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A synchronized estimation of hourly surface concentrations of
six criteria air pollutants with GEMS data
Qianqian Yang1,2, Jhoon Kim 3, Yeseul Cho3, Won-Jin Lee4, Dong-Won Lee4, Qiangqiang Yuan2, Fan Wang1, Chenhong Zhou5,
Xiaorui Zhang1, Xiang Xiao 1, Meiyu Guo1, Yike Guo 5, Gregory R. Carmichael6 and Meng Gao 1✉

Machine learning is widely used to infer ground-level concentrations of air pollutants from satellite observations. However, a single
pollutant is commonly targeted in previous explorations, which would lead to duplication of efforts and ignoration of interactions
considering the interactive nature of air pollutants and their common influencing factors. We aim to build a unified model to offer a
synchronized estimation of ground-level air pollution levels. We constructed a multi-output random forest (MORF) model and
achieved simultaneous estimation of hourly concentrations of PM2.5, PM10, O3, NO2, CO, and SO2 in China, benefiting from the
world’s first geostationary air-quality monitoring instrument Geostationary Environment Monitoring Spectrometer. MORF yielded a
high accuracy with cross-validated R2 reaching 0.94. Meanwhile, model efficiency was significantly improved compared to single-
output models. Based on retrieved results, the spatial distributions, seasonality, and diurnal variations of six air pollutants were
analyzed and two typical pollution events were tracked.
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INTRODUCTION
With rapid and energy-intensive economic development, China
has witnessed serious air pollution in the past several decades1. To
assist air quality management, the China National Environmental
Monitoring Center (CNEMC) started in 2013 to operate a network
that measures six criteria air pollutants, namely PM2.5, PM10, sulfur
dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and
ozone (O3). However, these sites are predominantly concentrated
in urban or suburban regions, and considerable areas of China go
still unmonitored2,3. Satellite-based observations, especially geos-
tationary satellites, are skilled in offering horizontal distribution of
atmospheric composition and are thus widely used to supplement
ground-based observations4.
Many algorithms have been developed or adopted to retrieve

ground-level abundance of air pollutants from satellite images,
which can be roughly divided into physics-based and statistics-
based methods. Physics-based approach converts column density
measured from satellites to ground-level concentrations using
their physical connections. For instance, ref. 5 used SO2 profiles
from an air quality model and tropospheric column SO2 from the
Ozone Monitoring Instrument (OMI) to estimate ground-level SO2

concentrations. Similarly, ground-level NO2 concentrations were
inferred from NO2 vertical column abundances from the TROPO-
spheric Monitoring Instrument (TROPOMI) using a surface-to-
column conversion factor from a chemical transport model6.
Additionally, a semi-empirical physical approach was developed to
obtain ground-level PM2.5 and PM10 from satellite aerosol optical
depth (AOD) through vertical correction, humidity correction, fine
mode conversion, and volume correction7.
The statistics-based approach aims at learning relationships

between satellite retrievals of aerosols and gases and collocated
ground-level concentration with statistical models. Due to skills in
capturing nonlinear relationships, machine learning-based retrieval

has received considerable attention in recent years8–13. Wang and
Christopher14 found a linkage between AOD and ground-level PM2.5

mass and estimated air quality categories from AOD using a linear
regression model. Later, more influencing factors such as meteor-
ological and topographical variables were considered and more
advanced and sophisticated machine learning models, such as land-
use regression model15, space-time regression model16, geo-
intelligent deep neural networks17,18, and ensemble-learning-based
models19,20 were developed. For gaseous pollutants, satellite retrievals
of column density were usually used as main predictors21–23.
Recently, retrieval models have also been built using satellite

radiance or reflectance data. Shen et al.24 proposed that we could
replace AOD with top-of-atmosphere reflectance (TOAR) data for
PM2.5 estimation, and successfully retrieved ground-level PM2.5

concentration with TOAR data from three MODIS bands (red, blue,
and a short-wave infrared band). After that, studies based on
Himawari-8, Fengyun-4, and Landsat-8 data25 were conducted for
ground-level PM2.5 and PM10 concentrations estimation. In addition,
reflectance/radiance-based retrieval of ground-level O3 concentra-
tion was also achieved. Luo et al.26 utilized 32 MODIS wavebands
(all MODIS bands excluded bands 13–16, from visible to thermal
infrared bands) and other auxiliary variables to estimate ground-
level O3 concentration with a deep-learning technique. Similarly,
ref. 27 leveraged 7 Himawari-8 channels (one mid-wave infrared and
six thermal infrared channels) for O3 estimation and also achieved
good results. It was demonstrated that radiance/reflectance-based
models achieved similar accuracy to column-product-based models
but improved resolution and spatial coverage24,28,29.
A single specific pollutant was targeted in above mentioned

models (referred to as single-output models hereafter). Single-
output models are skilled in exploring the characteristics of a
single pollutant fully, and high model accuracy was usually
yielded. However, major air pollutants share some common
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sources, evolve under the same meteorological conditions, and
are connected chemically or physically30. Therefore, similar
predictors and model structures were used in models built for
different pollutants. Building multiple single-output models for
different pollutants leads to duplication of efforts. A model that
estimates concentrations of these pollutants simultaneously can
make better use of their correlations and improve efficiency. Multi-
output regression methods31 that consider both underlying
relationships between features and corresponding target variables
and relationships between targets have been applied in ecological
modeling32,33, chemometrics34, signal and image processing35,36,
etc., and demonstrated a strong ability on simultaneous prediction
and joint estimation of multiple variables.
Another limitation of previous studies is embedded in the usage

of low-Earth orbiting satellite that provides one to two observations
for concerned areas and misses the dynamic evolution of pollutants
during a day37,38. Geostationary observations of AOD were made
available since the launch of a geostationary meteorological
satellite, yet those of trace gases have been limited as satellite
monitoring of trace gases relies largely on spectral information at
ultraviolet (UV) and visible bands. In February 2020, South Korea
launched the Geostationary Environment Monitoring Spectrometer
(GEMS) on board the Geostationary Korea Multi-Purpose Satellite 2
(GEO-KOMPSAT-2) satellite series. GEMS is the first ultraviolet-visible
instrument onboard a geostationary earth orbit platform38, which
enables hourly monitoring of trace gases for almost 20 countries in
Asia. With the high spatial and temporal resolution, diurnal
variations of multiple atmospheric components are observed,
which provides a great opportunity to research hourly estimations
of ground-level air pollution.
This study aims to achieve a simultaneous estimation of hourly

ground-level concentrations of six criteria air pollutants in China
using the multi-output random forest model (MORF) and the latest
GEMS data. The joint inversion of multiple pollutants proposed
here is expected to simplify the process of retrieving surface
concentrations of six criteria air pollutants, and largely improve

modeling efficiency compared to traditional models. The pro-
posed method can infer hourly variations of air pollutants with
high accuracy and high efficiency, and assist in monitoring the
evolution of pollution episodes.

RESULTS AND DISCUSSION
Statistics of model performance
Figure 1 displays the results of sample-based CV for hourly
retrievals. MORF achieves a general CV R2 of 0.95 and RPE of 20.13%
for six air pollutants, yet the performances vary with pollutant types.
R2 values range from 0.79 to 0.94 and RPE values range from 14.83
to 25.18%. The best performance is yielded for the estimation of
O3 concentrations, with CV R2, RMSE, MAE, and RPE of 0.94,
11.19 μgm�3, 7.48 μgm�3, and 14.83%, respectively. Low bias is also
indicated with the slope of the fitting line of 0.93. The model
performance for particulates (PM2.5 and PM10) also shows high
accuracy, which is comparable to that of state-of-the-art single-
output models18,39. CV R2 for PM2.5 and PM10 reach 0.92 and 0.94,
and the RMSE values are 9.94 μgm�3 and 24.77 μgm�3, respectively.
The retrieval accuracy for NO2 and CO are relatively lower, with R2

of 0.87 and 0.80, and RPE of 22.33 and 17.92%, respectively. MORF
model yields the worst performance for SO2 estimation, with a CV
R2 of 0.79 and RPE of 25.18%. UV-based satellite retrieval of SO2 has
been reported to be subject to large uncertainties due to the
presence of O3 absorption and strong molecular Rayleigh scatter-
ing40. This might also explain the relatively poorer performance of
SO2 from our approach. The performance of sample-based CV is
relatively stable across different hours, months, and stations
(Supplementary Note 1). Generally, model performance is relatively
better in the warm season for O3 estimation and in the cold season
for other pollutants. The model yields a higher accuracy at noon
than in the morning and afternoon. Besides, model performance in
regions with limited sites is poorer than that in regions with a large
number of ground stations, which are consistent with previous
studies16.

Fig. 1 Scatter plots of the sample-based tenfold cross-validation results of MORF. a For PM2.5, b for PM10, c for O3, d for NO2, e for CO, and
f for SO2. The color of the points represents point density, and N means sample number. Dark lines are the 1:1 line and the red dotted lines are
the fitted lines.
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Site-based CV results are slightly worse than those of sample-
based CV (Supplementary Note 2). R2 range from 0.56 to 0.91 for
different kinds of pollutants. O3 estimation yields the best accuracy
with R2 of 0.91, RMSE of 13.91 μgm�3, MAE of 9.67 μgm�3, and RPE
of 19.20%. For SO2 and CO, R2 decreases by ~0.23 and RPE increases
by ~8% compared to sample-based CV. Site-based CV R2 for other
pollutants range from 0.75 to 0.84, and RPE from 24.61 to 29.24%.
In addition to CV, we also conducted an independent validation

(IV). The results are provided in Supplementary Note 3. The results
of IV are similar to that of CV, proving that the proposed model is
stable and generalized.
The model performance of MORF was compared with that of

SORF in terms of accuracy and efficiency. We trained six separate
SORF models, each using one of the six air pollutants as output.
The model parameters were the same as the MORF model. The
comparison results are listed in Table 1. The retrieval accuracy of
MORF and SORF are very close, but MORF outperforms SORF in
terms of efficiency. The training of MORF (time for fitting MORF
model with all samples) took only 10 min while training six SORF
models cost nearly 50minutes. In addition, MORF took 4.52 s for

retrieving one resampled GEMS image, but SORF models needed
6.84 s to complete the estimation of six air pollutants. The model
size of SORF was also much larger than that of MORF. Considering
that building six SORF models also means more efforts on data
preparation, data preprocessing, parameter tuning, etc., MORF is
much more efficient than SORF.

Spatiotemporal variations of six criteria air pollutants
Considering the uneven distribution of GEMS data in different
months and hours (Supplementary Note 4), we calculated the
monthly mean first and then used the monthly mean values to
calculate the annual mean to reduce the bias caused by uneven
sample distribution. Besides, we divided data into two parts when
analyzing diurnal variation. For the warm season, data for all the
hours were considered, while only data from 00:45 UTC to 06:45
UTC were analyzed for cold season.
Spatial distributions of air pollutants in 2021 are displayed in Fig. 2.

In terms of spatial variation, PM2.5 hotspots are located in the
junction of Henan, Hebei, and Shandong provinces, and the west of

Table 1. Comparisons between the model performance of MORF and SORF.

Model accuracy Model efficiency➀

PM2.5 PM10 O3 NO2 CO SO2

MORF R2 0.920 0.938 0.943 0.866 0.802 0.794 Training time (min) 10.46

RMSE 9.939 24.767 11.194 6.677 0.221 5.884 Prediction time ➁(s) 4.52

MAE 6.018 11.203 7.481 4.572 0.135 2.844 Model size (GB) 8.62

RPE(%) 21.337 19.204 14.831 22.329 17.921 25.179

SORF R2 0.911 0.942 0.943 0.878 0.805 0.793 Training time (min) 48.60

RMSE 9.906 25.227 11.226 6.615 0.219 5.884 Prediction time (s) 6.84

MAE 5.970 11.305 7.430 4.484 0.132 2.831 Model size (GB) 31.47

RPE(%) 21.214 19.312 14.686 22.017 17.611 25.084

① All models were trained on the machine with Intel(R) Core(TM) i7-10700 F CPU @ 2.90 GHz and 16 G RAM.
② Prediction time means the time for retrieving one regridded GEMS image.

Fig. 2 Spatial distributions of annual mean concentrations for six air pollutants. a For PM2.5, b for PM10, c for O3, d for NO2, e for CO, f for SO2.
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Xinjiang (locations of these provinces can be found in Supplemen-
tary Note 5). Areas with high PM10 concentration are mainly located
in northwestern China, where dust storm happens frequently41. O3

pollution is most serious in Shandong province and surrounding
regions and some coastal cities in southern China. The distribution of
areas with high NO2 concentrations is highly consistent with
locations of a metropolis, such as the Beijing-Tianjin-Hebei (BTH)
region, Yangtze River Delta (YRD), Guangzhou, Wuhan, Chengdu,
Chongqing, Lanzhou, and Xian. This is related to its dominant source
of transportation42. Unlike particulates and O3 pollution, CO and SO2

are more associated with point sources43, as indicated by CO
hotspots in Shenyang (Liaoning province), Jincheng (Shanxi),
Tangshan (Hebei), Wuhan (Hubei), Lanzhou (Gansu), Xining (Qinghai),

the border of Chuxiong (Yunnan) and Panzhihua (Sichuan), and
Xinjiang. The distribution of SO2 hotspots is similar to that of CO.
Highest SO2 concentrations are detected in Lanzhou (Gansu), Xining
(Qinghai), and some cities in Inner Mongolia, consistent with ground-
level observations (Supplementary Note 6). Under national regula-
tions of SO2 emissions in eastern and southern China, SO2

concentrations in the YRD, BTH, and PRD have decreased remarkably
over recent years. However, in northwestern China, SO2 concentra-
tion keeps growing due to the expansion and relocation of the
energy industry44. The seasonal variations are consistent with
previous studies (details are provided in Supplementary Note 7).
Figure 3 displays the diurnal variations in the warm season.

PM2.5 and PM10 concentrations decrease with time in most

Fig. 3 Diurnal variations of air pollution in the warm season. Six columns represent diurnal variations of PM2.5, PM10, O3, NO2, CO, and SO2,
respectively. BJT means Beijing Time, and BJT= UTC+ 8 h.
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regions, which is associated with the development of BLH45 and
the high emissions during morning rush hours. In contrast, in
northwestern China, particulate concentrations increase first from
08:00 BJT to 12:00 BJT, and then decrease from 12:00 BJT to 16:00
BJT46. Different diurnal variation patterns in northwestern China
and other regions can be attributed to the difference in pollution
sources. O3 concentrations increase from 09:00 BJT to 15:00 BJT,
due to the enhanced solar radiation and photochemical reaction
activity during daytime22. Similar to the diurnal pattern of PM2.5,
NO2 and CO concentrations decrease from 08:00 BJT to 16:00 BJT
gradually under the influence of boundary layer mixing. SO2

concentrations in northeast China present a decreasing trend
during the daytime. However, in Inner Mongolia and northwestern
China, SO2 increases from 8:00 BJT to 11:00 BJT and then
decreases.
The diurnal variations in the cold season are basically consistent

with those in the warm season, with several small differences
(Supplementary Note 8). Particulate concentrations in north-
western China peak in the later noon (14:00 BJ time) rather than
at noon (12:00 BJ time) in the cold season. In the warm season, we
find the most distinct increase of O3 concentration happens in the
BTH region, which is different from that in the cold season that
occurs in southern China. This is related to the different
seasonality features of O3 across China47.

Application in monitoring pollution episodes
We selected two pollution cases to show some examples of how
our results can help with monitoring dynamic evolution. As shown
in Fig. 4, we use hourly estimations to monitor the dynamic
evolution of a serious O3 pollution event in Guangdong province
on April 30, 2021, and a dust storm event in northern China on
March 15, 2021. Comparisons with ground-level observations
suggest that our retrieved maps accurately capture the changes in
O3 concentrations during this pollution episode. O3 concentra-
tions increase rapidly from 20 μgm�3 at 9:00 BJT to >250 μgm�3 at
16:00 BJT in Guangzhou and surrounding cities. Another small
hotspot located in the southeastern corner of Guangdong

province is also detected, where O3 concentration reaches
200 μgm�3 at 16:00 BJT. For the dust storm event, ground-level
observations indicate an extremely high PM10 concentration
(>3500 μgm�3) in Beijing which is also well reflected in the
retrieved maps. Besides, both station observations and our
retrievals show that PM10 concentrations in Beijing decrease from
>3500 μgm�3 at 10:00 BJT to ~2500 μgm�3 at 15:00 BJT. These two
cases demonstrate that retrieval results from our proposed
algorithm can well capture changes in pollutant concentrations
during pollution events.

DISCUSSIONS
Geostationary satellites offer great potential to monitor air
pollution due to their advantage in spatial and temporal coverage.
Previously, a number of machine learning models were built to
infer ground-level concentrations of air pollutants from satellite
images. High estimation accuracy was achieved in these models,
yet a joint inversion model that improves modeling efficiency and
reduces modeling complexity is still lacking. In this study, we
approximated it to a multi-output problem and proposed a unified
retrieval model based on MORF that achieved simultaneous
estimation of hourly concentrations of six criteria air pollutants in
China, benefiting from the world’s first geostationary air pollution
monitoring spectrometer GEMS. CV results for all samples,
different months, hours, and stations demonstrated the accuracy
and stability of our MORF model. Comparisons with SORF proved
that MORF was much more efficient than a current single-output
model. Based on our retrieval results, the spatial, seasonal, and
diurnal variations of the six pollutants were analyzed in detail. In
general, the maximum values of daytime PM2.5, NO2, and CO
appear in the morning. PM10 concentrations peak at noon in the
warm season and in the afternoon in the cold season. O3

concentrations increase from morning to afternoon, associated
with photochemistry intensity. We also used retrieved maps to
monitor the dynamic evolution of pollutants during two pollution
events, an O3 pollution event in Guangdong province and a dust
storm event in northern China. Our retrieval results captured the

Fig. 4 Variations of pollutant concentrations during two pollution events. Row 1 and 3 show the measurements from ground stations and
row 2 and 4 represent our retrieval results.
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same variations of pollution as ground stations, but showed better
spatial coverage.
Even so, limitations still exist. For instance, the model

accuracy of the estimation of SO2 and CO can be further
improved. On the one hand, the absorption features of SO2 and
CO, namely ultraviolet-B and infrared bands, are outside the
wavelength range used in this study. Collecting data with a
wider range of spectral coverage may help with the improve-
ment of model performance. On the other hand, the informa-
tion satellite can provide about ground-level air pollution can
be limited and difficult to extract, other multi-source data such
as emissions and point-of-interest information may also benefit
the improvement of estimation accuracy. We also noticed that
model performance decreased in regions with limited stations.
For example, the estimation accuracy of PM2.5, PM10, and SO2

was lower in Tibet. This fact should be considered when the
retrieval results are used. In the future, data from more stations
in these regions can be used when available to reduce
uncertainties48. Besides, estimating multiple variables using
one model can bring useful extra information, but may also
bring mutual interference, especially when uncorrelated tasks
are introduced. Therefore, a model that can judge the
correlation between multiple tasks may achieve better perfor-
mance. Some deep-learning-based multi-task models which can
evaluate the correlation between different regression tasks and
determine the sharing degree according to correlations is
worthy of attention. Finally, the physical relationships between
ground-level air pollution and satellite radiance data are not
fully explained and explored in this study. Interpretable
machine learning models can be used in our future work to
offer a deeper understanding.

METHOD
Data collection
The study area extended from 15°N to 45° N, 73°E to 135°E
(Supplementary Material Supplementary Note 5). Ground-level
concentrations of the six criteria air pollutants, namely PM2.5, PM10,
SO2, NO2, CO, and O3 were obtained from the China National
Environmental Monitoring Center website (http://www.cnemc.cn/
en/). There were more than 1600 stations in 2021. These stations
covered all provinces in mainland China and provided pollutant
concentrations data with low uncertainty49. Hourly data in 2021
were used in this study and negative values were removed as
outliers50.
Hourly normalized radiance data at six wavelengths (354, 388,

412, 443, 477, and 490 nm), ranging from UV to visible bands, in
2021 were used, which were taken from the GEMS Level 2 (L2)
aerosol product38. Considering that different air pollutants have
different spectral absorption intensities at different wave-
lengths51–53, radiance data at different wavelengths are likely to
provide useful information for estimating concentrations of air
pollutants. The nominal spatial resolution of the GEMS aerosol
product is 3.5 km × 8 km over Seoul, South Korea, and we used
hourly data in this study.
The information that satellites images can provide are limited,

especially for ground-level trace gases like SO2 and CO. Therefore,
meteorological and spatiotemporal information were also con-
sidered in our model. Four meteorological variables, including
hourly boundary layer height (BLH), 2 m temperature (T), 2 m dew
point temperature (DT), and surface solar radiation downwards
(SR), were taken from the ECMWF (European Center for Medium-
Range Weather Forecast) Reanalysis v5 (ERA5) dataset54. The
spatial resolution of BLH was 0.25°×0.25°, while that of the other
three variables from ERA5-land dataset55 was 0.1° × 0.1°.

Data integration
We resampled all the variables to the defined grids of 0.1° × 0.1°
using bilinear interpolation50,56, and then ground measurements
and raster data were collocated according to time and location
(longitude and latitude). Hourly GEMS L2 aerosol products were
provided at starting time of observation from 22:45 UTC (Universal
Coordinated Time) to 7:45 UTC. Considering that GEMS scanned
east-west coverage over ~30 min, air pollution, and meteorologi-
cal data at the hour closest to the starting time were matched with
GEMS data. For example, meteorological and air pollution data at
01:00 UTC were matched with GEMS observations that started at
00:45 UTC.
Previous studies indicated that oversampling technique could

improve the quality of training samples and promote the model to
better learn the relationship between predictors and target
variables20,57,58. Random oversampling technique59 was adopted
in this study to facilitate better learning. Details about the
oversampling strategy are provided in Supplementary Note 9.

Model development
Spatiotemporal information, satellite observations, and meteor-
ological variables were used to estimate ground-level concentra-
tions of air pollutants, and the model can be expressed as:

ðPM2:5; PM10;O3;NO2; CO; SO2Þ
¼ f ðmonth; doy; hour; RAA; R1; R2; R3; R4; R5; R6; BLH; SR; T ;DTÞ

(1)

in which, month, day (day of the year), and hour are the temporal
information, and RAA stands for relative azimuth angle. R1–R6
represent normalized radiance at 354, 388, 412, 443, 477, and
490 nm, while BLH, SR, T, and DT are the four considered
meteorological variables. f() represents the proposed
MORF model.
MORF model was developed from the random forest (RF)

model60. RF model is a widely used decision-tree-based ensemble-
learning model. To overcome overfitting, decision trees in RF were
trained using only a random subset of training samples with a
random subspace of the input features. Individual trees were then
formed using a greedy algorithm that involved, at each split node,
the generation of several binary split candidates61. We used Qm
and nm to represent the data and number of samples at each tree
node m. For each candidate node split θ ¼ ðj; tmÞ that consisted of
a feature j and a threshold tm, data were partitioned into two
subsets: Qleft

m ðθÞ with nleftm samples and Qright
m ðθÞ with nrightm samples.

The quality of a candidate split of node m was then computed
using an impurity function HðÞ:

GðQm; θÞ ¼ nleftm

nm
HðQleft

m ðθÞÞ þ nrightm

nm
HðQright

m ðθÞÞ (2)

For a single-output regression task (single-output RF, SORF), the
impurity function HðÞ with an L2 error (mean squared error) can be
written as:

HðQmÞ ¼ 1
nm

X
y2Qm

ðy � ymÞ2;where ym ¼ 1
nm

X
y2Qm

y (3)

For a multi-output regression problem (multi-output RF,
MORF), the splitting criteria were modified to compute the
average loss across all nt outputs35. The impurity function was
thus changed to:

H0ðQmÞ ¼ 1
nt

Xnt
i¼1

HiðQmÞ (4)

where nt is the number of outputs (6 in this study), and H0ðQmÞ is
the new impurity function.
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Three parameters were tuned in our experiments, i.e., the
number of trees (n_estimators), the minimum number of samples
required for internal node split (min_samples), and the number of
features to make the split decision (max_features). After a
parameter sensitivity test (Supplementary Note 10), n_estimators,
min_samples, and max_features were set as 30, 3, and 3 for a
balance of model accuracy and efficiency.
Variable importance in the MORF model was evaluated with

permutation importance19,62, which was defined to be the
decrease in a model score when a single feature value is randomly
shuffled. In general, meteorological variables are the most
important, followed by radiance data. But for different air
pollutants, the variable importance ranking results are different.
The detailed results are provided in Supplementary Note 11.
Model performance was evaluated using tenfold cross-

validation (CV)63 and independent validation (IV). Sample-
based CV for all samples, different months, hours, and stations
were conducted. In addition, a site-based CV was also
conducted. For each round of CV, 10% of stations were selected
for testing and the rest for training. For IV, we divided the data
into two parts. 70% of the data were used for model fitting, CV,
and parameter tuning, and then the fitted model was validated
on the remaining 30% of the data64. Quantitative metrics,
including coefficient of determination (R2), root mean squared
error (RMSE), mean absolute error (MAE), and relative predictive

error (RPE), were calculated for each air pollutant56:

R2 ¼
Pn

i¼1 � ðobsi � obsÞðesti � estÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðobsi � obsÞ2Pn

i¼1ðesti � estÞ2
q

0
B@

1
CA

2

ðunitlessÞ (5)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðesti � obsiÞ2
n

s
ðunit : μg=m3Þ (6)

MAE ¼
Pn

i¼1jesti � obsij
n

ðunit : μg=m3Þ (7)

RPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðesti � obsiÞ2
n

s
=obsðunit : μg=m3Þ (8)

where n is the total number of ground sites and i represents the
ith sites. obsi and esti represent the observed value and the
estimated value at the ith site, respectively. obs and est are the
mean values for observed and estimated values at all ground sites.
A summary of the flowchart of this study is shown in Fig. 5.
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