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Constraint on regional land surface air temperature projections
in CMIP6 multi-model ensemble
Jie Zhang 1,2,3✉, Tongwen Wu 1,2,3✉, Laurent Li 4, Kalli Furtado5,6, Xiaoge Xin1,2,3, Chengjun Xie7,8, Mengzhe Zheng7,
He Zhao1,2,3 and Yumeng Zhou7

The reliability of the near-land-surface air temperature (LSAT) projections from the state-of-the-art climate-system models that
participated in the Coupled Model Intercomparison Project phase six (CMIP6) is debatable, particularly on regional scales. Here we
introduce a method of constructing a constrained multi-model-ensemble (CMME), based on rejecting models that fail to reproduce
observed LSAT trends. We use the CMME to constrain future LSAT projections under the Shared Socioeconomic Pathways 5–8.5
(SSP5–8.5) and 2–4.5 (SSP2–4.5), representing the high and intermediate scenarios. In comparison with the “raw” (unconstrained)
CMIP6 multi-model ensemble (MME) mean, the impact of the observation-based constraint is less than 0.05oC 100 years−1 at a
global scale over the second half of 21st century. However, the regional results show a wider range of positive and negative
adjustments, from -1.0oC 100 years−1 to 1oC 100 years−1 under the SSP5–8.5 scenario. Although amplitude under SSP2–4.5 is
relatively smaller, the CMME adjustment is similar to that under SSP5–8.5, indicating the scenario independency of the CMME
impact. The ideal 1pctCO2 experiment suggests that the response of LSAT to carbon dioxide (CO2) forcing on regional scales is
responsible for the MME biases in the historical period, implying the high reliability of CMME in the 21st century projections. The
advantage of CMME is that it goes beyond the idea of “model democracy” assumed in MME. The unconstrained CMIP6 MME may
be overestimating the risks of future warming over North America, but underestimating the risks over Asia.
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INTRODUCTION
The CMIP6 program is the most recent effort in coordinating the
design and distribution of a large number of the state-of-the-art
climate model simulations of the past, present, and future
climates1. It serves as the basis for the sixth Assessment Report
of the Intergovernmental Panel on Climate Change (IPCC AR6)2. The
observed global warming trend can be generally well captured by
the state-of-the-art climate system models participating in CMIP63.
Almost two-thirds of the impacts related to atmospheric and ocean
temperature changes can be confidently attributed to anthropo-
genic forcing4. There is a linear relationship between global mean
surface air temperature and the equivalent-CO2 concentrations5.
The equivalent-CO2 is calculated by converting amounts of all the
greenhouse gases to the equivalent amount of carbon dioxide with
the same global warming potential. The contribution from
equivalent-CO2 to historical global mean surface air temperature
is about 70% on multi-decadal or longer timescales.
Greenhouse gases (GHG), CO2 in particular, are considered to be

the major external forcing in the 20th century and will also have a
crucial impact in the 21st century projection. A high correlation
between global mean near-surface air temperature and the CO2

concentrations has also been found in future projections6.
However, many of the latest CMIP6 models have larger climate
sensitivities than the previous CMIP5 generation7–9. Higher climate
sensitivity indicates the ‘hot model’ problem in CMIP6 models10,
and the larger climate sensitivity range suggests a wider range of
warming responses to CO2-forcing and larger model uncertainty in
future warming projections11.

There have been several studies trying to narrow uncertainty
on estimates of past and future human-induced warming
based on detection and attribution techniques or metrics of
climate sensitivity12,13. There is a strong correlation between
the recent global warming trend and transient climate
response (TCR), and the past warming trend therefore can be
used to constrain future warming projections in climate models
on global scales14. But most of the previous studies focus on
the projections on a global scale15. However, it is regional-scale
changes that are of vital importance for the impacts of climate
change. Under global warming, climate changes are more
extreme regionally and induce more severe impacts. For
example, the rate of heatwaves increases since the mid-
twentieth century, but trend magnitudes are not globally
uniform. Decadal trends in the frequency of heatwaves are
biggest over northern South America, the Middle East, and the
Maritime Continent at 50% per decade, but range between
10% and 30% per decade over most of the other regions16. In
this study, we try to constrain future warming projections but
focus on regional land surface air temperature (LSAT) trend
projection under the high-emission SSP5–8.5 scenario and
intermediate-emission SSP2–4.5 scenario17. The SSP5–8.5 and
SSP2–4.5 update the RCP8.5 and RCP4.5 in CMIP5 and have the
most participating climate models. We only focus on surface air
temperature trend over land since Atlantic multidecadal
oscillation (AMO) and Pacific decadal oscillation (PDO) account
for most of the decadal variability over the oceans5,18,19.
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RESULTS
Historical LSAT trend: observation and CMIP6 simulations
Figure 1a shows the LSAT trend from 1950 to 2014 in the CRU
dataset. Almost the entire global land surface has experienced
significant surface warming. The warming trend is remarkable over
the mid- and high-latitudes of the Northern Hemispheric continent
and northeast Africa, weakest over the Tibetan Plateau and its
downstream area, and the Andes Mountains along the western edge
of South America. The global warming features can be generally well
captured by the ensemble mean of the 33 CMIP6 models (MME,
Fig. 1b). The spatial correlation coefficient between MME and CRU is
0.55, higher than the correlations for 32 of the 33 models. However,
the LSAT trend in MME is spatially much smoother than in CRU. As
shown in Fig. 1d, regions with LSAT trend underestimated by more
than 0.5 oC 100 years−1 in MME are where the observed warming
rate higher than 1oC 100 years−1, e.g., over Asia and Alaska. And the
overestimation in MME is where the observed warming rate is lower
than 1oC 100 years−1, e.g., over the Continental United States (U.S.)
and South America. The amplitude of the underestimation over Asia
and the overestimation over the U.S. is almost half of the regional
warming rate in the observation. That is, there is a big challenge for
recent models to reasonably reproduce the LSAT trend in Asia and
the U.S. The longitudinal gradient between Europe and northern Asia
shown in CRU is also much weaker in MME.
The standard MME tends to be a better estimate of the forced

climate change of the real system than the result from a particular
model by allowing model errors to cancel each other out for a

large enough ensemble and has been widely used in studies on
climate change simulations and projections2. However, it may fail
to capture the real LSAT trend since some heavily-biased
simulations may diminish the real signals or lead to unreliable
results. The capabilities of individual models in reproducing the
LSAT trend may also vary with regions, e.g., models that can
reasonably produce the LSAT trend in Asia may fail to simulate the
LSAT trend in the U.S. or other areas. In this study, we build
ensemble at each grid-point based on certain OBS-Based Thresh-
old (OBT), which we call a “constrained multi-model ensemble”
(noted hereafter as CMME, see Methods section for details).
General features of LSAT trend in CMME (Fig. 1c), constrained by
the chosen OBT, are similar to those in MME. The blank areas over
land, such as the Andes Mountains, are where no model can
capture the LSAT trend under the OBT. Although the global mean
LSAT trend barely change (1.71 oC 100 years−1 in MME versus
1.73 oC 100 years−1 in CMME), the spatial correlation coefficient
with CRU increases to 0.93 in CMME. The mean CMME biases are
0.3oC 100 years−1 (Fig. 1e), less than half of that in MME (0.71oC
100 years−1). As expected, the differences between CMME and
MME are similar to the MME biases but in opposite sign over 93%
of the total area (Fig. 1f). Regions with the largest differences
between CMME and MME are the areas where the MME shows the
largest biases, i.e., Asia and the U.S. Therefore, we conclude that
the warming amplitude may be largely biased on regional scales,
although the geographic distribution of recent warming in MME is
better than most individual models. The CMME result further

Fig. 1 Land surface air temperature (LSAT) trends from 1950 to 2014 in. a CRU, b raw (MME), and c constrain (CMME) ensemble under 0.5 ~
1.5 OBT of 33 CMIP6 couple models. Global mean LSAT trends are marked at the top-right corner of Figs. 1a–c. d and e are the trend biases in
MME and CMME, respectively. f The trend differences between CMME and MME. Units: oC 100 years−1.
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improves the geographic distribution of LSAT trend in MME and
its amplitude at a regional scale, because by construction the
CMME is closer to the observed trends.
Model performances in reproducing LSAT trends vary with regions.

As shown in Fig. 2b, more than 20 models are able to reproduce the
LSAT trend over North Africa and the high latitude of Asia under the
OBT. However, model performances are relatively lower over the U.S.,
western South America, India, and East Asia, where the LSAT trend is
smaller than 1oC 100 years−1 (Fig. 1a). We further quantify model
capability in reproducing regional LSAT trend in the 44 IPCC AR6
WG1 regions (Fig. 2c). Model capability is defined as the fraction of
models that contribute to CMME under the OBT for each region.
Region definitions follow the IPCC AR6 Working Group 1 (WG1)
reference regions over land20. Region names and their acronym are
introduced in Table 1, as well as the model capability in each region.
Model capability is relatively high over Central America, the Central
Eurasian continent, the northern and southern Africa, but relatively
less good over North and South America, East and South Asia.

The adjustments in CMME upon MME in Future LSAT
projections
The impact of constrained ensemble under the high scenario
SSP5–8.5 is assessed (Fig. 3a–c). Since the SSP5–8.5 is intended to
explore an extremely high-risk future and the projections perhaps
not the most realistic21, we also examine the impact under a more

optimistic scenario SSP2–4.5 (Fig. 3d–f). The LSAT trends from
2050 to 2100 are examined. The growing rates of CO2 concentra-
tion in SSP5–8.5 and SSP2–4.5 are about 11.7 ppmv year−1 and 2.0
ppmv year−1, respectively. The spatial patterns of the warming
under these two different scenarios are similar and close to those
featured in the 20th century. Globally, the LSAT trend in MME is
about 7.62oC 100 years−1 under the SSP5–8.5 scenario (Fig. 3a)
and 2.40 oC 100 years−1 under the SSP2–4.5 scenario (Fig. 3d).
Consistent with what we observed in the historical period, the
global mean LSAT trend projections in CMME are also close to
those in MME (Fig. 3b and e). However, the regional differences
are pronounced and generally grow with the growing rate of CO2

concentration. Left out low model capability over the Andes
Mountains, the constraint of LSAT projections under both
scenarios generally resemble the effect of constraint ensemble
in the historical period (Fig. 1f) over more than 79% and 71% of
the land surface under the SSP5–8.5 scenario (Fig. 3c) and the
SSP2–4.5 scenario(Fig. 3f), respectively: regions that show
exaggerated historical warming trend are also the regions where
CMME tends to reduce the projected warming rate, and vice versa.
According to CMME adjustments, warming projection over the
Eurasian continent may be more intense than the raw ensemble
(MME), whereas the warming risk over the U.S. may be lower than
expected. The similarities between the CMME impacts under
different scenarios indicate the scenario independency of CMME
effect and the essential role of the CO2-concentration trend.

Fig. 2 Capability of CMIP6 models in reproducing LSAT trend from 1950 to 2014. a Percentage of grid-points that the LSAT trend is missing
in CMME (x-axis) versus pattern correlation between CMME and OBS (y-axis) under different OBS-Based Threshold (OBT). The global mean
model numbers in CMME with different OBT are marked at the right-hand side of the corresponding color dot. b Numbers of the CMIP6
models that contribute to the CMME under 0.5 ~ 1.5 OBT at each grid-point. c Percentage of models that contribute to CMME in each IPCC
AR6 WG1 reference regions, defined as model capability in this study. The acronym of each region in c are introduced in Table 1.
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Regions with the most considerable adjustments in future
projections
The regional LSAT projections in the raw and constrained
ensembles are further detailed over the 44 landscape reference

regions. Considering the similarities between the adjustments
under the different scenarios, we mainly focus on the adjustments
under the SSP5–8.5 scenario. As shown in Fig. 4a, LSAT increases
monotonically over all regions but the warming rates are quite

Table 1. Model capability in reproducing the LSAT trend from 1950 to 2014 in 44 IPCC AR6 WGI reference regions (units: %) and LSAT trend in
2050–2100 under SSP5–8.5 and SSP2–4.5 scenarios in MME and the adjustment (CMME-MME, oC 100 years−1).

Region Acronym Full Name Model Capability SSP5–8.5 (Adjustment) SSP2–4.5 (Adjustment)

North America NWN North-Western North America 62.2 9.87 (0.29) 3.67 (0.06)

NEN North-Eastern North America 60.2 11.53 (−0.60) 3.86 (−0.31)

WNA Western North America 56.4 7.16 (−0.38) 2.34 (−0.22)

CNA Central North America 39.8 7.68 (−0.81) 2.44 (−0.46)

ENA Eastern North America 45.0 7.75 (−0.90) 2.59 (−0.68)

Central America NCA Northern Central America 74.6 6.62 (−0.40) 1.97 (−0.26)

SCA Southern Central America 82.6 6.04 (−0.01) 1.76 (0.03)

CAR Caribbean 77.3 4.84 (0.16) 1.54 (0.08)

South America NWS North-Western South America 46.4 6.27 (−0.08) 1.87 (0.04)

NSA Northern South America 46.1 6.96 (−0.57) 1.99 (−0.23)

NES North-Eastern South America 64.7 6.27 (0.12) 1.98 (0.10)

SAM South American Monsoon 24.0 7.48 (−0.05) 2.32 (0.01)

SWS South-Western South America 26.9 6.11 (−0.41) 1.91 (−0.17)

SES South-Eastern South America 42.3 5.60 (−0.18) 1.76 (−0.10)

SSA Southern South America 28.9 4.46 (−0.23) 1.41 (0.06)

Europe GIC Greenland/Iceland 49.7 8.70 (−0.62) 3.18 (−0.11)

NEU Northern Europe 57.3 7.04 (0.02) 2.38 (0.02)

WCE Western and Central Europe 69.5 7.24 (0.04) 2.26 (−0.04)

EEU Eastern Europe 70.4 8.79 (0.15) 3.06 (0.07)

MED Mediterranean 59.7 7.19 (−0.15) 2.12 (−0.11)

Africa MED Mediterranean 59.7 7.19 (−0.15) 2.12 (−0.11)

SAH Sahara 86.0 7.65 (0.04) 2.26 (0.00)

WAF Western Africa 70.1 6.44 (0.03) 2.05 (0.00)

CAF Central Africa 44.0 6.09 (0.09) 1.99 (−0.03)

NEAF North Eastern Africa 51.7 5.86 (0.33) 1.94 (−0.01)

SEAF South Eastern Africa 77.8 5.63 (0.05) 1.84 (−0.02)

WSAF West Southern Africa 75.8 7.06 (0.05) 2.23 (−0.01)

ESAF East Southern Africa 74.5 6.67 (−0.09) 2.09 (−0.03)

MDG Madagascar 78.8 5.40 (−0.06) 1.62 (−0.01)

Asia RAR Russian Arctic 69.3 11.95 (−0.15) 3.97 (−0.07)

WSB West Siberia 79.8 9.72 (0.38) 3.02 (0.06)

ESB East Siberia 72.7 9.48 (0.58) 2.78 (0.17)

RFE Russian Far East 71.3 9.95 (0.15) 3.20 (−0.03)

WCA West Central Asia 68.8 8.00 (0.18) 2.28 (0.05)

ECA East Central Asia 70.1 8.40 (0.59) 2.33 (0.13)

TIB Tibetan Plateau 54.2 7.98 (−0.25) 2.30 (−0.09)

EAS East Asia 48.0 6.99 (0.40) 2.27 (0.08)

ARP Arabian Peninsula 82.5 7.71 (−0.07) 2.25 (−0.07)

SAS South Asia 54.4 6.64 (0.26) 2.04 (−0.01)

SEA South East Asia 65.3 4.98 (−0.06) 1.61 (−0.02)

Australasia NAU Northern Australia 48.5 5.91 (−0.32) 1.88 (−0.15)

CAU Central Australia 58.7 7.08 (−0.21) 2.08 (−0.08)

EAU Eastern Australia 71.0 6.23 (0.19) 1.82 (−0.10)

SAU Southern Australia 71.7 5.64 (0.19) 1.72 (0.05)

NZ New Zealand 29.5 4.72 (−0.47) 1.39 (-0.35)

Note: Model capability larger than 66% (22 of 33 models) and adjustment larger than 7% of the MME trend are bolded.
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different. The three regions with the highest increasing rate
(higher than 9.9oC 100 years−1) in MME are the Russian Arctic
(RAR), North-Eastern North America (NEN), and Russian Far East
(RFE), all of which locate at high latitudes in the Northern
Hemisphere. The three least warming regions (lower than 4.9oC
100 years−1) are the Caribbean (CAR), New Zealand (NZ), and
Southern South America (SSA), surrounded by ocean.
The LSAT trend during the second half of the 21st century

(2050–2100) in each region is also listed in Table 1. The CMME
adjustments vary from -0.90 oC 100 years−1 in Eastern North
America (ENA) to 0.59 oC 100 years−1 in East Central Asia (ECA).
Accounting for the adjustment larger than 0.2 oC/ 100 years−1,
warming trends are intensified only over 7 regions but suppressed
over 13 regions. The amplification of warming is evident in Asia
and Africa. Suppression of warming is mostly located over the
American continents. Relative to the regional LSAT trend in MME,
the warming adjustment is generally weaker and most significant
over ECA (7%); the cooling adjustment prevails over ENA (-11.6%)
and Central North America (CNA, -10.5%) in North America,
Northern South America (NSA, -8.2%) in South America, Green-
land/Iceland (GIC, -7.1%), and NZ (-10%). The adjustment may be
also partly attributed to forcings other than GHG. Previous
observational and model-based studies have found a cooling
trend over the southeast and central United States, i.e., the United
States ‘warming hole’. This is suggested to be attributed to
anthropogenic aerosol forcing or internal climate variability with
dominant variation by season, region, and time22. Although the
amplitude is relatively smaller, the LSAT trends in MME and
adjustments in CMME under the SSP2–4.5 scenario among the 44
regions vary linearly with those under the SSP5–8.5 scenario, with
correlation coefficients of 0.96 and 0.87, respectively.

Generally, as suggested by CMME, the warming challenge in
future projections may be more intense over Asia and less intense
over American continents than suggested by the raw CMIP6 MME
projections. The physical mechanism of the CMME adjustment is
investigated and discussed in the next subsection.

LSAT-response to CO2-forcing and its impact on the LSAT
trend reproduction
Global warming in the 20th century is mainly attributable to the
increase in well-mixed greenhouse gases (WMGHGs), mainly CO2.
The 1pctCO2 experiment is a transient climate simulation, in
which the CO2 is the only anthropogenic external forcing. It is an
idealized CO2-forced experiment that resembles the CO2 forcing
during the Industrial Era. Here we compare the LSAT-response to
CO2-forcing in MME and CMME in 1pctCO2 to quantify the effect
of our bias-correction procedure, i.e., the CMME, in eliminating
CO2-forcing response biases in climate models.
Figure 5a and b show the LSAT linear trend from 1850 to 1910

in the 1pctCO2 experiments for MME and CMME. The great
similarity between the LSAT-response to CO2-forcing (Fig. 5a) and
the LSAT trend with all forcings (Fig. 1b) with a correlation
coefficient of 0.91, confirms the dominant role of CO2 in global
warming. The warming trend in CMME generally resembles the
MME results, but with different amplitude of regional warming
(Fig. 5b). Figure 5c shows the differences between CMME and
MME in LSAT-response to CO2-forcing in the 1pctCO2 experiment,
which allows us to compare the CO2-response in MME to what the
response would be if the historical LSAT biases were smaller.
Interestingly, their differences closely resemble the historical trend
biases in the MME with opposite signs (Fig. 1d). Over more than
15,000 model grids, the corresponding spatial correlation

Fig. 3 Patterns of LSAT trend under the SSP5–8.5 and SSP2–4.5 scenarios from 2050 to 2100. (a) and (d) are results in MME. (b) and (e) are
results in CMME. Global mean LSAT trend is marked at the top-right corner of the corresponding plot. (c) and (f) are the differences between
CMME and MME. Units: oC 100 years−1.
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coefficient is -0.76, significant at 99% confidence level using
student’s t-test. That is, the historical LSAT trend biases in MME are
mainly due to model capability in simulating CO2-forcing
response. Future constraint in SSP5–8.5 and SSP2–4.5 by CMME
is therefore physically relative to its more reasonable CO2-forcing
response since CO2 is also the dominant forcing in these scenarios.

DISCUSSION
The radiative forcing due to anthropogenic activity has increased
continuously during the Industrial Era, with increases in atmo-
spheric CO2 playing a major role. By observational constraint, our
study found that model response to CO2-forcing is crucial for
model performances in reproducing recent LSAT trends, especially
on regional scales. Therefore, under future scenarios with
increasing CO2 emission, models with better capability in
reproducing recent LSAT trends are expected to give better
estimations of future LSAT change.
In this study, we introduced a method to constrain future LSAT

projections based on observed constrained model ensemble
(CMME), especially on regional scales. The CMME is generally an
extension of the standard MME method but the effect of poorly
performing models is eliminated from the mean and its estimates
of the future are informed by present-day model performance.
Under the SSP5–8.5 and SSP2–4.5 scenarios, the CMME is close to
the raw CMIP6 ensemble (MME) on a global scale, but the regional
warming amplitudes are quite different. CMIP6 models may
underestimate future warming over Asia but overestimate it over
the American continents. More specifically, the cooling adjust-
ments over Central and Eastern North America (CNA and ENA) are
more than 10% of the MME projection.
Therefore, we should take care when handling regional LSAT

projections by CMIP6 models, since the CMIP6 model response to
CO2-forcing may be larger or smaller than expected and vary with
region. Moreover, we should take great caution with projections

over the regions with larger projection adjustment and lower
model capability, i.e., South-Western South America (SWS) and
New Zealand (NZ), where factors other than CO2 may also be
important for the LSAT changes.

METHODS
The constrained ensemble
The constrained ensemble is a set of ensemble members, by
selecting models for each grid-point based on LSAT trends from
1950 to 2014 under certain OBS-Based Threshold (OBT). The OBT is
set to a certain range centered on the observed LSAT trend. A
model only contributes to the statistics of the CMME at the grid-
points for which it satisfies the observational constraint. As shown
in Fig. 2a, with the narrowing of OBT, the pattern correlation
coefficient with the observation and the invalid grid-points (grid-
points with missing value) both increases in CMME. We choose the
0.5 to 1.5 range of the corresponding observed counterpart as the
threshold for CMME. In CMME, about 21 models (62% of the
models) on average are selected, pattern correlation is about 0.93,
and less than 3% of grid-points are filled with missing values.
We further examine the distribution of selected grid-points in

each model (Figures not shown). Under the chosen OBT, the
percentage of valid grid-points in all land surface grids ranges
from 41.2% to 71.3%, about 60.7% on average. There are also not
noticeable discontinuities in the coverage of valid grid-points.
Quantile mapping bias correction algorithms are commonly used
to modify future model projections23. However, due to the limited
number of model projections, the TAS trends are discrete-
continuous distributed after quantile mapping (Figures not
shown), which does not meet the nature of TAS trend mappings.
That is, quantile mapping bias correction algorithms may be not
suitable here.
The constrained ensemble is used to calibrate the regional LSAT

projection under the SSP5–8.5 and SSP2–4.5 scenarios in the 21st

Fig. 4 LSAT trend projections under the SSP5–8.5 scenario. a The range of annual mean LSAT anomalies in the 44 CMIP6 reference regions
in MME from 2020 to 2100 (shading) and the evolutions of LSAT anomalies in the regions with the highest and least warming rates. The
anomalies are relative to the year 2020. b The LSAT trend differences from 2050 to 2100 between CMME and MME in the 44 CMIP6 regions. For
a reasonable comparison, values over the areas where the values are missing in CMME are not considered in MME.
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century in our study. The 3-point 1–2–1 low-pass filter is used to
remove fluctuations less than 50 years in CRU and all the
employed model outputs. It is aimed to minimize the impact of
internal variability, especially the AMO and PDO. Further
comparison shows that the effects of the band-pass filter on
model selection are small, which suggests that the performance
filter is selecting models mainly based on their forced responses,
not on internal variability.
The observation and all the model outputs are interpolated to a

regular 1° × 1° grid by bilinear interpolation.

Data
Grided observational dataset. The observational gauge-based
gridded monthly mean LSAT from the Climatic Research Unit
(CRU TS4) at University of East Anglia from 1950 to 2014 serves as
the observation ref. 24. The dataset was derived from historical
weather stations and interpolated on a 0.5° grid over the land
surface. It is highly reliable, especially in mid-latitudes where there
is a dense observation network.

CMIP6 models datasets. Simulations of 33 models from the
Coupled Model Intercomparison Project Phase 6 (CMIP6) were used.
Four experiments are relevant to our study: all-forcing historical
experiments from 1950–2014, idealized 1pctCO2 experiments from
1850 to 1910, and Shared Socioeconomic Pathways 5–8.5 (SSP5–8.5)
and 2–4.5 (SSP2–4.5) experiments in the 21st century. Table 2 lists
the models’ names, institutions, and resolution of the atmospheric
component. For the sake of equality, we use only the first member
of each model if multiple runs were produced.
In the 1pctCO2 experiment, CO2 increases at a prescribed rate of

1% per year from 285ppmv in 1850AD until the concentration
doubles at model year 70. The 1pctCO2 experiment is an idealized
configuration but can be used to identify the climate response to
CO2 increase as the experiment does not include any confounding
effects from other climate forcings like aerosols and land-use change.
The SSP5–8.5 scenario represents the high end of the range

of future pathways and produces a radiative forcing of
8.5 W m−2 in 2100. The SSP2–4.5 scenario represents the
intermediate-emission scenario with a nominal 4.5 W m−2

radiative forcing level by 2100.

Fig. 5 Linear LSAT trend in the 1pctCO2 experiment from 1850 to 1910, when CO2 increases from pre-industrial value to about
500ppmv, in. (a) MME and (b) CMME. (c) Differences between CMME and MME. Units: oC/ 100 years−1.
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Table 2. Information of the 33 CMIP6 CGCM models used in this study.

Model Institute AGCM resolution

ACCESS-CM2 CSIRO-ARCCSS
CSIRO and Austr. Res. Council Centre of Excellence for Climate System Science, Australia

140 km, 85 L, Top 85 km

ACCESS-ESM1–5 CSIRO
Commonwealth Scientific and Industrial Research Organization, Australia

140 km, 38 L, Top 39 km

AWI-CM-1–1-MR AWI
Alfred Wegener Institute,Germany

80 km, 95 L,Top 80 km

BCC-CSM2-MR BCC
Beijing Climate Center, China

100 km, 46 L, Top 45 km

CAMS-CSM1–0 CAMS
Chinese Academy of Meteorological Sciences, China

100 km, 31 L, Top 31.2 km

CanESM5 CCCMa
Canadian Centre for Climate Modelling and Analysis, Canada

250 km, 49 L, Top 48 km

CAS-ESM2–0 CAS
Chinese Academy of Sciences, China

140 km, 30 L, Top 42 km

CESM2-WACCM NCAR
National Center for Atmospheric Research, U.S.A.

100 km, 70 L, Top 80 km

CIESM THU
Department of Earth System Science, China

100 km, 30 L, Top 42 km

CMCC-CM2-SR5 CMCC
Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy

100 km, 30 L, Top 43 km

CMCC-ESM2 CMCC 100 km, 30 L, Top 43 km

EC-Earth3-CC EC-Earth consortium, Europe 80 km, 91 L, Top 80 km

EC-Earth3-Veg EC-Earth 80 km, 91 L, Top 80 km

FGOALS-f3-L CAS 90 km, 32 L, Top 42 km

FGOALS-g3 CAS 190 km, 26 L, Top 42 km

FIO-ESM-2-0 FIO-QNLM
First Institute of Oceanography, and Pilot National Laboratory for Marine Science and Technology, China

100 km, 26 L, Top 43 km

GFDL-CM4 NOAA-GFDL
National Oceanic and Atmospheric
Administration, Geophysical Fluid Dynamics Laboratory, U.S.A.

100 km, 33 L, Top 48 km

GFDL-ESM4 NOAA-GFDL 100 km, 49 L, Top 80 km

IITM-ESM CCCR-IITM
Centre for Climate Change Research, Indian Institute of Tropical Meteorology, India

170 km, 64 L, Top 61 km

INM-CM4-8 INM
Institute for Numerical Mathematics, Russia

150 km, 21 L, Top 31 km

INM-CM5-0 INM 150 km, 73 L, Top 61 km

IPSL-CM6A-LR IPSL
Institut Pierre-Simon Laplace, France

160 km, 79 L, Top 80 km

KACE-1-0-G NIMS-KMA
National Institute of Meteorological Sciences, Korea Meteorological Administration, Korea

140 km, 85 L, Top 85 km

KIOST-ESM KIOST
Korea Institute of Ocean Science & Technology, Korea

190 km, 32 L, Top 43 km

MIROC6 MIROC consortium
JAMSTEC, AORI, NIES, RCCS, Japan

120 km, 81 L, Top 80 km

MIROC-ES2L MIROC 250 km, 40 L, Top 40 km

MPI-ESM1-2-HR MPI-M
Max Planck Institute for Meteorology, Germany

80 km, 95 L, Top 80 km

MPI-ESM1-2-LR MPI-M 170 km, 47 L, Top 80 km

MRI-ESM2-0 MRI
Meteorological Research Institute, Japan

100 km, 80 L, Top 80 km

NESM3 NUIST
Nanjing University of Information Science and Technology, China

170 km, 47 L, Top 48 km

NorESM2-LM NCC
NorESM Climate Modelling Consortium, Norway

190 km, 32 L, Top 40 km

NorESM2-MM NCC 100 km, 32 L, Top 40 km

UKESM1-0-LL MOHC
Met Office Hadley Centre, U.K.

140 km, 85 L, Top 85 km
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DATA AVAILABILITY
The CRU dataset is freely available at https://crudata.uea.ac.uk/cru/data/hrg/. All the
model data can be freely downloaded from the Earth System Federation Grid (ESGF)
nodes (https://esgf-node.llnl.gov/search/cmip6/).

CODE AVAILABILITY
All data processing codes are available if a request is sent to the corresponding
authors.
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