severity of CHTRE in China, particularly in western
China, where the linear trend of the CHTREI changed significantly.
Finally, we quantified the changes in the severity of CHTDE

and CHTRE attributed to different external forcings. Figure 8
shows the linear changes in the severity of CHTDE and CHTRE
from 1961 to 2014, that is, the product of the linear trend of the
CHTDEI/CHTREI and the corresponding time period, reflecting
the linear changes in observed CHTDEI/CHTREI or attributable

to different forcings over the entire period from 1961 to 2014.
Across China, the observed CHTDEI decreased by –0.24 (–0.32
to –0.16) during 1961–2014 (Fig. 8a). The attributable change of
hist-GHG to the observed CHTDEI is –0.22 (–0.35 to –0.09) in
China, which probably contributes 93% to the observed linear
change in the severity of CHTDE. The contribution from hist-
ANT is greater than 96% in different subregions. Moreover, for
the attributable change of hist-AER is 0.04 (–0.06 to 0.12),
indicating that hist-AER partially offsets the decline in the
CHTDEI by approximately 15%. Specifically, the CHTDEI
decreases by –0.07 (–0.13 to –0.03) for hist-OA, which
contributes to the increased severity of CHTDE by approxi-
mately 32%. For CHTRE in Fig. 8b, the major decreases in
CHTREI in TP and NWC are –0.20 (–0.25 to –0.14) and –0.17
(–0.21 to –0.12), respectively. The attributable linear changes in
hist-GHG and hist-ANT exceed approximately 90% of the
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Fig. 7 Detection and attribution analysis for the severity of CHTDE and CHTRE. Best estimates of the scaling factors (dots) and their 5–95%
uncertainty ranges (error bars) from (a, b) single-signal (hist-ALL, hist-AER, hist-GHG, hist-NAT, hist-ANT and hist-OA), (c, d) two-signal (hist-NAT
and hist-ANT) and (e, f) four-signal (hist-AER, hist-GHG, hist-NAT, and hist-OA) analyses for (a, c, e) CHTDE and (b, d, f) CHTRE in different
subregions and across China. The two dashed lines parallel to the horizontal axis represent zero and unity.
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observed change in CHTRE severity in China. CHTREI is
estimated to decrease by –0.12 (–0.19 to –0.06) for hist-ANT,
which accounts for 95% of the increasing severity of CHTRE
across China. This illustrates that anthropogenic climate change
is more important for the linear change in the increasing
severity of compound extreme events across China. However,
the linear change in hist-AER plays a role in reducing the
severity of CHTDE and CHTRE, especially in the TP.

DISCUSSION
In this study, the relative threshold counting method and
Archimedes copulas method are used to establish an index to
characterize the severity of CHTDE and CHTRE. The underlying
mechanism for the changes in the severity of CHTDE and CHTRE
over China under global warming is explored. To quantify the
influence of global warming on the changes in CHTDE and CHTRE,
detection and attribution analysis of the severity of CHTDE and
CHTRE in the summers from 1961 to 2014 was carried out based
on CMIP6 models that simulate temperature and precipitation well
in China.
The results indicate that the severity of CHTDE shows a

significant increasing trend in most areas of China. In addition,
the severity of CHTRE has increased in China, particularly in
Western China. The quantitative optimal fingerprint method
shows that the change in the severity of CHTDE over China can
be largely attributed to hist-ANT, especially hist-GHG, which
produces more than 90% of the attributable contribution to the
observed CHTDE. In contrast, the signal of hist-NAT with large
uncertainty can be robustly detected in the change in CHTRE,

particularly in western China. However, the contribution of
anthropogenic forcing to the linear change in the severity of
CHTRE is still over 90%.
The variation in natural forcing is closely related to the

variability in extreme events. Natural forcing can affect the
variation in extreme events by changing the atmospheric
circulation in middle and high latitudes. For example, extreme
precipitation decreases significantly in the monsoon region after
volcanic eruptions51. According to the original time series of
CHTDEI and CHTREI, the long-term trends under hist-ANT and hist-
GHG are basically consistent with that of observations, and the
observed interannual-to-decadal variability in the CHTREI is
characterized by a 10-year quasiperiodic oscillation that is similar
to the CHTREI forced by hist-NAT (Supplementary Figure 6,
Supplementary Figure 7). To reduce the multitime scale variation
and identify the main sources of long-term trends, the original
time series of CHTDEI and CHTREI are decomposed into nonlinear
trends and interannual-to-decadal variability by the ensemble
empirical mode decomposition method52 (Supplementary
Method 2, Supplementary Figure 8 and Supplementary Figure 9).
The 90% confidence intervals of the nonlinear trends on CHTDEI
and CHTREI of hist-GHG and hist-ANT are significantly reduced
compared with the original time series, confirming with high
confidence that anthropogenic forcing is the dominant factor of
the linear trend on the severity of CHTDE and CHTRE (Supple-
mentary Figure 10, Supplementary Figure 11). This illustrated that
hist-NAT, which was not detected, may be linked to the
interannual-to-decadal variability in the severity of compound
extreme events over China. This will be further studied in the
future. In brief, consistent with many existing studies, we verify the
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Fig. 8 Attributed linear changes in the severity of CHTDE and CHTRE during 1961–2014. Estimates of observed linear changes in the
severity of (a) CHTDE and (b) CHTRE and the corresponding total attributed linear changes in response to different external forcings based on
the original change. The attributable linear changes are calculated by the trends for the MME of the CHTDEI and CHTREI multiplied by the
corresponding scaling factors (5%–95% margin of scaling factor) and then further multiplied by the periods of CHTDEI and CHTREI time series.
Additionally, the observed changes in the CHTDEI and CHTREI are estimated by the trend multiplied by the corresponding time period. The
error bars indicate the 5–95% uncertainty range, while the 90% uncertainty range is calculated by the total least square method. The scaling
factors used to constrain the attributable changes are derived by single-signal forcing for hist-ALL, two-signal forcing for hist-ANT and four-
signal forcing for hist-AER, hist-GHG, hist-NAT and hist-OA.
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fact that compound extreme events are increasing under global
warming53–55. We emphasize and quantify the contribution of
human activities to intensified compound extreme events on
smaller regional scales, highlighting the regional differences in the
drivers of compound events. However, it is significant that there
are some deviations in CMIP6 data, especially in the regional
precipitation data56. Therefore, it is necessary to adopt other
effective methods and accurate regional climate model data to
improve and verify the results.
In addition, the interaction of meteorological factors and human

activities can intensify the occurrence of extreme events57. For
example, the increasing probability of a double jet affects long
waves in mid-latitudes, forming stable weather conditions and
promoting the formation of heat waves58. We found that the
increased water-holding capacity of the atmosphere and
decreased relative humidity under global warming are important
reasons for the increasing severity of CHTDE over China, especially
in the TP. For the intensified severity of CHTRE, the enhanced
transient water vapor transport from the Bay of Bengal and
enhanced transient convective available potential energy in
western China intensified the severity of regional CHTRE under
the interaction of transient dynamic lifting and transient water
vapor convergence. The limited MME of the eight models used
cannot reproduce the historical change in relative humidity
(Supplementary Figure 12); thus, it is difficult to explore the
contribution of meteorological factors to the increased severity of
CHTDE and CHTRE under global warming. In the future, the
different roles of different meteorological factors in mediating the
influence of human activities on the intensity of compound events
should be analyzed. Additionally, further studies are necessary to
investigate the changes in CHTDE and CHTRE under different
scenarios in the future based on more advanced cross-disciplinary
methods59.

METHODS
Definitions of the CHTDE index (CHTDEI) and CHTRE index
(CHTREI)
To quantify the severity of compound events, CHTDEI and CHTREI
are defined as the combined probability of the number of days
and maximum duration of the simultaneous occurrence of high
temperature and drought (rain) events. First, the concurrence of
daily temperature greater than the 90th percentile and daily total
precipitation greater than the 75th percentile (less than 25th

percentile) in the summers (June, July and August) of 1961–2014
is defined as a CHTRE (CHTDE).
Second, the number of days (the total number of CHTDE/

CHTRE) and maximum duration (maximum number of consecutive
days in summer when CHTDE/CHTRE occurred) in each summer
are taken as random variables X and Y with marginal distributions
as shown in Eq. (2) and Eq. (3), respectively.

FXðxÞ ¼ PðX � xÞ (2)

FYðyÞ ¼ PðY � yÞ (3)

To avoid making assumptions about variable distribution types,
the empirical Gringorten plotting formula

PðxiÞ ¼ mi � 0:44
nþ 0:12

(4)

is used to estimate marginal probability distribution functions of
days and duration with empirical distribution, while n is sample
size and mi is the number of xt � xið1 � t � nÞ.
Finally, based on the number of days and maximum duration of

CHTDE and CHTRE, the bivariate copula

Fðx; yÞ ¼ PðX � x; Y � yÞ ¼ CðFXðxÞ; FYðyÞ; θÞ (5)

is used to construct the severity index

PI ¼ PðX > x; Y > yÞ ¼ 1� FXðxÞ � FYðyÞ þ CðFXðxÞ; FYðyÞÞ (6)

of compound extreme events. The three widely accepted
Archimedean copulas (Supplementary Note 1) are applied in
this study14,60,61. A smaller severity index (PI) represents a
smaller joint probability of more frequent (greater than x) and
longer duration (greater than y) compound events, indicating
that the potential CHTDE (CHTRE) is more severe. For conve-
nience, the PIs for CHTDE and CHTRE are called CHTDEI and
CHTREI, respectively.

Evaluation method of the copula model
To determine the optimal fitting copulas for calculating multi-
variate joint distribution, we use three criteria to compare the
performance of different copulas, including the Akaike Informa-
tion Criterion (AIC) information criterion method, the Bayesian
Information Criterion (BIC) rule method and the Root Mean Square
Error (RMSE) criterion. These criteria are based on the empirical
joint distribution of observed sample points36. More specifically,
the empirical joint distribution is expressed as

Fðxi ; yiÞ ¼ Pðx � xi; y � yiÞ ¼
Pi
l¼1

Pi
k¼1Nlk � 0:44

nþ 0:12

(7)

Where Nlk is the number of x � xi and y � yi in the joint
observation samples of size n.
The AIC information criterion method considers both the

overregulation due to the complexity of the model and
minimization of error residuals, which is a relatively robust
indicator to measure the model effect. The formula is written as:

MSE ¼ 1
n

Xn
i¼1

ðFðxi ; yiÞ � Cðui ; viÞÞ2 (8)

AIC ¼ nlnMSEþ 2m (9)

where m is the number of copula model parameters. Similar to the
AIC, the BIC is expressed as follows:

BIC ¼ nlnMSEþmlnn (10)

In addition,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðFðxi; yiÞ � Cðui; viÞÞ2
s

(11)

is also used in this study. More importantly, a lower AIC, BIC and
RMSE are associated with a better fit of the copula model. The
evaluation results are shown in Supplementary Table 2 and
Supplementary Table 3. The Clayton copula and Gumbel copula
performed optimally for the CHTDEI and CHTREI, respectively.

Linear trend
The linear trend estimation (unitary linear regression) method is
used to calculate the trend slopes. If xi is used to represent the
sample point whose sample size is n, ti is used to represent the
time corresponding to xi . Then, a linear regression equation of one
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variable between xi and ti is established as follows:

xi ¼ aþ bti i ¼ 1; 2; � � � ; n (12)

b ¼
Pn

i¼1xiti � 1
n

Pn
i¼1

xi

� � Pn
i¼1

ti

� �

Pn
i¼1

ti2 � 1
n

Pn
i¼1

ti

� �2 (13)

a ¼ x � bt (14)

The coefficients were determined by the least squares method.
Regression coefficient b represents the variable trend (sample xi). If
the sign of b is positive, the variable shows an upward trend with
increasing time t. Otherwise, it shows a downward trend. Since b
represents the overall increase or decrease in the sample per year,
multiplying by 10 represents the change in the sample per decade.

Spatial correlation analysis
The Pearson correlation coefficient (Pearson product-moment
correlation coefficient)

R ¼
Pn

i¼1ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � xÞ2Pn

i¼1
ðyi � yÞ2

s
(15)

is used to analyze the correlation between the observations and
model simulations in Taylor analysis44. Here, n is the sample size,
and xi and yi are observations and model simulation values for the
ith grid; x and y are the modeled and observed averages of all grid
points, respectively. R presents the correlation coefficient with a
value between –1 and 1. A positive R value denotes a positive
correlation, and vice versa. A larger absolute R value denotes a
larger correlation.

Taylor spatial skill score rules
To select better models quantitatively, a comprehensive Taylor
skill score ATS is defined using

S1 ¼ 4ð1þ RÞ
σ̂f þ 1

σ̂f

8: 9;2
ð1þ R0Þ

(16)

S2 ¼ 4ð1þ RÞ4

σ̂f þ 1
σ̂f

8: 9;2
ð1þ R0Þ4

(17)

as proposed by Talyer44. Here, R represents the spatial correlation
between observations and model simulations, R0 represents the
maximum value of R in the twelve selected models, and σ̂f
represents the ratio of the model standard deviation to the
observed standard deviation. S1t and S2t are spatial skill scores of
the models on climatological spatial distribution of temperature
based on S1 and S2, respectively. S1p and S2p are the spatial skills of
the models on the climatological spatial distribution of total
summer precipitation based on S1 and S2, respectively. The total
skill score is

S ¼ S1t þ S2t þ S1p þ S2p (18)

Therefore, the average skill score of the twelve models is

ATS ¼ 1
12

X12
i¼1

Si: (19)

If the total skill score S of the ith model is higher than ATS, the
model performance of the ith model is considered to be better.
Otherwise, it is considered to be poor and will be removed.

Optimal fingerprint method
In this study, the optimal fingerprint method46,47 is applied for
detection and attribution in CHTDE and CHTRE. To perform full-
ranked estimation of internal covariance and avoid using empirical
orthogonal function truncation, the regularized optimal fingerprint
method based on the total least squares is applied to quantify the
consistency between the model-simulated responses of CHTDE and
CHTRE and observations in China (see Supplementary Method 1). The
key information of the optimal fingerprint method is the scaling factor
βi , which quantifies the amplitude of the external forcing response to
the observation. If the probability of observed change that occurs
randomly due to the internal variability is smaller than 10%, it is called
detection; that is, the 90% (5%–95%) confidence interval of the
scaling factor is greater than zero. If the 5%–95% margin of the
scaling factor is greater than zero and includes unity, it can further
confirm the most likely cause of detected changes in CHTDE and
CHTRE at a certain confidence level, which is called attribution.
To quantify the contribution of different external forcings to the

severity of CHTDE and CHTRE in the observations, the attributable
contribution rate can be expressed as:

Contribution Ratei ¼ ΔPIi
ΔPIobs

´ 100% (20)

where ΔPIi is the attributable changes in the CHTDEI and CHTREI
caused by external forcing i, which is obtained by multiplying the
linear trend from the data modified by the CHTDEI and CHTREI
simulated by external forcing i by the best estimate of the
corresponding best estimate of the scaling factor (5%–95%
margin of scaling factor) multiplied by the time period of the
time series. The observed change ΔPIobs is calculated by
multiplying the observed CHTDEI and CHTREI trends (90%
uncertainty range) by the corresponding time period.

DATA AVAILABILITY
The temperature, precipitation and relative humidity derived from the CN05.1
observation datasets (“CN” represents the domain of China; “05” represents the
horizontal resolution of 0.5°×0.5°; “.1” represents the advanced version of CN05) are
available at https://ccrc.iap.ac.cn/resource. CN05.1 datasets are high-quality observa-
tional daily data on 0.25°×0.25° grids, which are constructed based on measurements
collected at more than 2400 national observation stations in China. The CMIP6 daily
temperature and precipitation datasets from preindustrial unforced control simula-
tion experiments, historical all forcing (hist-ALL) experiments and the different
external forcing experiments (including historical natural forcing hist-NAT, historical
aerosol forcing hist-AER and historical greenhouse gas forcing hist-GHG) of the
Detection and Attribution Model Intercomparison Project are available at https://
esgf-node.llnl.gov/search/cmip6/. The ERA5 reanalysis datasets (including total
column water vapor, vertical integral of water vapor flux, surface wind, vertical
velocity and convective available potential energy) are available at https://
cds.climate.copernicus.eu/cdsapp#!/search?type=dataset. The ERA5 daily data are
obtained from the averaged 24 hourly data. For convenience, both the observational
data and multimodel simulation data are remapped to 1°×1° grids using the bilinear
interpolation algorithm. The datasets generated during and/or analyzed during the
current study are available from the corresponding authors on reasonable request.

CODE AVAILABILITY
The code to carry out the current analyses is available from the corresponding
authors upon request.
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