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Impact of satellite thickness data assimilation on bias
reduction in Arctic sea ice concentration
Jeong-Gil Lee 1 and Yoo-Geun Ham 1✉

The impact of assimilating satellite-retrieved Arctic sea ice thickness (SIT) on simulating sea ice concentration (SIC) climatology in
CICE5 is examined using a data assimilation (DA) system based on the ensemble optimal interpolation. The DA of the SIT satellite
data of CryoSat-2 and SMOS during 2011–2019 significantly reduces the climatological bias of SIC and SIT in both sea ice melting
and growing seasons. Moreover, the response of SIC to SIT change is strongly dependent on the seasons and latitudinal locations.
The SIT in the inner ice zone thickens due to the SIT DA during the boreal winter wherein the SIT observation is available; the ice
melting throughout the subsequent seasons is attenuated to increase SIC during the boreal summer to reduce the simultaneous
SIC bias. In marginal ice zones, the positive SIT bias depicted in the control simulation is significantly reduced by SIT DA, which
reduces the positive SIC bias. The idealized experiments of reducing the SIT show that the enhanced ice bottom melting process
plays a crucial role in reducing the SIC; the prescribed SIT thinning increases the ice bulk salinity due to the weak gravity drainage of
brine and increases the ice bulk temperature due to the decrease of the sea ice albedo. The augmentation of the ice salinity and
temperature contributes to the shrinkage of the ice enthalpy, boosting the bottom melting process, which leads to SIC decrease.
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INTRODUCTION
Arctic sea ice is rapidly and consistently declining due to
anthropogenic forcing1–4. Moreover, drastic changes in the Arctic
sea ice conditions lead to the amplification of the interannual sea
ice variability, which means that the accurate prediction of Arctic
sea ice extent (SIE) is more challenging in warm climates5–7.
The interannual variations in the amount of Arctic sea ice

substantially affect the Arctic ecosystem and Arctic shipping route
(i.e., Northern Sea Route) for commercial shipments8,9. Addition-
ally, they potentially impact the mid- and low-latitude weather
and climate system via the atmospheric teleconnection pro-
cesses10–13. Thus, the demands for the accurate prediction of the
Arctic sea ice amount at interannual time scales have been
augmented in recent decades14.
The accurate predictions of the sea ice amount using dynamical

models depend on the quality of the initial conditions15,16, which
can be obtained by implementing data assimilation (DA)
techniques using available sea ice observations17,18. As a
representative prognostic variable of the dynamical sea ice model,
sea ice concentration (SIC) has been assimilated to produce a
reanalysis for several decades17,19–22. However, the impact of SIC
DA hardly lasts for more than a season as SIC represents the
surface sea ice condition, which is strongly affected by atmo-
spheric variables with the time scale of a few days23. Instead, sea
ice thickness (SIT) is expected to be more sustainable than SIC;
therefore, the assimilation of SIT will afford higher predictability
than that of SIC24.
The satellite-based Arctic SIT observations have been produced

since the early 2000s25, although retrieval methods are in an early
stage of development. Until the early 2010s, low-resolution
spatiotemporal data for Arctic SIT was available, and SIT was
updated using SIC observations through multivariate DA frame-
works21,26. Although the simulation quality of the assimilated SIT
climatology is good, this methodology has limitations as the SIT
updates are dependent on the modeled relationship between SIC

and SIT. This is expected to lead to inconsistencies between the
updates and observations in some cases; SIT updates using the
multivariate DA framework can increase the SIT bias. In this regard,
the direct injection of the SIT observation into a numerical model
using a DA scheme is clearly required to produce realistic SIT initial
conditions.
Fortunately, the accumulation of satellite-based SIT observa-

tions from over more than a decade provides an opportunity for
initializing SIT by directly injecting the SIT observations27,28.
Recent studies have tried to initialize SIT by assimilating
satellite-derived CryoSat-229 (CS2) and/or Soil Moisture Ocean
Salinity30 (SMOS) data31–36. It is shown that the SIT bias reduces by
about 20% when the merged CS2 and SMOS data are assimilated
into the coupled ocean and sea ice model of the
TOPAZ4 system37,38. The assimilation of CS2 data into the Met
Office’s coupled seasonal prediction system (GloSea) leads to the
correction of the negative SIT biases in the central Arctic region
during the boreal winter32. Similarly, it is demonstrated that the
underestimated SIT represented in the Met Office’s Forecast
Ocean Assimilation Model (FOAM) without any addition of the SIT
data is effectively thickened by the addition of CS2 data34.
Interestingly, the DA of SIT leads to better simulations in not only
the assimilated observation (i.e., SIT) but also the SIC39–42.
Similarly, the benefits of assimilating CS2 SIT observations on
the seasonal forecast of Arctic SIE during the boreal autumn
season have been presented32. While the assimilation of the CS2
SIT data leads to the improvement in simulating Arctic SIE via the
modulation of the thick sea ice amount, the assimilation of thin
sea ice using the SMOS observation significantly impacts SIC in
marginal ice zones (MIZs) has been demonstrated43. This denotes
the complementarity between the CS2 and SMOS SIT data.
Therefore, the SIT DA using both satellites would further improve
the simulation quality of the Arctic sea ice35,42,44.
Furthermore, the constructive effect on the short-term opera-

tional SIC forecasts has been demonstrated using the satellite SIT
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data of the CS2 and SMOS merged data37 or individual CS2 and
SMOS data35,45. It has been found that the quality of mean SIT and
the short-term forecasting skills for SIC are improved when
assimilating CS2 data into FOAM during the boreal summer and
winter seasons33.
The positive impact of the SIT DA on SIC simulation and forecast

has often been reported; however, few studies have explored the
detailed physical mechanism of how the SIT increment modulates
SIC. The thinning of sea ice, which weakens the role of SIT as an
insulating cap of the atmosphere-ocean interfaces, is causative of
the additional release of heat from the warmer ocean to the colder
atmosphere during the winter season (so-called “insulation
effect”)46,47. Consequently, locally increased surface warming led
by thinner sea ice would further boost the thinning of ice and lead
to Arctic amplification due to the potential positive feedback48.
However, except for the insulation effect, the detailed mechanism
of the indirect impact of SIT on SIC variation is still not well known.
In other words, although the realistic SIT states are known to affect
the accurate estimation of the growth/melting rate of the sea ice
and the resultant sea ice opening/closing modulating the ocean-
atmosphere interactions49–51, its detailed process is still unknown.
In this study, the Arctic sea ice for a decade (i.e., 2011–2019) is

reanalyzed by assimilating satellite-based SIT into the Community
Ice CodE version 5.1.2 (CICE5) using the ensemble optimal
interpolation (EnOI) scheme52–54, and the indirect response of
SIC led by SIT observation is examined. To understand the detailed
process of how the SIT observations improve the simulation
quality of SIC, idealized experiments and heat budget analysis are
performed.

RESULTS
Impact of the sea ice thickness data assimilation on sea ice
simulation
Fig. 1 displays the monthly averaged Arctic SIE, defined as the
cumulative area of all grid cells with SIC greater than 0.15 over the
Northern Hemisphere during 2011–2019. The simulated SIE in the
experiment without DA (referred to as noDA hereinafter) tends to
be overestimated during the boreal winter season from December
to March compared to the satellite SIC data. For example, the SIE
during the boreal winter of 2011/12 is over 15 ´ 106 km2 in noDA,
while the satellite-retrieved value is between 13 and 14 ´ 106 km2.
In contrast, the simulated SIE in noDA is systematically under-
estimated from August to September (AS) compared to the
satellite observations. Particularly, the SIE during the boreal
summer of 2012 in noDA is only half of that observed.
Consequently, the climatological bias of SIE in noDA exhibits

positive and negative values during the boreal winter and boreal
summer/autumn, respectively (Fig. 1b).
The assimilation of the SIT satellite observation systematically

reduces the SIE bias. This improvement is particularly evident after
2014. For example, during the boreal winter of 2013/14, the
overestimation of SIE in noDA is not apparent in the SIT
assimilated experiment (referred to as DA hereinafter). This bias
correction is well demonstrated in the climatological SIE time
series (Fig. 1b), which denotes that the positive SIE bias from
December–February (DJF) is systematically reduced in DA.
Note that although the SIT observation is assimilated only in the

boreal winter season (i.e., from October to April), the SIE bias also
substantially reduces during the boreal summer/autumn season,
where the SIT observation is not directly assimilated. For example,
the climatological SIE bias during the AS season is �1:7 ´ 106 km2

in noDA, which tends to be nearly zero in DA (Fig. 1b). This implies
that the assimilation of the satellite SIT observation improves the
simulation quality of SIC during not only the season in which the
observation is assimilated but also the remaining seasons. This
might possibly be due to the multi-season persistency of the sea
ice states, as previously reported23,55.
The climatological response of SIC by the SIT DA is examined

using the satellite observation data (i.e., SSMIS CDR) for the DJF
season in Fig. 2. In noDA, the weak positive SIT bias is evident in
the Barents and Greenland Seas and the Sea of Okhotsk, while the
negative SIT bias is robust in inner ice zone (IIZ) (Fig. 2a). By
assimilating the SIT observations, the climatological SIT becomes
thinner in MIZ, particularly over the Barents-Kara Sea and the Sea
of Okhotsk, and becomes thicker in IIZ (Fig. 2b). The mean SIT in
MIZ is generally thinner for DA compared to noDA, and a similar
result appears in the Sea of the Okhotsk and the Barents Seas
(Fig. 2e). Therefore, in DA, both the positive SIT bias in MIZ and the
negative SIT bias in IIZ are reduced.
In noDA, the positive SIC bias is prominent in MIZ, while the bias

amplitude is relatively weak in IIZ (Fig. 2c). The reason for the weak
Arctic SIC bias amplitude in IIZ is that those areas are fully covered
by sea ice during the boreal winter season in both simulations and
observations. Interestingly, the thinning of SIT in DA contributes to
the reduction of SIC in MIZ where the positive SIT bias is reduced
(Fig. 2d–f). In addition, the reduction in SIT due to DA leads to a
decrease in sea ice area (SIA) in MIZ. This reduction in SIC
contributes to weakening the SIC bias in noDA.
While the climatological SIT changes due to the SIT DA in MIZ

mainly modulates the SIC during the boreal winter season, the SIT
changes in IIZ play a positive role in modulating the SIC climatology
mainly during the sea ice melting season (i.e., the AS season) (Fig.
3). The strong negative bias for both SIC and SIT in noDA is
distributed over the northern Greenland and CAP regions in IIZ,
while the bias in MIZ is faint as the sea ice is nearly melted in both

Fig. 1 Time-series of Arctic sea ice extent during 2011–2019. The temporal evolution (a) and mean seasonal cycle (b) of the Northern
Hemisphere sea ice extent index (106 km2) during 2011–2019 for the SSMIS CDR satellite data (black), noDA experiment (blue), and DA
experiment (red).
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the simulations and observations during this season (Fig. 3a–c). The
polar-region-averaged (poleward of 60°N) SIC in noDA is system-
atically underestimated by more than 0.25 compared to the SSMIS
CDR satellite data. Note that the spatial distribution of the SIT bias
during the AS season is almost identical to that during the DJF
season, indicating that the spatial distribution of the SIT bias
remains similar for all seasons.
In most IIZ, both SIT and SIC in DA are overall higher compared

to those in noDA (Fig. 3b–d). As the direct injection of the satellite
observations through DA is performed only during the boreal
winter season, the thickened SIT in DA during the AS season is
induced by the indirect impact of DA; Fig. 4 showed the
differences in sea ice mass (SIM) and SIC over the inner ice zone
adjacent to Fram Strait (IIZ-FS) and sea ice volume flux (SIVF) over
the Fram Strait region (FS) between DA and noDA. The Fram Strait
serves as the primary outlet for the export of sea ice from the
Arctic. It shows that the SIC in DA increases in the summer months
along with the increase in SIM throughout the year (blue and red
lines in Fig. 4). The thickened SIT during the boreal winter season
in DA prevents the sea ice from melting during the following
summer seasons, and thus, the significant negative SIE bias
disappears (Figs. 1b and 3d); the thickened SIT during the boreal
winter season is sustained for multi seasons as shown by the
increase in SIM23,56. Indeed, the climatological mean SIC tendency
by thermodynamic process during the melt season (i.e.,
April–August) in DA (�0:14% day-1) is approximately half that in
noDA (�0:32% day-1), where the difference in the dynamic
process is not evident over the central Arctic region (poleward
of 80°N).
In addition to this, we found that the sea ice volume flux (SIVF)

through the FS region also contributes to an increase in SIC with
increase in SIM over IIZ-FS (black solid line in Fig. 4). The SIVF is
calculated by

SIVF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SIVF2z þ SIVF2m

q
(1)

where SIVFz (SIVFm) is the sea ice drift for the zonal (meridional)
component. The zonal (or meridional) volume flux SIVFz (or SIVFm)
for the Fram Strait is the integral of volume flux across each grid
cell (i ¼ 1; ¼ ; n) located at the boundary and is calculated by

SIVFz or m ¼
Xn
i¼1

IiGDici (2)

where Di is the zonal or meridional component of the sea ice drift
at the grid cell numbered as i, G is the length of the grid cell ci is
SIC, and Ii is SIT of the cell57. The sea ice variables used for
calculation are based on monthly data. This could be attributed to
the thicker SIT in DA compared to noDA, which increases the mass
of sea ice, thereby reducing its sensitivity to wind and ocean
current stresses. Consequently, the flow velocity of sea ice is
reduced, which in turn mitigates sea ice export. This suggests that
the increase in summer SIC over the IIZ region may be partly
attributable to the consistent impact of the dynamic component.
On the other hand, the simultaneous impact of thinner sea ice

in MIZ on the decrease of the SIC climatology during the boreal
winter is also needed to be investigated. The following subsection
demonstrates the primary mechanism responsible for the reduc-
tion in the SIC climatology due to the thinning of the SIT
climatology in MIZ during the boreal winter season.

Physical mechanism of the SIC reduction due to the SIT
thinning
To explore the detailed mechanism of how the given SIT reduction
decreases the SIC in MIZ during the boreal winter, idealized
experiments are conducted assuming that each category of SIT is
reduced by 0:05m over the region where SIT<0:4m (referred to as
“EXP”) compared to the control simulation (which is identical to
noDA; referred to as “CTL” in this subsection). Note that the SIT
initial conditions in EXP are constrained not to be smaller than
zero to maintain the physical boundaries; if the updated SIT in EXP

Fig. 2 Mean bias of simulated winter SIT and SIC during 2011–2019. Climatological bias of the SIT (m) in noDA (a) and DA (b) with respect
to PIOMAS and of SIC (a fraction from 0 to 1) in noDA (c) and DA (d) with respect to SSMIS CDR during the DJF season over 2011–2019.
Climatological average of the SIT in noDA (blue) and DA (red) for MIZ where the SIT in noDA is thinner than 0.4 m, the Sea of Okhotsk
(140− 160°E, 40− 60°N), and the Barents Sea (30− 60°E, 70− 75°N) (e). The differences of SIC (solid) and SIA (dotted) between DA and noDA
experiments are distributed as a function of SIT in noDA (f).
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is less than zero, a small value (i.e., 10�9cm) is prescribed as the
initial condition. To objectively explore the impact of SIT
reduction, none of the variables except for SIT was changed in
the initial conditions. To reduce the noise in the results induced by
the small number of samples, EXP and CTL are performed using
the initial conditions on December 1st from 2000 to 2019 (a total

of 20 ensemble members). Twenty simulation-averaged values are
presented as the final results.
Note that the differences between EXP and CTL are solely

originated from the SIT differences in the initial conditions, and
identical atmospheric and ocean boundary conditions in both EXP
and CTL reduces the impact of the SIC due to the initial SIT

Fig. 4 Changes in SIM, SIC, and SIVF led by SIT data assimilation. The climatological differences of sea ice mass (SIM, red line, over the
Central Arctic region (IIZ-FS), 20°W-0°E, 80°N-90°N), SIC (blue line, over the IIZ-FS), and the sea ice volume flux (SIVF, black, over the Fram Strait
(FS) region, 20°W-0°E, 75°N-80°N) during 2011–2019.

Fig. 3 Mean bias of simulated summer SIT and SIC during 2011–2019. Climatological bias of the SIT (m) in noDA (a) and DA (b) with respect
to PIOMAS and of SIC (a fraction from 0 to 1) in noDA (c) and DA (d) with respect to SSMIS CDR during the AS season over 2011–2019.
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thinning. Based on the e-folding time of the initial SIC responses
(not shown), we calculated 1-month-averaged differences
between two experiments. In addition, we only analyzed regions
where the SIT in CTL was thicker than 0:05m to avoid the arbitrary
effect of the constraint condition (i.e., 10�9cm).
Fig. 5a displays the MIZ-averaged monthly differences between

EXP and CTL for the prognostic sea ice variables (ΔSIC and ΔSIT). In
EXP, the reduction of SIT in MIZ is clearly shown as designed, even
though its amplitude is smaller than the initial prescribed
differences due to the identical atmospheric and oceanic
boundary forcings. Interestingly, as a response to the negative
ΔSIT, SIC tends to be reduced in the entire MIZ (i.e., negative ΔSIC)
(Fig. 5a), which is consistent with the results in the SIT DA. Both
reductions in SIT and SIC are statistically significant by performing
the two-tailed Student’s t-test. To investigate the cause of SIC
reduction led by the thinning of SIT in MIZ, the differences in the
monthly-averaged SIC tendency terms due to dynamics/transport
(daidtd) and due to thermodynamics (daidtt) provided by CICE
model output between EXP and CTL are calculated (Fig. 5b).
Clearly, the tendency due to the thermodynamic processes is the
main factor causing the total SIC tendency change between EXP
and CTL, while the tendency in the dynamical/transport process
exhibited weak positive values. The effect caused by the
dynamical process is thought to be a response to the changes
led by the thermodynamical process, because if the SIC decreased
due to thermodynamics (i.e., daidtt <0), dynamically driven

changes in SIC would contribute to an increase (i.e., daidtd >0)
by reducing the possibility of dynamical sea ice breaking58,59. This
means that the thermodynamic processes mainly lead to the
intensification of the dwindling of SIC in EXP.
To further reveal the thermodynamic process responsible for

the SIC reduction, mechanism-denial experiments are conducted.
That is, while performing EXP and CTL, one of the thermodynamic
mechanisms is removed to identify the fundamental process in
the response of SIC to SIT reduction. The denial experiments are
conducted by removing either ice melt on the bottom (EXP/
CTL_bottom), ice melt on top (EXP/CTL_top), ice melt at the snow
boundary surface (EXP/CTL_snow), or the lateral ice melting
processes (EXP/CTL_lateral). The difference between two denial
experiments (e.g., the difference between EXP_bottom and
CTL_bottom) is compared to the difference between EXP and
CTL to quantify the role of the thermodynamic processes on SIC
reduction. The difference between EXP and CTL is referred to as
“No_denial” hereinafter, and the differences in SIC between EXPs
and CTLs by removing the ice melt on the bottom, ice melt on top,
ice melt at the snow boundary surface, and ice melt on lateral
directions are referred to as BOTTOM_denial, TOP_denial,
SNOW_denial, and LATERAL_denial, respectively.
The differences in ΔSIC between any denial experiment and

No_denial are shown in Fig. 5c. Through a series of denial
experiments, the sea ice bottom melting is determined to be the
primary factor in decreasing SIC by a given SIT reduction. The

Fig. 5 Investigation for the impact of SIT reduction and related mechanism through the idealized experiments. The monthly (December)
area-averaged mean differences between EXP and CTL in MIZ during 2000–2019 for SIT (m) and SIC (a fraction from 0 to 1) (a) and tendency
terms of SIC (b). The daidtt and daidtd are the tendency terms of SIC due to the thermodynamic and dynamic processes (a fraction from 0 to 1
per month), respectively. The symbol “Δ” represents the differences between the SIT reduction experiment and the control experiment (i.e.,
EXPs minus CTLs). Each difference of ΔSIC between denial experiments and No_denial is calculated (c). The red-dotted line in (c) represents
the ΔSIC of No_denial, which is the same as the 2nd bar in (a). The area average is calculated only for the regions where SIC is reduced by
thinning ice (i.e., ΔSIC of No_denial is negative). The asterisk signs on the labels of x-axis denote a statistically significant difference between
EXP and CTL (p-value < 0.01).
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degree of SIC reduction by a given SIT thinning in TOP_denial,
SNOW_denial, and LATERAL_denial is similar to that for No_denial;
therefore, the difference in ΔSIC from No_denial and the above
denial experiments is nearly zero. This implies that the corre-
sponding mechanisms are not responsible for the SIC reduction in
No_denial. In contrast, in BOTTOM_denial, the SIC decreases
because the SIT thinning in No_denial almost disappears (1st bar
in Fig. 5c). This clearly indicates that the enhanced sea ice bottom
melting process is key process leading the SIC reduction according
to the prescribed SIT thinning.
The amplitude of the ice bottom melting (referred to as meltb,

unit of cm day-1) is determined as follows:

meltb ¼ Fcb � Fbot
q

(3)

where q is the positive of the enthalpy of the bottom ice layer (W
day cm-3), denoting the energy needed to melt a unit volume of
sea ice60. Fcb is the downward conductive heat flux from the ice
top to the ice bottom surface (W cm−2), and Fbot is the downward
heat flux from the ice to the ocean (W cm−2). If Fcb (Fbot) is
negative, the flux is transferred from the ice bottom to the top
surface (from the ocean to the ice). In other words, if Fcb>Fbot (i.e.,
the transfer of the energy to the upper sea ice is lower than the
input of the energy from the sea ice bottom), ice melting occurs at
the bottom surface ðmeltb>0Þ. The ice bottom melting increases
(i.e., increase in meltb) when the input of the heat flux increases
(i.e., increase in Fcb � Fbot) and/or the energy needed to melt
decreases (i.e., decrease in q).
Fig. 6 displays the MIZ-averaged monthly-mean of meltb, the ice

enthalpy of the bottom ice layer (q), and the net transfer of the
energy (Fcb � Fbot) in EXP and CTL, and the contribution of q and
Fcb � Fbot on the change in meltb. The meltb in EXP is amplified
more than that in CTL (Fig. 6a) with the reduction in the enthalpy
(Fig. 6b), supporting the finding that the enhanced sea ice bottom

melting process leads to SIC reduction in EXP. On the other hand,
the input of the heat flux is decreased in EXP, which contributes
the attenuated sea ice bottom melting (Fig. 6c).
In order to compare the contributions of ice enthalpy and that

of heat flux to the increase in meltb in EXP quantitatively, we scale
the changes in both variables to the same unit by using following
equation.

Δmeltb ¼ FEXP
qEXP

� FCTL
qCTL

¼
FEXP

qCTL
qEXP

� �
� FCTL

qCTL
(4)

where FEXP (FCTL) and qEXP (qCTL) are the net transfer of the energy
Fcb � Fbot and ice enthalpy q in EXP (CTL), respectively. By
substituting FEXP ¼ FCTL, or qEXP ¼ qCTL into Eq. (4), we can quantify
the contribution of q, or F change led by the SIT reduction in unit
of cm, as shown in Eq. (5), or (6), respectively.

qcont ¼
FCTL

qCTL
qEXP

� 1
� �

qCTL

������

������
(5)

Fcont ¼ FEXP � FCTL
qCTL

����
���� (6)

This comparison clearly shows that the augmentation of the ice
bottom melting is mainly led by the decrease in the enthalpy
rather than the net transfer of the energy (Fcb � Fbot) at the
bottom boundary (Fig. 6d).
To further verify that the difference in the strength of the ice

bottom melting is caused by the changes in ice enthalpy,
sensitivity tests are performed by increasing or decreasing the
enthalpy q at all grid points by 30% of its value in CTL. These
simulation results verify that the ice bottom melting is amplified
(attenuated) by a decrease (increase) in the ice enthalpy q, which

Fig. 6 Changes in ice bottom melting (meltb) and related variables induced by SIT reduction. The monthly (December) area-averaged
mean of CTL (1st black bars) and EXP (2nd black bars) and their differences (3rd gray bars) in MIZ for the ice bottom melting (a), ice enthalpy
(b), and heat balance term (c), and the quantified contribution of enthalpy and heat balance by scaling to same unit (d) during 2000–2019. The
area average is calculated only for the regions where SIC is reduced by thinning ice (i.e., ΔSIC of No_denial is negative).
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leads to the decrease (increase) in SIC by �0:72% (þ0:58%) (not
shown).
The following questions arise: what causes the decrease in the

enthalpy q and what is the relationship with the SIT thinning in
EXP? The sea ice enthalpy q is the function of the ice bulk salinity
(S, ppt) and temperature (T, °C) as follows60:

q ¼ ρi ½c0ðTm � TÞ þ L0ð1� Tm

T
Þ � cwTm� (7)

where ρi ¼ 917 ´ 10�6kg cm−3 is the density of ice, Tm is the
temperature at which the ice is completely melted (Tm � �μS),
c0 ¼ 2; 106 J kg−1 °C−1 is the specific heat of fresh ice at 0 °C,
cw ¼ 4; 218 J kg−1 °C−1 is the specific heat of the ocean,
L0 ¼ 3:34 ´ 105 J kg−1 is the latent heat of fusion of fresh ice at
0 °C, and μ is the empirical constant from the relation between the
melting temperature and salinity of brine, which is set as 0.054 °C
ppt�1 following Assur (1958). According to Eq. (7), q weakens
when T or S is increased. The amount of energy required to melt a
unit volume of sea ice (i.e., q) decreases with increasing ice bulk
temperature because the ice easily melts at warm temperatures.
As is known, the increase in ice bulk salinity decreases the ice
enthalpy by lowering the melting temperature.
Both T and S contribute to the decrease in q in EXP compared to

that in CTL. First, the SIT thinning can induce an increase in the ice
bulk salinity by weakening the gravity drainage process61. Gravity
drainage is the dominant desalination process in sea ice, which is
the convective exchange of cold and dense brine with fresh sea
water62. During the formation of new ice, sea ice initially retains
the higher amount of the salt presented in the ocean; thus, the sea
ice near the surface tends to be more saline than that near the
bottom layers. Simultaneously, the upper surface of sea ice is
colder than the bottom surface as the atmosphere in this region is
colder than the ocean. Therefore, it contains higher salinity as the
formation of sea ice with colder temperature results in higher
brine salinities. This colder and saltier surface sea ice leads to
unstable density stratification. Hence, the brine drains out of the
ice and the brine undergoes convective overturning with the
ocean, which is replaced by fresh ocean water, and the ice bulk
salinity decreases. The thinner the sea ice is, the lower is the
drainage strength determined by the extent of density

stratification. This is because of a relatively moderate vertical
gradient of ice density in thin ice63,64. Subsequently, with the
thinning of SIT, sea ice undergoes a weak desalination process,
which increases the ice bulk salinity65.
This aforementioned dependency of S on SIT is well simulated

in CICE5 by realistically resolving the brine drainage process
(Fig. 7). The mean bulk salinity in CTL decreases with increasing
SIT, following a negative exponential-like trend over the pan-Arctic
region (Fig. 7a). Most of the sea ice has a thickness of fewer than
2.0 m, and bulk salinity is about 4.0 ppt when the ice is 2.0 m but
rapidly increased to about 16.5 ppt in the 0.1 m-thick ice. This
implies that the reduction in SIT could be a reason for the increase
in S, and this relationship is well represented in MIZ (Fig. 7b). The
mean S in EXP (6.93ppt) is larger by 0.40ppt than that in CTL
(6.53ppt), supporting the fact that the increase in salinity
contributes to the decrease in sea ice enthalpy q.
Additionally, the temperature contributes to increasing the ice

enthalpy through the albedo-related mechanism. The SIT thinning
decreases the ice surface albedo as thin sea ice allows the
penetration of more solar radiation into the ice and ocean66. Thus,
the reduction in SIT leads to ice bulk temperature warming and
decreases the ice enthalpy. Fig. 8 shows the time evolution of the
Arctic-averaged differences of the ice-albedo (unit of %), the
temperature of individual layers of sea ice (unit of °C), and
absorption of shortwave heat flux (Fswabs, Wm−2) between two
idealized experiments (i.e., EXP and CTL). Right after the
integration starts, the temperature of sea ice began to rise in all
layers by SIT reduction in EXP. The degree of increase was stronger
in top layers and relatively weaker at bottom layers (Fig. 8b),
indicating that the surface process is responsible for this
temperature increase. Solar radiation is known to be predomi-
nantly absorbed in the uppermost layers of sea ice, with
decreasing absorption rates as it penetrates deeper into the
ice67. Based on the analysis, we can conclude that the primary
factor contributing to the increase in sea ice temperature during a
decrease in SIT in our experiment is the increased absorption of
solar radiation, which means that the warming of the bulk
temperature eventually contribute to decrease the sea ice
enthalpy q.

Fig. 7 Relationship between SIT and sea ice bulk salinity (S) in simulation. The distribution of ice bulk salinity (ppt) as a function of SIT (m)
(upper, black solid line) and the number of cases (lower, gray bars) for Arctic region (a) and for MIZ (b) in CTL during December 2000–2019.
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One might think that the impact of the shortwave would be
minimal as time elapses and the dark season approaches, the
influence of solar radiation energy diminishes. However, the
effects of shortwave radiation become progressively stronger from
January to February as the polar night ends in December. While
the amount of albedo reduction due to SIT DA remains similar
over time, it is evident that the absorption of shortwave radiation
gradually augmented as the downward shortwave increases from
December to January/February (Fig. 9). This indicates the thinning
of SIT due to DA still can increase the absorption of shortwave
radiation with reduced albedo during winter season, which in turn
contributes to the increase in ice temperature.

DISCUSSION
The DA system was developed to blend the satellite-based SIT
data of CS2 and SMOS from the European Space Agency into the
CICE5 model using the EnOI method. In addition to SIT, the quality
of the SIC reanalysis produced by the SIT DA system was improved
for both the boreal summer and winter seasons. The negative and
positive SIT biases over the thick and thin sea ice regions in noDA
were systematically reduced in the SIT DA experiment due to the

complementarity between the SIT satellite data of CS2 and SMOS
covering the different major parts of the Arctic regions.
To investigate the detailed physical processes related to SIC

reduction to SIT thinning in MIZ during the boreal winter,
idealized experiments were performed. The idealized experiment
clearly showed the decrease in SIC by SIT thinning and
demonstrated that the thermodynamic process is the dominant
factor leading to the reduction in SIC. Among various thermo-
dynamic processes, the ice bottom melting process was found to
be mainly responsible for the decrease in SIC. Moreover, the
decrease in the sea ice enthalpy is the primary driver of
augmented ice bottom melting. Ice enthalpy could be attenuated
by the increase in ice bulk salinity (temperature) due to the
desalination (ice albedo) process with SIT thinning.
Figure 10 is a schematic which summarized our main findings.

During the boreal winter, the upper surface of sea ice is colder
than the bottom surface due to the colder atmosphere
temperatures. The sea ice formed at the top surface has higher
brine salinities with colder temperatures, whereas the bottom ice
undergoes convective overturning exchange with the fresher
ocean water. As a result, unstable density stratification is created,
which determines the extent of the brine drained out of the ice by

Fig. 9 Impact of SIT data assimilation on albedo and absorbed shortwave radiation during the winter over 2011–2019. The climatological
differences in the albedo (black) and absorption of solar radiation (gray) between DA and noDA on December, January, February, and DJF
season during 2011–2019 over the regions where the positive biases of SIC are improved by SIT DA.

Fig. 8 Changes in sea ice bulk temperature (T), albedo, and absorbed shortwave radiation by SIT reduction. The time-series of the
differences between EXP and CTL for ice layer temperature (top: blue dotted, middle: green dotted, and bottom: red dotted), ice albedo (gray
solid), and absorbed shortwave radiation (black solid) (a) and the mean difference in vertical profiles for ice layer temperature between EXP
and CTL (b) during 2000–2019 in MIZ.
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gravity (Fig. 10a). The gravity drainage of brine is the primary
reason for the increase in bulk salinity with thinning SIT61,62,65.
The reduction in SIT leads to the sea ice experiencing less

exchange of brine with fresher ocean water, contributing to an
increase in salinity and density, especially at the lower layers of the
sea ice. In addition, SIT thinning increases the absorption of the
solar radiation by reducing the ice surface albedo and acts to
elevate the ice bulk temperature66. The solar radiation heats the
ice in a vertically differentiated manner (i.e., the higher layer, the
more heating up)67, which would contribute to the reduction in
density gradient. The resultant lower vertical density gradient due
to the SIT reduction weakened the desalination (brine rejection),
leading to saltier sea ice (Fig. 10b). The increase in both T and S
leads to the attenuation of ice enthalpy and the resultant
amplified melting at the ice bottom contributing the reduction
in SIC.
To determine the relative importance of T and S on q, the

contributions of T and S were qualitatively compared as follows:

Tcont ¼ qðTEXP; SCTLÞ � qðTCTL; SCTLÞ
Scont ¼ qðTCTL; SEXPÞ � qðTCTL; SCTLÞ

(8)

where Tcont and Scont denote the contributions of temperature and
salinity on the ice enthalpy change, respectively. The overbar
represents the spatial-area-averaged monthly mean. Based on Eq.
(8), Scont is roughly 3.4 times larger than Tcont , implying that the
change in the ice bulk salinity might play a relatively more
important role than that in the bulk temperature in the
intensification of the ice bottom melting with SIT reduction.
As mentioned above, an obvious physical relation exists

between SIC and SIT. This implies that a better understanding of
the physical mechanism of the effect of SIT increment on SIC will
not only improve our knowledge of the sea ice dynamics but also
provide potential factors related to sea ice prediction. In detail, SIT
leads to a simultaneous change in SIC, suggesting that the
multivariate assimilation using cross-covariance between SIC and
SIT might improve the reanalysis quality. This emphasizes the

requirement of SIT observations to guarantee the skillful predic-
tion for SIC and SIT.
In this study, the SIC bias in noDA is effectively reduced over

thin sea ice regions (i.e., SIT range between 0.2 and 0.4 m) by
assimilating the multiple SIT observations (i.e., CS2 and SMOS). It
should be noted that the effective range of thickness to reduce
the SIC bias may differ from that in a DA framework that
assimilates single SIT dataset. For example, the extent of SIC bias
reduction in this study would be mainly influenced by SMOS,
especially given its effectiveness in thin sea ice regions. However,
the impact of CS2 could be also expected, which becomes clear by
conducting experiments only with CS2. This implies that distinct
impacts of the SIT change on the SIC according to the different SIT
dataset is needed to be assessed as a future study.
The study results suggest that the thermodynamic process

related to the reduction in SIT might accelerate the decline in sea
ice in a warming climate48. As emphasized in this study, once SIT
thinning leads to SIC reduction, the reduced SIC accelerates the
increase in ice bulk temperature via the sea ice albedo feedback,
subsequently causing additional SIT thinning. This means that the
internal positive feedback between SIC and SIT might lead to
Arctic amplification, even without the coupled processes with
other climate components.

METHODS
The sea ice model and atmospheric/oceanic forcing
The CICE5 sea ice dynamical model established by the Los Alamos
National Laboratory68 is used in this study. The CICE5 model is a
state-of-the-art sea ice model with complex physical parameteriza-
tion schemes and is utilized as a sea ice component of the National
Center for Atmospheric Research Community Earth System
Model69,70. CICE5 model classifies the ice thickness distribution
into five categories. To resolve the sea ice temperature and salinity
variations, the individual SIT categories comprise seven vertical ice
layers and one snow layer. The thermodynamic and dynamic
processes of the model are mushy layer thermodynamics and

Fig. 10 The thermodynamical process of SIC response to SIT reduction during the boreal winter. A schematic diagram depicting the
processes of the response of SIC to the reduction in SIT. The situation in noDA (a) and the situation with SIT thinning by DA (b) are depicted.
The boxes between the atmosphere and the ocean are sea ice. Sketch of downward, reflected and absorbed solar radiation (orange arrows),
convective flow of the less salty ocean water (green arrows) freshening the lower part (green circles) within the ice and downward flow of
brine into the ocean (blue arrows). The vertical density profile of sea ice is displayed on the left boxes (red lines). The ice bottom melting (i.e.,
meltb) is indicated on the bottom of sea ice (red brushstrokes). The contribution of the ice temperature and salinity is connected the
amplification of ice bottom melting through the decrease in enthalpy (black thick dashed lines). In plot (b), the box represented by red dashed
edge denotes the diminished SIC. The flow diagram below plot (b) provides a summary of the involved processes. SW, T, and S are shortwave,
ice bulk temperature, and ice bulk salinity, respectively. The box outline color in the flow diagram is matched to each process in the schematic
diagram.
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elastic-anisotropic-plastic dynamics, respectively61,71. Additionally,
the model comprises recent complex physics, such as level-ice
formulation scheme for melt pond parameterization72 and a
mechanical redistribution scheme for ridging parameterization73.
The model domain covers all longitudes and the latitudes
poleward to 89.71°N. The horizontal resolution is approximately
1° with 320 × 384 dimension on a displaced pole grid, and the time
step of the model is set to 1 h.
Atmospheric boundary conditions, such as the surface momen-

tum (i.e., zonal and meridional wind stresses) and the surface heat
fluxes (i.e., incoming and outgoing longwave and shortwave
radiations), for the CICE5 are obtained from the NCEP-DOE 2
Reanalysis dataset74. Moreover, the modeled sea surface tem-
perature (SST) from the National Oceanic and Atmospheric
Administration75 is input to the Optimal Interpolation SST version
2 with the restoring time scale of 20 days.

Data assimilation scheme
The satellite-derived SIT observations are assimilated into the CICE5
model using an EnOI scheme with a 1-day assimilation
cycle52,53,76–78. The EnOI scheme approximates the background
error covariance matrix using a stationary ensemble member. If the
available computational resources are limited, the EnOI provides a
cost-effective alternative to the ensemble Kalman filter79. Sta-
tionary ensemble members (i.e., background error perturbations)
for the EnOI are generated following a methodology similar to that
for obtaining bred vectors54. To consider the seasonal differences
in the spatial distribution of the perturbations, the background
error covariance matrix on any particular day is calculated using
the background perturbations on a corresponding day from 1982
to 2019. Consequently, the background error covariance matrix has
a seasonal cycle, and the total number of samples for formulating
the background error covariance matrix on any given day is 38 (i.e.,
one sample per year). For further details on the equations and
schematic, refer to previous study54.

Sea ice data for data assimilation and validation
The satellite-observed SIT data used for the assimilation experi-
ment are derived from the CS2 and SMOS datasets. Among the
various products from CS2, radar altimeter-based Level-4 SIT data
retrieved by assuming hydrostatic balance and nominal densities
of snow, ice, and water of sea ice freeboard are used. The SIT is
retrieved only for the grid point whose area with the SIC exceeds
70% of the total area (i.e., SIC > 0.7)29,80. Considering that CS2 is
specialized for the regions of the filled sea ice, the CS2 data is
assimilated for the region where the sea ice is thicker than 1.0 m81.
The Level-3 SMOS daily SIT data versions 3.1 (for ~2018) and 3.2

(for 2019) are used for sea ice thinner than 1.0 m30,81–83. The SMOS
SIT data are obtained from the brightness temperature using a
single-layer emissivity model. Due to the saturation of the
brightness temperature with SIT, thin sea ice in SMOS has small
uncertainties and thick sea ice is strongly underestimated30,82,83.
The CS2 (SMOS) data are on the polar-stereographic grid system

and have a horizontal resolution of 25 (12.5) km. Both SIT products
are utilized for assimilation during 2011–2019. The uncertainties of
the SIT data are 1.5 m (0.3 m for random + 1.2 m for systematic)
for CS2 and 0.7 m for SMOS42. The satellite-based SIT observations
are only available for the cold season from October to April,
signifying that observed data from May to September are not
assimilated.
To validate the modeled SIC, the Climate Data Record (CDR) of

the satellite-based daily SIC is used; it was retrieved using passive
microwave data84. Additionally, the Pan-Arctic Ice-Ocean Model-
ing and Assimilation System (PIOMAS) SIC and SIT are used for the
validation85. For evaluation, the model output and the satellite
observation are re-gridded onto the 1° rectilinear latitude/
longitude grid system from the original grid system.

DATA AVAILABILITY
The satellite data set of daily sea ice thickness from CryoSat-2 Level-4 Sea Ice
Elevation, Freeboard, and Thickness, Version 1 (http://nsidc.org/data/RDEFT4) and
SMOS Level-3 product (https://smos-diss.eo.esa.int/oads/access/collection/
L3_SIT_Open) are provided by the European Space Agency. The Climate Data
Record of Passive Microwave sea ice concentration version 4 data is provided by
National Snow and Ice Data Center (http://nsidc.org/data/G02202). The reanalysed
sea ice concentration and thickness from PIOMAS are provided by Polar Science
Center (http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/). The
prescribed atmospheric/oceanic data as the boundary condition to run CICE5 from
NCEP-DOE Reanasis 2 with Global T62 Gaussian grid (https://psl.noaa.gov/data/
gridded/data.ncep.reanalysis2.html) and OISST version 2 high resoluation dataset
with 0.25 degree latitude/longitude global grid (https://psl.noaa.gov/data/gridded/
data.noaa.oisst.v2.highres.html) are provided by the National Oceanic and Atmo-
spheric Administration. All simulated data detailed in this manuscript is available
upon reasonable request by the authors.

CODE AVAILABILITY
EnOI-based DA system is available via https://github.com/jglee-cnu/
CICE5_DA_EnOI_SIT.git.
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