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How do North American weather regimes drive wind energy at
the sub-seasonal to seasonal timescales?
Ye Liu 1✉, Sha Feng 1✉, Yun Qian 1, Huilin Huang1 and Larry K. Berg 1

There has been an increasing need for forecasting power generation at the subseasonal to seasonal (S2S) timescales to support the
operation, management, and planning of the wind-energy system. At the S2S timescales, atmospheric variability is largely related to
recurrent and persistent weather patterns, referred to as weather regimes (WRs). In this study, we identify four WRs that influence
wind resources over North America using a universal two-stage procedure approach. These WRs are responsible for large-scale
wind and power production anomalies over the CONUS at the S2S timescales. The WR-based reconstruction explains up to 40% of
the monthly variance of power production over the western United States, and the explanatory power of WRs generally increases
with the increase of timescales. The identified relationship between WRs and power production reveals the potential and
limitations of the regional WR-based wind resource assessment over different regions of the CONUS across multiple timescales.

npj Climate and Atmospheric Science           (2023) 6:100 ; https://doi.org/10.1038/s41612-023-00403-5

INTRODUCTION
A tremendous effort to decarbonize the energy sector is underway
with the massive installation of renewable energy capacity in the
United States, in which wind energy with 136 GW wind power
capacity accounts for 9.1% of total electricity generation and 32%
of capacity additions in 20211. In 2021, the Biden administration
announced a goal of 30 GW offshore wind generation by 2030
that will unlock a pathway to 110 GW by 20502. The growth of
wind power generation increases the exposure of the power
systems to variable weather and climate, which requires accurate
forecasts at multiple timescales for many actions in the operation
of the grid3,4. Forecasting the wind power generation over time
periods ranging from hours to several days ahead has had
tremendous improvement5, while the skill of forecasts beyond 2
weeks remains poor. In recent years, there has been an increasing
need for forecasting power generation at the subseasonal to
seasonal (S2S, 2 weeks to one season) timescales to support the
operation, management, and planning of the wind-energy
system6–8. Knowledge of the fluctuations of power production at
the S2S timescales can also help guide deployment pathways that
balance power generation from wind and other renewables6.
The skillful forecasting lead time of a predicted phenomenon

largely depends on its spatial scale. The surface wind speed normally
has a spatial scale of less than 1000 km with a skillful forecast less
than 10 days, while large-scale and low-frequency atmospheric
circulations extending up to 10,000 km have forecasting horizons of
beyond 2 weeks9. As a result, the global climate models have better
performance in simulating and projecting large-scale atmospheric
circulations than the local surface wind speed. These atmospheric
circulations can be classified into a set of recurrent and quasi-
stationary (persistent) patterns, commonly referred to as weather
regimes (WRs)10–12. Building a solid WR and wind resource relation-
ship could potentially help improve the model skill in simulating and
predicting the hub-height wind speed at longer timescales, such as
the S2S timescales. Resulting from interactions between synoptic-
scale and planetary-scale atmospheric waves13,14, WRs can persist for
1–2 weeks, which is beyond the lifetimes of individual weather
disturbances15. The persistence and/or transitioning of WRs are often

used in S2S variability and predictability studies16. Meanwhile, the
interactions of WRs and atmospheric teleconnections, such as the
Pacific-North American (PNA) teleconnection pattern and North
Atlantic Oscillation (NAO) for North America, suggest additional
predictability16,17. Analysis based on NCEP CFSv2 showed that the
climate model can predict the WR up to 30 days ahead at certain
geographic location18, depending on WR’s persistence and interac-
tions with teleconnections. Many studies demonstrated an improve-
ment of the forecasting skill by linking the variability of WRs with
local weather and extreme events19,20 and found that the changes of
WRs often determine most variations of surface variables, such as
temperature, precipitation, and surface winds, at S2S timescales. For
these reasons, a growing number of studies have used WRs for
power production assessment in response to the emerging needs of
energy management3,6,7,21,22 in the Europe-Atlantic sector and India
with a focus on cold seasons. However, as far as we know, no such
studies have focused on wind resources (wind speed and power
production) in warm seasons, or, what is worse, none for the United
States sector.
The United States experiences complex weather patterns,

resulting in various responses to WRs with distinct seasonal
variability at the S2S timescales. In this study, we provide the
assessment of the relationship of WRs and the variability of local
wind resources for different seasons over the CONUS. We aim to
address two questions: (1) How do the WRs drive hub-height wind
speed and power production at the S2S timescales over the
CONUS? (2) To what degree can WRs explain the variability of hub-
height wind and power production? The results associated with the
second question are organized based on the geographic spans of
U.S. isolated system operators (ISOs, Supplementary Fig. 1) to
directly benefit the wind-energy industry. It is worth mentioning
that, compared to the existing studies, this work quantifies the
impact of the WRs on the variability of local wind resources.
Previous studies have mainly used K-means clustering to

identify the WRs that impact a given region of interest12,15,18,23.
However, this approach fails to preserve the topological relation-
ship between the WRs, which is particularly beneficial in
reconstructing the topological surface in the WR space. In this
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study, we have adapted a universal two-stage procedure24 that
incorporates both SOM and K-means to replicate the North
American WRs identified in the previous studies while maintaining
the topological relationship for reconstruction. SOM is a widely
used clustering analysis11,25–29 that performs a topology-
preserving mapping. However, when the number of nodes is
small, SOM tends to cluster the input vectors into symmetrically
paired nodes, whereas those from K-means are independent of
each other. As a result, this two-stage procedure approach
combines the strengths of both SOM and K-means while
addressing their individual shortcomings25.

RESULTS
The dominant weather regimes over North America
We apply a two-stage clustering procedure to the daily 500-hPa
geopotential height (Z500) anomaly obtained from ERA5 to cluster
weather patterns in the cold (October to March) and warm (April
to September) seasons from 1981 through 2020. In cold seasons,
four WRs are identified. They are Alaskan ridge (AkR), Pacific
trough (PT), Arctic high (ArH), and Arctic low (ArL), consistent with
the findings in earlier studies10,15,23. The AkR, PT, and ArL consist
of meridionally oriented ridge and trough anomalies that
resemble Rossby wave trains, which have a similar structure to
the intermediate 10–30-day timescale wave identified in ref. 30.
The AkR regime accounts for 21.3% of the days, featuring an
anomalous ridge centered near Alaska (Fig. 1a). The PT regime
(Fig. 1b) features an anomalous trough centered near the
Aleutians. The PT regime occurs more frequently (36.9%) than
the AkR regime. The ArH regime (Fig. 1c) occurs on 21.2% of the
days and is associated with a strong anomalous high centered
over Canada and near Greenland, coinciding with an anomalous
low over the western North Atlantic Ocean, which leads to an
enhanced meridional pressure gradient. The circulation anomaly
of the ArH regime is similar to the negative phase of the NAO
(NAO–). The Arctic low (ArL, Fig. 1d) regime, accounting for 20.6%
of the days, is associated with the negative phase of PNA (PNA–).
The PT and ArH regimes are associated with a trough-ridge
pattern that extends from the Pacific to the continent, resembling
the midlatitude atmospheric pattern during El Niño episodes31,
while the Pacific components of the ArL regime bear similarities to
the atmospheric pattern during La Niña episodes. The four WRs
(AkR, PT, ArH, and ArL) have the pattern correlations of 0.10, 0.54,

−0.72, 0.18 with the NAO and −0.40, 0.57, 0.52, −0.71 with the
PNA (computed using the monthly mean of Z500).
The warm-season WRs are less studied as the PNA- and NAO-

induced anomalies are not as pronounced as those in boreal
winter32. The warm-season WRs generally resemble the four
regimes identified in the cold season but with smaller magnitudes
(Fig. 1e–h). We find that 18.6% and 35.9% of the days in warm
seasons are governed by the AR and PT regimes, respectively,
while AH and AL regimes occur at 20.0% and 25.4%, respectively.

Persistence and transitioning of WRs
The daily weather can be viewed as synoptical-scale perturbations on
the quasi-stationary weather regimes that persist longer than
individual weather disturbances33. On the other hand, the transition-
ing of a WR is frequently responsible for abrupt changes in wind
speed (i.e., wind ramps) in addition to local factors. We investigate
the evolution of a WR by selecting the days associated with the WR
and counting the frequency of each WR that appears on the
following day. Such frequencies reflect the likelihood, measured as a
percentage of days of a WR either persists within the same WR or
transitioning into a different WR. As a result, over 80% of the days in
each regime in cold seasons persist to the following day, while the
remaining days change to other regimes (Fig. 2). Because of the
west-to-east propagation of the wave trains, 10.8% of AkR days
transition to PT. The PT and ArH share a similar trough-ridge pattern
over the eastern Pacific. 11.7% of ArH days and 7.3% of PT days
evolve into each other on the following day. The AkR is least likely to
transit to ArH due to their distinct patterns (only 1.8%). The warm-
season WRs show 72.6–76.3% of persistency, weaker than in cold
seasons. More frequent transitioning occurs between the PT regimes
and the others. Less than 5% of the days transit from ArH to ArH or to
AkR, and vice versa.
Another property of the persistence of a WR is the duration. We

quantify this property by counting the consecutive days that are
identified as a WR before transitioning to another. In cold seasons,
the mean durations of AkR and PT regimes are 9.3 and 11.8 days,
respectively, while the durations of ArH and ArL regimes are 10.9 and
15.3 days, respectively (Fig. 3a). The most prolonged duration is
found in PT regime (78 days), which relates to the strong El Niño in
1982–1983 winter. Mean durations in warm seasons are generally
shorter than in cold seasons (Fig. 3b) due to weaker Z500 anomaly
and stronger interaction with local thermal factors. AkR and PT

Fig. 1 Daily ERA5 Z500 mean anomalies (m) with respect to the daily climatology for each regime over 1981–2020. a–d cold
(October–March) and e–h warm (April–September) seasons. Only significant anomalies at the 5% level according to a two-sided bootstrap
resampling test are shown. The numbers at the top-right of each panel indicate the frequency of the regimes.
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regimes persist for 7.1 and 8.6 days on average, while the ArH and
ArL regimes persist for 6.7 and 9.0 days, respectively.

Impact of WRs on hub-height wind speed
The climatology of the hub-height wind speed over the CONUS is
obtained by averaging the ERA5 100-m wind over the 40-year
period. Climatologically, larger wind speeds (annual mean wind
speed >7.5 m s−1) mainly occur over the Great Plains and the
Midwestern United States and become weaker near the west and
southeast coasts (Supplementary Fig. 2).
The WRs’ impact on wind speed is represented by the mean of

wind speed anomaly associated with each WR with respect to the
climatology of the daily mean. In general, the WR-induced wind
anomalies are stronger in cold seasons than in warm seasons (Fig. 4),
corresponding to more intense circulation anomalies (Fig. 1). The
cold-season AkR regime is associated with a blocking pattern over
the northeastern Pacific that significantly slows down the large-scale
wind speed west of the Rocky Mountains and the Great Plains but
increases wind speed over the eastern slope of the Rocky Mountains
and Midwestern U.S. (Fig. 4a). In contrast, the PT regime is associated
with the decreases in wind speeds across the CONUS (except for the
north Great Plains and the east coast), which is associated with a
high-pressure center dominating North American (Fig. 1b). The ArH
regime is associated with an anomalous high-pressure center over
the central North American land, surrounded by anomalous lows

over the ocean (Fig. 1c), which leads to smaller wind anomalies over
0.4m s−1 (Fig. 4c). The ArL regime is associated with dipole
anomalies of Z500 over land with a low in the west and a high in
the east, resulting in an increase of wind speed over most of the
CONUS, except for the East Coast (Fig. 4d). The WRs lead to over
±1m s−1 wind speed anomalies over the eastern slope of the Rocky
Mountains, Great Plains, and Columbia River Basin which hosts many
wind farms34. The significant changes in the wind anomalies
introduce changes in power production.
The influence of WRs on hub-height wind speed decreases

considerably in warm seasons due to small Z500 anomalies (Fig. 1)
and the weak linkage between large-scale circulations and local
processes35. The wind speed associated with AkR increases east of
the Rocky Mountains, southern Great Plains, and the northeastern
U.S. (Fig. 4e). The PT induces a reduction of wind speeds over the
Midwest U.S., but insignificant changes are found over the rest of the
CONUS (Fig. 4f). The ArH regimes is associated with a decrease of
wind speed over the CONUS except for the east coast (Fig. 4g). In
contrast, the ArL regime leads to an increase of wind speed over the
Great Plains and western U.S., while decreasing wind speed along the
east coast (Fig. 4h).

Relationship between WRs and wind speed
To quantify the impact of WRs on local wind resources and further
investigate to what degree the WRs can explain the variability of

Fig. 2 Progressing between WRs. a Cold seasons and b warm seasons. The numbers indicate the percentage of a WR persisting or
progressing to another on the following day.

Fig. 3 Duration of each regime. a Cold seasons (October–March) and b warm seasons (April–September). The shaded curve shows the
probability distribution function. The bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The central line
indicates the median. The whiskers extend from the box by 1.5× the interquartile range. The outliers are plotted individually as “×”.
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winds and power production, we reconstruct the WR-related hub-
height wind speed over different timescales using the prototypes
from the first-step SOM training (see “Methods”). Note that as S2S
timescales span from 2 weeks to one season, here we choose to
present the results at the monthly scale as an example to
demonstrate the spatial distributions of the properties of WR-
related wind speed (the aggregated results across multiple time-
scales are organized in next section). These properties include the
temporal correlation (Fig. 5) and standard deviation ratio (Fig. 6) of
reconstructed wind speed as opposed to the original ERA5 monthly
mean, representing the timing and magnitude of the variabilities,
respectively.
Besides the large-scale weather patterns, wind speed is affected by

topography, small-scale atmospheric and surface perturbations, and
other factors. We hypothesize that WRs have higher explanatory
power for regions and periods in which large-scale circulations play

critical roles in local weather, namely holding significant correlation
and/or standard deviation ratio (dotted areas in Figs. 5 and 6). Here
we define the explanatory power of WRs as the percentage of the
variance of WR-related wind speed/power production in the total
variance of actual wind/power production, namely R2, and will be
fully discussed in the next section.
In general, the correlations between the WR-related wind and

actual wind are larger in cold seasons than in warm seasons, as the
local and small-scale perturbations (mostly due to thermal effects)
are more influential in warm seasons. From November to January,
the western U.S. shows a correlation coefficient over 0.4 and a
standard deviation ratio above 0.7 between WR-related and actual
winds, suggesting that the large-scale circulation is the main driver of
local wind variability. Low correlations and small standard deviation
ratios over the eastern United States in December are likely due to
the weakening impact of NAO on local wind36. The NAO-associated

Fig. 4 The same as Fig. 1, but for daily 100-m wind speed mean anomalies (ms−1). a–d Cold (October–March) and e–h warm
(April–September) seasons. Dots indicate the statistical significance of the wind speed anomalies at the 5% significant level according to a
two-side bootstrap sampling test.

Fig. 5 Correlation coefficient between the WR-related and ERA5 100-m wind speed for each month. a–l Correlations for each month. Dots
indicate the statistical significance of the correlation at the 5% significance level according to the Spearman significance test.
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surface pressure anomalies located over the Atlantic Ocean in
December (not shown) and far off the U.S. east coast result in a weak
impact on local winds. Significant correlations and high standard
deviation ratios are also found in the western U.S., Great Plains, and
Midwestern U.S. in many months of warm seasons.

Impact of WRs on power production
We obtain WR-related power production by scaling WR-related
wind speed using the International Electrotechnical Commission
(ICE) class 2 power curve (see “Methods”) and calculate the
explanatory power of WRs to the total power production to assess
how much the variation of power production can be explained by

WRs. Note that the explanatory power is defined as R2 between
WR-related and ERA5 wind-translated power productions. We
aggregate the explanatory power into the subregions, including
seven ISOs, two non-ISOs, and the Department of Energy’s Wind
Forecast Improvement Project II (WFIP237, also part of Bonneville
Power Administration service area) area (Supplementary Fig. 1)38.
On a monthly basis, the explanatory power of WRs for power

production (Fig. 7) is distributed similarly to correlation patterns of
wind speed (Fig. 5), as regional power production mainly depends
on local wind speed. The differences between the explanatory
power for wind speed and power production are mainly due to
the non-linear power curve and the impact of the cut-in and cut-
off wind speed of turbines. As we see in Fig. 7, the largest

Fig. 6 Standard deviation ratio between the WR-related and ERA5 100-m wind speed. a–l Standard deviation ratio for each month.

Fig. 7 Explanatory power (%) of WRs to regional power production. a–l Explanatory power for each month.
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explanatory power is found in January, more than 40% of the
variability in the WFIP2 study region and followed by 30% in the
Northwest and Southwest (Non-ISO) regions. WRs have explana-
tory power ranging over 10–40% in months except for May over
the western U.S., including CAISO, Northwest, and Southwest,
while ranging from 10 to 30% in January, February, April, June,
September, and November over the central U.S., including SPP
and ERCOT. Relatively low explanatory power is found in the
Midwestern U.S. and the east coast.
We further examine how the explanatory power of WRs to the

regional power production changes with the timescales and
organize the results in Fig. 8. In general, the explanatory power
increases with the increase of timescales (averaging time window).
Over the CONUS, the explanatory power of cold-season WRs
increases rapidly from one day to 2 weeks and then becomes
stable from 2 weeks to one month, suggesting that the WRs are
one of the main factors driving power production variability at
these timescales (Fig. 8k). The explanatory power shows more
fluctuations beyond one month, which is likely caused by other
low-frequency atmospheric phenomena, such as ENSO. Similar
patterns are found for CAISO, ERCOT, MISO, West (non-ISO), and
WFIP2 regions with one exception of the WIFP2 region where the
explanatory power of WRs decreases from monthly to seasonal
timescales. In contrast, the warm-season explanatory power
remains low from one to 50 days timescales (Fig. 8k), while it
rapidly increases from 50 to 90 days, indicating that WRs have a
stronger impact at the seasonal timescales for warm seasons. This
pattern is mainly contributed by CAISO, ERCOT, SPP, Southeast,
and West non-ISOs (Fig. 8a, b, g, i).

DISCUSSION
The relationship of the WR and other well-known low-frequency
oscillations and the application and limitation of the WR-wind
relationship are discussed in this section. The WRs, resulting from
the interaction between planetary and synoptical-scale atmo-
spheric waves, have been found tele-connected to tropical sea
surface temperature forcing at weeks to months lead time15,38,39,
providing additional predictability. We further test the relationship

between North American WRs and Madden-Julian Oscillation
(MJO) and find an increasing frequency of ArH’s occurrence 1
week after MJO phase 6, ArL 5–15 days after MJO phase 3, and
AkR 4 weeks after MJO phase 3 (Supplementary Fig. 3), which is
consistent with the findings of ref. 15. Phase 3 and phase 6 of MJO
feature strong dipole anomalies in tropical diabatic heating with
convection anomalous centers of opposite signs in the eastern
Indian Ocean and western Pacific Ocean, which propagates to the
North Pacific and North America through Rossby wave trains. The
physical connection between the MJO and WRs with weeks of
lead time indicates the source of predictability. However, since
each MJO phase persists for about 1 week, it is difficult to
distinguish the impact of a MJO phase from the previous one39.
Meanwhile, the influence of MJO can interfering constructively
with other low-frequency atmospheric oscillations such as ENSO,
therefore posing challenges in terms of isolating the true MJO
effect. We recognize the additional predictability of MJO and will
investigate its impact on regional wind forecasts in future work.
The dependence of local wind resources on WRs indicates the

regions where power production is sensitive to future climate
change. A strengthened PNA pattern40 and increasing frequency
and persistence of NAO+41 are projected by CMIP5 models in
future warming scenarios, suggesting a growing impact of WRs on
power production in the future. Co-deployment of other renew-
ables could balance the WRs impact on national electricity6, and
further study is encouraged.
The WR-wind relationship obtained in this study can help

improve the forecasting skill of dynamical and statistical models42.
Climate models are expected to have better performance in
predicting large-scale atmospheric circulations than local wind.
Unrealistically representing the WR–local wind relationship can
lower the skill of hub-height wind forecast even with a skillful
forecast of weather patterns. Therefore, the relationship identified
in this study is a benchmark for evaluating the climate model
performance, although the statistical relationship cannot replace
dynamic model predictions. On the other hand, the S2S models
use very coarse resolutions, which can introduce large biases in
modeled winds as well as other variables. Therefore, statistical
post-processing such as calibration, downscaling, or bridging are

Fig. 8 Explanatory power (%) of WRs to regional power production as a function of averaging window. a–k Explanatory power for each
sub-region.
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needed to translate atmospheric variables to energy properties8.
Particularly, bridging methods allow transforming forecasts of the
state of the climate into another variable of interest over well-
defined large areas, if a robust linkage between them is found in
observational records.
In practice, the application of the WR-wind relationship to S2S

forecasts relies on skillful WR forecasts in climate models. Current
state-of-art climate models still have limited forecast skills for
weather patterns at the S2S timescales, although better than for
surface variables. The current models underestimate the pre-
dictable signals (the predictable fraction of the total variability) of
the climate variability by an order of magnitude17. To improve the
S2S forecasting skill, many programs have been initiated, such as
the subseasonal to seasonal project by the World Weather
Research Program (WWRP) and the World Climate Research
Program (WCRP)42 and the S2S for clean energy (S2S4E) funded
by the European Union H2020 Framework Programme for
Research and Innovation (https://s2s4e.eu/). The horizon of
forecasting skill for large-scale weather patterns has been
significantly extended in the past decades. However, translating
the predictability to the renewable energy sector is still at an early
stage. The robust WR-wind linkage suggests a potential way to
improve the S2S forecasting skill for wind resources and to better
understand forecast uncertainty. Besides the limitation due to the
performance of current climate models, the WR-wind relationship
varies with location and season. For example, WRs are closely
connected to local wind over the western and central U.S. but
hardly explain any of the variability of wind speed along the U.S.
east coast.
We provide the assessment of WR-related variability of hub-

height wind speed and power production over CONUS across
multiple timescales. The WRs are determined by daily ERA5 500-
hPa geopotential height (Z500) anomalies over a period of 40

years (1981–2020) using a two-stage clustering procedure method
that combines SOM and K-means. Four WRs are identified over
North America: The Alaskan ridge (AkR), Pacific trough (PT), Arctic
high (ArH), and Arctic low (ArL). These WRs resemble the North
American atmospheric circulations representing the PNA, NAO,
and ENSO teleconnections. These WRs are found to persist
1–2 weeks before transitioning to another and have a larger
impact on wind resources in cold seasons than in warm seasons
and over the western and central U.S. than over the eastern U.S.
Accordingly, the explanatory power of WRs to power production is
significantly larger in the western and central U.S. The driving
effect of WRs on local wind resources is evidenced by the
significant correlation between WR-related and local wind speed/
power production. WRs have larger explanatory power in the
western and central U.S., including West (non-ISO), CAISO, SPP,
ERCOT, and MISO than other subregions. These regions together
supply over 80% of the total capacity by the end of 20201. The
linkage between WRs and local wind resources at the S2S
timescales suggests a potential source of predictability that
benefits wind power management and planning, especially in
the western United States. This study focuses on land-based wind
resources as the ISOs and other subregions provide geographic
areas that serve to aggregate the wind power production
regionally. The knowledge gained in this study is transferable to
offshore wind resource assessment.

METHODS
Two-stage clustering procedure
We apply a universal two-stage procedure24 to ERA5 Z500
anomalies to determine the WRs that influence North America.
In the first stage, we train SOM to generate a low-dimensional
discretized representation of the data (16 prototypes) in the

Fig. 9 Schematic diagram of SOM analysis. a Flowchart of SOM algorithm and b concept diagram of SOM.
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original feature space while preserving the topological properties
of the data. SOM is an artificial neural network commonly
employed for clustering analyses, which projects the high-
dimensional data to a visually comprehensible two-dimensional
map. In the second stage, we use the 16 SOM-generated
prototypes as the input of K-means for clustering. The second
stage is applied to reduce the number of named regimes and
keep them consistent with those found in the previous
studies12,15,18. Three benefits are associated with this two-stage
procedure: first, using the SOM-generated prototypes substantially
reduces the number of dimensions of the variable that is taken by
K-means clustering so reduces the computational time; second, it
largely eliminates outliers as the prototypes constructed by SOM
are considered as local averages of the data so improves the
efficiency and accuracy of K-means clustering; third, the topolo-
gical preserving prototypes can be directly used to reconstruct
WRs-related wind resources to serve the later analysis. Directly
using K-means for clustering is not recommended, as K-means is
highly sensitive to the initial positions of the centroids and
outliers43 and not suitable for high-dimensional dataset44.
Before applying the two-stage procedure, we calculate the Z500

anomaly by subtracting the climatological daily mean from the
daily Z500 at each grid point over the 1981–2020 annual cycle.
Some previous studies also filtered the Z500 anomalies by
performing a principal component analysis (PCA) to reduce the
dimension of the input vector15 for K-means clustering. Then the
Z500 anomalies are weighted by the cosine of the latitude to
account for reprehensive areas. With the two-stage procedure, the
first-step SOM training completes the dimension reduction and
outlier elimination for the second step K-means clustering with an
additional benefit that preserves the topology of the data points
in contrast to simply linear approaches (e.g., PCA).
The workflow of SOM is summarized in Fig. 9a. During the SOM

training stage, the initial nodes for SOM are determined by the
leading empirical orthogonal functions (EOFs). Then we add input

vector data (daily Z500 anomaly; red dot in the example shown in
Fig. 9) to the map of SOM-generated prototypes and find the best
matching unit (BMU). The BMU is the prototype that has the
smallest Euclidean distance to the input vector. The BMU and
neighbor nodes are adjusted towards the input vector to better
represent the data distribution (Fig. 9b). A neighborhood function
is applied to determine the number of neighborhood nodes to be
adjusted and the strength of adaption, depending on the order
number of the current iteration and distance between the
neighborhood node and BMU.
In this study, the SOM analysis is performed over 10°–70°N,

150°–40°W, which is chosen to include the Pacific jet exit region
and North Atlantic variability12,15. The Z500 anomalies in
October–March and April–September derived from ERA545

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/
era5) are used to identify the dominant WRs in the cold and warm
seasons, respectively. The impact of a WR on the wind speed is
measured by averaging the wind speed anomalies associated with
the given WR with respect to the climatology of daily mean over
the 1981–2020 annual cycle over all days.
The choice of the number of prototypes (k) is arbitrary, so we

test the values of k that range in 3, 4, 6, 8, 9, 16, and 25. For each k,
the robustness of the regime clusters is measured by a
classifiability index (CI) following previous studies15,46,47. The
maximum spatial correlation coefficient between the clusters
obtained from the full dataset and many random halves (100
halves in this study) of the data is calculated to construct the CI47.
Therefore, the CI measured the reproductivity of the k partition-
ing33, with perfect partitioning leading to a CI equals to 1. Figure
10 shows the CI values calculated from cold seasons in 1981–2020,
which exhibit two local peaks for k= 4 and k= 16. The 4-cluster
partition is the most compact representation for cold-season WRs,
however, leads to paired two patterns (not shown) in the results.
Another local peak of CI found at k= 16 generally displays the
variants of four regimes while reflecting disturbances associated
with synoptical-scale atmospheric waves. Therefore, the 16-cluster
partition is selected to generate SOM prototypes.

Estimation of power production
We use generic power curves to estimate the power production
that might be available at different locations across the CONUS
following the approach described in the WIND ToolKit48. The
turbines are categorized into three classes based on the rated
power, following the classification criteria defined by International
Electrotechnical Commission (ICE) 61400-1 (ICE 2005). We
calculate the normalized power production from hourly 100-m
wind speed using the ICE Class 2 power curve shown as an
example. Note that we test the three ICE-defined classes, and all
generate similar results.

WR-related wind speed and power production
To quantify the impact of WRs on the variation of hub-height wind
speed and power production, we reconstruct the WR-related wind
and power production over different time intervals using the SOM
prototypes. The impact (I) of a prototype on wind speed or power
production during month m of year y is defined as:

I p;m; yð Þ ¼ 1
N

XN

d¼1

W pð Þ (1)

where N is the number of days categorized as a prototype p in
month m during 1981–2020 except for the year y, and W is the
mean anomaly of wind speed or power production. This leave-
one-out approach is applied to avoid overfitting.
The WR-related winds or power production are derived based

on the concept of inverse distance weighting average in the SOM
input data space. We calculate the impact based on the 16

Fig. 10 Classifiable index as a function of the number of regimes.
The bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The central line indicates the median. The
whiskers extend from the box by 1.5× the interquartile range. The
outliers are plotted individually as “×”.
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prototypes identified by SOM to reconstruct the timeseries of WR-
related wind resources (wind speed and power production) over
different timescales. The Euclidean distance (D) between an input
vector (Z500 anomaly averaged over a specific time interval) and a
prototype is used to calculate the weight (w) of the impact of a
given weather pattern (namely a SOM prototype). Then the WR-
related variable (WWR) is obtained by weighted-averaging the
impact of the nearest four prototypes to reduce the computa-
tional cost. Specifically, we calculate WWR using Z500 anomaly
averaged over different time intervals (n, i.e., from 1-day to 90-day)
to examine the WR’s impact at different timescales.

w p; n;m; yð Þ ¼ 1
D p; n;m; yð Þ (2)

WWR k;m; yð Þ ¼
P1

p¼1w p; n;m; yð Þ � I p;m; yð Þ
P4

p¼1w p; n;m; yð Þ (3)

The WR-related power production is aggregated to subregions.
Seven isolated system operators (ISOs), including the Southwest
Power Pool (SPP), Electric Reliability Council of Texas (ERCOT),
Midcontinent Independent System Operator (MISO), California
Independent System Operator (CAISO), ISO New England (ISO-NE),
PJM Interconnection (PJM), and New York Independent System
Operator (NYISO), two non-ISO regions, i.e., West and Southeast,
and the Wind Forecast Improvement Project (WFIP237) region
(approximately covering Washington and Oregon States and also
part of Bonneville Power Administration service area), are used to
estimate regional power production (Supplementary Fig. 1). The
temporal spearman correlation and standard deviation ratio
(defined as rstd ¼ stdðWWRÞ

stdðWERA5Þ) between the monthly reconstructed
and full wind speed are used to evaluate the skill of reconstruc-
tion. The explanatory power (calculated as R2) is obtained to
quantify the percentage of the variability of power production
explained by WRs.

Significance test
We calculate the statistical significance of the composite maps of
Z500 and wind speed anomalies associated with each WR by a
bootstrap sampling with replacement. We construct the 5%
significance level using 50,000 resamples per regime over all days
in the period of 1981–2020, following ref. 12. Random days are
selected in the blocks corresponding to the observed regime
“events” to test the null hypothesis that the composites are the
result of random subsampling of days. Specifically, the following
steps are taken: (1) for each regime occurrence, the number of
consecutive days in each WR is computed to produce “blocks” of
the regime days; (2) each set of consecutive days is randomized to
produce random sets of numbers with the same structure as
observed and selected days of data from all days in the period of
1981–2020; (3) step (2) is repeated 50,000 times; (4) At each grid
point, if the observed value lies beyond the 2.5/97.5 percentiles of
the resampled distribution, then it is classified as statistically
significant.
Finally, the statistical significance of the Spearman correlation,

standard deviation ratio, and explanatory power are determined
by Spearman significance test. We construct the 5% significance
level to test the null hypothesis that the two timeseries of WR-
related and full wind speed/power production are independent.

DATA AVAILABILITY
The 500-hPa geopotential height and wind speed data were downloaded from ERA5
(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5). The datasets
generated and/or analyzed during the current study are available in the PNNL’s
Datahub, which is publicly available at https://data.pnnl.gov/group/nodes/dataset/
33355.

CODE AVAILABILITY
The scripts to replicate the results presented in the current study are available in the
PNNL’s Datahub, which is publicly available at https://data.pnnl.gov/group/nodes/
dataset/33355.

Received: 28 September 2022; Accepted: 16 June 2023;

REFERENCES
1. Wiser, R. et al. Land-based wind market report: 2022 Edn. https://doi.org/10.2172/

1893263 (2022).
2. Biden Administration Jumpstarts Offshore Wind Energy Projects to Create Jobs.

https://www.whitehouse.gov/briefing-room/statements-releases/2021/03/29/
fact-sheet-biden-administration-jumpstarts-offshore-wind-energy-projects-to-
create-jobs/ (2021).

3. Orlov, A., Sillmann, J. & Vigo, I. Better seasonal forecasts for the renewable energy
industry. Nat. Energy 5, 108–110 (2020).

4. Soret, A. et al. Sub-seasonal to seasonal climate predictions for wind energy
forecasting. J. Phys. Conf. Ser. 1222, 012009 (2019).

5. Alessandrini, S. & Sperati, S. Characterization of forecast errors and benchmarking
of renewable energy forecasts. in Renewable Energy Forecasting (ed. Kariniotakis,
G.). 235–256 (Woodhead Publishing, 2017).

6. Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I. & Wernli, H. Balancing Europe’s
wind-power output through spatial deployment informed by weather regimes.
Nat. Clim. Chang 7, 557–562 (2017).

7. Das, A. & Roy, S. B. Evaluation of subseasonal to seasonal forecasts over India for
renewable energy applications. Adv. Geosci. 56, 89–96 (2021).

8. Lledó, L., Ramon, J., Soret, A. & Doblas-Reyes, F.-J. Seasonal prediction of
renewable energy generation in Europe based on four teleconnection indices.
Renew. Energy 186, 420–430 (2022).

9. Buizza, R. & Leutbecher, M. The forecast skill horizon. Q J. R. Meteor Soc. 141,
3366–3382 (2015).

10. Stan, C. & Straus, D. M. Is blocking a circulation regime? Mon. Weather Rev. 135,
2406–2413 (2007).

11. Bao, M. & Wallace, J. M. Cluster analysis of Northern Hemisphere wintertime 500-
hPa flow regimes during 1920–2014*. J. Atmos. Sci. 72, 3597–3608 (2015).

12. Lee, S. H., Furtado, J. C. & Charlton‐Perez, A. J. Wintertime North American
weather regimes and the Arctic stratospheric polar vortex. Geophys. Res. Lett. 46,
14892–14900 (2019).

13. Ghil, M. & Robertson, A. W. “Waves” vs. “particles” in the atmosphere’s phase
space: a pathway to long-range forecasting? Proc. Natl Acad. Sci. USA 99,
2493–2500 (2002).

14. Ghil, M., Groth, A., Kondrashov, D. & Robertson, A. W. The Gap Between Weather
and Climate Forecasting. in Sub-seasonal to seasonal prediction (ed. Robertson, A.
W.). 119–142 (Elsevier, 2019).

15. Vigaud, N., Robertson, A. W. & Tippett, M. K. Predictability of recurrent weather
regimes over North America during winter from submonthly reforecasts pre-
dictability of recurrent weather regimes over North America during winter from
submonthly reforecasts. Mon. Weather Rev. 146, 2559–2577 (2018).

16. Roller, C. D., Qian, J.-H., Agel, L., Barlow, M. & Moron, V. Winter weather regimes in
the Northeast United States. J. Clim. 29, 2963–2980 (2016).

17. Smith, D. M. et al. North Atlantic climate far more predictable than models imply.
Nature 583, 796–800 (2020).

18. Robertson, A. W., Vigaud, N., Yuan, J. & Tippett, M. K. Towards identifying sub-
seasonal forecasts of opportunity using North American weather regimes. Mon.
Weather Rev. 148, 1861–1875 (2020).

19. Lee, J. C. K., Lee, R. W., Woolnough, S. J. & Boxall, L. J. The links between the
Madden-Julian Oscillation and European weather regimes. Theor. Appl. Climatol.
141, 567–586 (2020).

20. Beck, C., Philipp, A. & Streicher, F. The effect of domain size on the relationship
between circulation type classifications and surface climate. Int. J. Climatol. 36,
2692–2709 (2016).

21. Cortesi, N., Torralba, V., González-Reviriego, N., Soret, A. & Doblas-Reyes, F. J.
Characterization of European wind speed variability using weather regimes. Clim.
Dyn. 53, 4961–4976 (2019).

22. Bloomfield, H. C., Brayshaw, D. J. & Charlton‐Perez, A. J. Characterizing the winter
meteorological drivers of the European electricity system using targeted circu-
lation types. Meteorol. Appl. 27, e1858 (2020).

23. Straus, D. M., Corti, S. & Molteni, F. Circulation regimes: chaotic variability versus
SST-forced predictability. J. Clim. 20, 2251–2272 (2007).

24. Vesanto, J. & Alhoniemi, E. Clustering of the self-organizing map. IEEE Trans.
Neural Netw. 11, 586–600 (2000).

Y. Liu et al.

9

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2023)   100 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://data.pnnl.gov/group/nodes/dataset/33355
https://data.pnnl.gov/group/nodes/dataset/33355
https://data.pnnl.gov/group/nodes/dataset/33355
https://data.pnnl.gov/group/nodes/dataset/33355
https://doi.org/10.2172/1893263
https://doi.org/10.2172/1893263
https://www.whitehouse.gov/briefing-room/statements-releases/2021/03/29/fact-sheet-biden-administration-jumpstarts-offshore-wind-energy-projects-to-create-jobs/
https://www.whitehouse.gov/briefing-room/statements-releases/2021/03/29/fact-sheet-biden-administration-jumpstarts-offshore-wind-energy-projects-to-create-jobs/
https://www.whitehouse.gov/briefing-room/statements-releases/2021/03/29/fact-sheet-biden-administration-jumpstarts-offshore-wind-energy-projects-to-create-jobs/


25. Liu, Y., Qian, Y. & Berg, L. K. Local-thermal-gradient and large-scale-circulation
impacts on turbine-height wind speed forecasting over the Columbia River Basin.
Wind Energy Sci. 7, 37–51 (2022).

26. Díaz‐Esteban, Y. & Raga, G. B. Weather regimes associated with summer rainfall
variability over southern Mexico. Int. J. Climatol. 38, 169–186 (2017).

27. Guèye, A. K. et al. Weather regimes over Senegal during the summer monsoon
season using self-organizing maps and hierarchical ascendant classification. Part
I: synoptic time scale. Clim. Dyn. 36, 1–18 (2011).

28. Haupt, S. E. et al. A method to assess the wind and solar resource and to quantify
interannual variability over the United States under current and projected future
climate. J. Appl. Meteorol. Clim. 55, 345–363 (2016).

29. Huang, H. et al. Where does the dust deposited over the Sierra Nevada snow
come from? Atmos. Chem. Phys. 22, 15469–15488 (2022).

30. Blackmon, M. L., Lee, Y.-H. & Wallace, J. M. Horizontal structure of 500 mb height
fluctuations with long, intermediate and short time scales. J. Atmos. Sci. 41,
961–980 (1984).

31. Weinberger, I., Garfinkel, C. I., White, I. P. & Oman, L. D. The salience of non-
linearities in the boreal winter response to ENSO: Arctic stratosphere and Europe.
Clim. Dyn. 53, 4591–4610 (2019).

32. Visbeck, M. H., Hurrell, J. W., Polvani, L. & Cullen, H. M. The North Atlantic Oscil-
lation: past, present, and future. Proc. Natl Acad. Sci. USA 98, 12876–12877 (2001).

33. Michelangeli, P.-A., Vautard, R. & Legras, B. Weather regimes: recurrence and
quasi stationarity. J. Atmos. Sci. 52, 1237–1256 (1995).

34. Wilczak, J. M. et al. The second wind forecast improvement project (WFIP2):
observational field campaign the second wind forecast improvement project
(WFIP2): observational field campaign. Bull. Am. Meteorol. Soc. 100, 1701–1723
(2019).

35. Efthymiadis, D., Jones, P. D., Briffa, K. R., Böhm, R. & Maugeri, M. Influence of large‐
scale atmospheric circulation on climate variability in the Greater Alpine Region
of Europe. J. Geophys. Res. Atmos. 112, D12104 https://doi.org/10.1029/
2006JD008021 (2007).

36. Portis, D. H., Walsh, J. E., Hamly, M. E. & Lamb, P. J. Seasonality of the North
Atlantic oscillation. J. Clim. 14, 2069–2078 (2001).

37. Shaw, W. J. et al. The second wind forecast improvement project (WFIP2): general
overview. Bull. Am. Meteorol. Soc. 100, 1687–1699 (2019).

38. Younas, W. & Tang, Y. PNA predictability at various time scales. J. Clim. 26,
130715122904005 (2013).

39. Cassou, C. Intraseasonal interaction between the Madden–Julian Oscillation and
the North Atlantic Oscillation. Nature 455, 523–527 (2008).

40. Chen, Z., Gan, B., Wu, L. & Jia, F. Pacific-North American teleconnection and North
Pacific Oscillation: historical simulation and future projection in CMIP5 models.
Clim. Dyn. 50, 4379–4403 (2018).

41. Fabiano, F., Meccia, V. L., Davini, P., Ghinassi, P. & Corti, S. A regime view of future
atmospheric circulation changes in northern mid-latitudes. Weather Clim. Dyn. 2,
163–180 (2021).

42. Vitart, F. & Robertson, A. W. The sub-seasonal to seasonal prediction project (S2S)
and the prediction of extreme events. NPJ Clim. Atmos. Sci. 1, 3 (2018).

43. Mingoti, S. A. & Lima, J. O. Comparing SOM neural network with Fuzzy c-means,
K-means and traditional hierarchical clustering algorithms. Eur. J. Oper. Res. 174,
1742–1759 (2006).

44. Misra, S., Li, H. & He, J. Robust geomechanical characterization by analyzing the
performance of shallow-learning regression method using unsupervised clus-
tering methods. in Machine learning for subsurface characterization (ed. Hammon
K.). 129–155 (Gulf Professional Publishing, 2020).

45. Hersbach, H. et al. The ERA5 global reanalysis. Q J. R. Meteor. Soc. 146, 1999–2049
(2020).

46. Vigaud, N. & Robertson, A. W. Convection regimes and tropical‐midlatitude
interactions over the Intra‐American Seas from May to November. Int. J. Climatol.
37, 987–1000 (2017).

47. Hannachi, A. On the origin of planetary-scale extratropical winter circulation
regimes. J. Atmos. Sci. 67, 1382–1401 (2010).

48. King, J., Clifton, A. & Hodge, B. Validation of power output for the WIND toolkit.
United States, Web https://doi.org/10.2172/1159354 (2014).

ACKNOWLEDGEMENTS
This research has been supported by the US Department of Energy, Office of Energy
Efficiency and Renewable Energy, and Wind Energy Technologies Office. PNNL is
operated by DOE by the Battelle Memorial Institute under contract DE-A05-76RL0
1830.

AUTHOR CONTRIBUTIONS
L.K.B., Y.Q., Y.L., and S.F. designed the research. Y.L. performed the analysis with
contributions from all authors. Y.L. and S.F. led the writing and editing of the
manuscript. All authors contributed to the interpretation of the results.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41612-023-00403-5.

Correspondence and requests for materials should be addressed to Ye Liu or Sha
Feng.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© Battelle Memorial Institute 2023

Y. Liu et al.

10

npj Climate and Atmospheric Science (2023)   100 Published in partnership with CECCR at King Abdulaziz University

https://doi.org/10.1029/2006JD008021
https://doi.org/10.1029/2006JD008021
https://doi.org/10.2172/1159354
https://doi.org/10.1038/s41612-023-00403-5
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	How do North American weather regimes drive wind energy at the sub-seasonal to seasonal timescales?
	Introduction
	Results
	The dominant weather regimes over North America
	Persistence and transitioning of WRs
	Impact of WRs on hub-height wind speed
	Relationship between WRs and wind speed
	Impact of WRs on power production

	Discussion
	Methods
	Two-stage clustering procedure
	Estimation of power production
	WR-related wind speed and power production
	Significance test

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




