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Global tropical cyclone precipitation scaling with sea surface
temperature
Alyssa M. Stansfield1,2✉ and Kevin A. Reed1

Understanding the relationship between tropical cyclone (TC) precipitation and sea surface temperature (SST) is essential for both
TC hazard forecasting and projecting how these hazards will change in the future due to climate change. This work untangles how
global TC precipitation is impacted by present-day SST variability (known as apparent scaling) and by long-term changes in SST
caused by climate change (known as climate scaling). A variety of datasets are used including precipitation and SST observations,
realistic climate model simulations, and idealized climate model simulations. The apparent scaling rates depend on precipitation
metric; examples shown here have ranges of 6.1 to 9.5% per K versus 5.9 to 9.8% per K for two different metrics. The climate scaling
is estimated at about 5% per K, which is slightly less than the atmospheric moisture scaling based on thermodynamic principles of
about 7% per K (i.e., the Clausius–Clapeyron scaling). The apparent scaling is greater than the climate scaling, which implies that the
relationship between TC precipitation and present-day SST variability should not be used to project the long-term response of TC
precipitation to climate change.
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INTRODUCTION
Flooding, especially flash flooding from heavy precipitation, is one
of the deadliest weather events worldwide1,2. Understanding
future changes in precipitation is essential for climate adaptation
planning; however, changes in extreme precipitation are compli-
cated by the variety of factors that influence it. The theoretical
basis for understanding the extreme precipitation response to
temperature change is the Clausius–Clapeyron (C-C) relationship,
which shows that the saturation vapor pressure of water increases
with temperature at about 7% per K at surface temperatures
common on Earth. Because extreme precipitation typically occurs
in saturated atmospheric environments, increases in extreme
precipitation with temperature are expected to approximately
follow this scaling as well3,4. However, some modeling and
observational studies have found increases exceeding C-C for sub-
daily time scales over certain areas5–7. Storm type, season, and
large-scale circulations have been demonstrated to impact the
extreme precipitation-temperature scaling8,9.
Investigating how extreme precipitation produced by specific

storm types, such as tropical cyclones (TCs), responds to
temperature change can aid in both forecasting precipitation
before TC landfalls and understanding future projections of TC
precipitation from climate models. Some studies of individual
hurricanes have found precipitation increases greater than C-C
using both models and observations10–12. The impacts of
dynamical changes, such as changes in TC intensity or outer size,
on extreme precipitation scaling are more uncertain than the
impacts of thermodynamics (i.e., the C-C relationship)13. There is
also uncertainty in how microphysical effects, such as precipitation
efficiency, may change with climate warming14. Studying the
present-day variability between extreme precipitation and tem-
perature (i.e., the apparent scaling) is one way to explore these
uncertainties, but it is unclear how the apparent scaling relates to
the long-term relationship between climate warming and extreme
precipitation change (i.e., the climate scaling)9.

The study of the observed links between extreme precipitation
and temperature over the tropical oceans is a relatively new area
of research, inhibited historically by a lack of long-term, sub-daily,
high-resolution observations. Using precipitation data from the
Tropical Rainfall Measurement Mission (TRMM) and two reanalysis
products, Wang et al.15 found that the daily precipitation above
the 99th percentile over most of the tropical oceans increased
with temperature up to 25–30 ∘C and then decreased at higher
temperatures. Other studies also found negative extreme pre-
cipitation changes with increasing temperature in the tropics,
although they used gauge precipitation data and therefore
studied land regions16,17. Over the ocean, the scaling is not likely
to be solely limited by moisture availability as it can be over
land18. A recent study that used precipitation data from two
reanalysis datasets found positive apparent scaling rates of hourly
99th percentile precipitation over most of the tropical oceans but
some negative rates along the equator in the Atlantic and Indian
Oceans and in the subtropics19.
Using 3-hourly TRMM data and hourly surface temperature data

from the European Centre for Medium-Range Weather Forecasting
ReAnalysis (ERA5) dataset20, Traxl et al.21 also found large spatial
and seasonal heterogeneity in the apparent scaling of extreme
precipitation over the tropical oceans, with large deviations from
the C-C scaling in both positive and negative directions. They
relate the large negative scaling values over tropical oceans to a
decline in surface temperature starting about 24 hours before an
individual precipitation event. One possible explanation for this
effect that they suggest is cooling by TCs, since the broad TC wind
fields and large-scale cirrus cloud cover lead to surface
temperature cooling that precedes the storm itself and its
heaviest precipitation rates21. While negative apparent scaling
rates appear in these datasets over tropical oceans at sub-daily
time scales, they are spatially variable, and again this relationship
may not directly translate to the climate scaling.
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Since the observational record of precipitation over tropical
oceans is relatively short, many studies turn to models to
investigate the long-term climate scaling between extreme
precipitation and temperature in the tropics. O’Gorman22 utilized
Special Sensor Microwave Imager (SSM/I) precipitation observa-
tions for 1991–2008 to constrain global climate model projections
of future tropical precipitation changes. This study used the
interannual variability in the response of tropical precipitation to
surface temperature changes in the observations to obtain an
optimal estimate of the response of the 99.9th percentile of daily
precipitation to climate change in the models, which was
estimated at 10% per K with a 90% confidence interval of
6–14% per K averaged over tropical land and oceans. Other
studies using global climate models have found very similar
estimates of the mean climate scaling in the tropics15,23. Two
studies using cloud-resolving models both found that heavy
precipitation (the 90th percentile and above) in tropical environ-
ments increases generally follow the C-C scaling and that the
strongest updrafts get stronger, despite using different model set-
ups and analysis methodology24,25. Using a quasi-global aqua-
planet with horizontal grid spacing of 12 km, one study found a
mean 3-hourly 99th percentile precipitation rate response in the
tropics of 7.3% per K26.
It is important to note that TCs did not form in any of these

idealized model simulations and therefore any of their impacts on
the scaling of extreme precipitation were not included. High-
resolution simulation of TC precipitation could influence the
climate scaling rates determined using these idealized simulations
and relatively low-resolution global climate models. This is
supported by a recent study that calculated the percentage
change in mean 3-hourly TC precipitation rates from TRMM for
1998 to 2016 and then divided that value by the change in global
mean sea surface temperature (SST) over that same time period.
They found an increase of about 21% for a SST change of only
0.21 K, greatly exceeding the C-C rate27. However, another study
that used a High-Resolution Precipitation Climate Data Record
derived from the PERSIANN Dynamic Infrared Rain rate model
(PDIR) found a 7.6% per K increase in mean 3-hourly TC
precipitation rates over the same time period28. Most other
studies that estimate the climate scaling of TC precipitation
calculate the change in mean TC precipitation between climate
model simulations of the current and future climate and then
divide by basin-wide SST change29–32. Knutson et al.33 summar-
ized 21 studies that looked at projected future changes in TC
precipitation and found that the % per K estimates varied greatly,
depending on model parameters, climate projection scenario,
ocean basin, and precipitation metric. Overall, they estimated a
best-guess global change of 14% per 2 K increase in SST, close to
the C-C rate.
The variations in the estimates from different studies emphasize

the importance of understanding the roles of dynamics in the
extreme precipitation-temperature relationship34. Looking at the
HiFLOR climate model under the Representative Concentration
Pathway 4.5 (RCP4.5) scenario, Liu et al.32 found an increase in the
mean precipitation rates within 100 km of the TCs’ centers of
between 13% per K and 17% per K, dependent on ocean basin.
They determined that when the TCs were split into different
intensity categories, the super C-C rates diminished to near C-C
rates in each intensity category, suggesting that the super C-C
rates are driven by the 2.0–5.4% increase in TC intensity per K of
SST warming. Stansfield and Reed13 estimated that increases in TC
intensity contributed about 20% of the 8.6% per K increase in 99th
percentile TC precipitation rates in global rotating radiative-
convective equilibrium (RCE) simulations, with the thermodynamic
changes making up majority of the rest of the contribution. These
results agree with other modeling studies that suggest the
thermodynamic increase in atmospheric moisture accounts for
most of the extreme precipitation increases with

temperature24–26,35, but especially in the case of TCs, it is
important to keep changes in intensity in mind since the
thermodynamics and convection within TCs are linked through
their secondary circulations.
Although TCs can produce 40–50% of annual precipitation and

over 80% of extreme precipitation in regions of the tropics36–38,
the only study the authors could find that focused on the
apparent scaling of TC precipitation was Traxl et al.21. Most
previous literature has focused on estimating the climate scaling
of TC precipitation using the difference in mean precipitation and
SST between historic and future climate model simulations, and
no one has attempted to understand the relative magnitudes of
the apparent and climate scaling rates of TC precipitation. In some
previous studies, the apparent scaling rate has been used to
project how extreme precipitation may respond to warming from
climate change, but these projections are invalid if the apparent
and climate scalings are not approximately equal. To the authors’
knowledge, this is the first study that applies scaling rate
estimation techniques typically used for general extreme pre-
cipitation to TC extreme precipitation and compares these scaling
rates for TC precipitation between models and observations. We
also test the sensitivity of the apparent and climate scaling rates to
different precipitation metrics, since in previous studies of both TC
and non-TC extreme precipitation, many different extreme
precipitation metrics are used and could partially explain
differences in scaling rates. The goals of this paper are to:

1. estimate the apparent scaling between TC precipitation and
SST in observations and climate models to investigate if the
models are capturing this relationship and to assess the
dependency of the scaling rate on precipitation metric.

2. explore if idealized RCE model simulations can be used to
estimate the climate scaling of TC precipitation in more
realistic model simulations.

3. compare the relative magnitudes of the apparent and
climate scaling rates of TC precipitation to determine if the
observed apparent scaling can be used to estimate the
climate scaling.

The precipitation observations are from the Integrated Multi-
satellitE Retrievals for GPM (IMERG) algorithm39 while the SST
observations are daily data from the NOAA Optimum Interpolation
Sea Surface Temperature (OISST), version 2, database40,41. TC
observed tracks and intensities are from the International Best
Track Archive for Climate Stewardship (IBTrACS) database42. The
realistic climate model simulations are two Community Atmo-
sphere Model, version 5 (CAM5), runs. One, known as “AMIP
Historical”, is run using observed climate conditions for 1980–2012
while the other, known as “AMIP Future”, is run under projected
climate conditions for 2070–2099 under the RCP8.5 scenario. The
idealized simulations, known as “RCEMIP”, are also CAM5 runs but
are run using RCE conditions with globally-uniform SST ranging
from 299–305 K. Please see the section “Datasets” for more details
about all the datasets.

RESULTS
TC SST environments and intensities
Before comparing TC precipitation between the models and
observations, we will examine some of the general characteristics
of the TCs in the datasets. First, the analysis is limited to only
include TCs between 5∘ and 20∘ latitude in both hemispheres in
order to focus on the region where the TC characteristics in the
RCEMIP simulations, AMIP simulations, and observations are most
likely to be similar. The RCEMIP simulations do not have
extratropical storms or circulations, so TCs act in ways that are
different from the real world poleward of about 25∘ latitude13,43.
Also, this 5 to 20∘ latitude band is where TCs usually form and
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develop. Poleward of these latitudes, TCs (and their precipitation)
in the AMIP simulations and observations are more likely to be
influenced by strong vertical wind shear, SST gradients, and
landfall. These factors impact TC precipitation patterns and
distributions, which may change the scaling rates, but for this
study, we wanted to focus on just the impact of SST on TC
precipitation. There is some evidence that TC activity should shift
towards the poles as the climate warms44–46, which could impact
the region of TC activity between the AMIP Historical and AMIP
Future simulations. However, the mean TC locations and genesis
latitudes in AMIP Historical and AMIP Future, when only including
storms between 5∘ and 20∘ latitude, are only different by 0.2∘ and
0.3∘, respectively.
Figure 1 shows the counts of 6-hourly timesteps when the TCs’

centers were over different SSTs. TCs preferentially exist over SSTs
between 299 and 303 K in observations and AMIP Historical. The
mean SST for observations is about 0.4 K warmer than the mean
SST in AMIP Historical. It is important to note that the datasets are
different lengths, which explains most of the differences in counts

at the same SSTs between the observations and AMIP Historical as
well as the 0.4 K difference in the means. If the counts are plotted
for the common time period of 2001–2012 only (not shown), the
observed and AMIP Historical counts are almost identical and the
means differ by less than 0.1 K. The AMIP Future mean SST is 3.3 K
higher than the AMIP Historical mean, which is larger than the
difference between the global mean SSTs of 3.1 K and smaller
than the difference between the 5∘–20∘ latitude means of 3.6 K.
The standard deviations of the TC-local SST distributions are 1.09 K
for Observations, 1.09 K for AMIP Historical, and 1.17 K for AMIP
Future, demonstrating that the variability of TC-local SSTs is similar
between these datasets. TCs in the RCEMIP simulations occur at all
simulation SSTs, resulting in the highest total number of timestep
counts (noted in the legend) even with less than 2 years of
simulation time. This is one advantage of using idealized
modeling: more TCs can be generated than in realistic simulations
at the same horizontal grid spacing while using less computa-
tional resources. This is helpful when analyzing extreme events,
like TCs, that are relatively rare in the real world. This provides
motivation for assessing whether or not the RCEMIP simulations
have similar TC precipitation scaling rates as the observations and
AMIP simulations because if they do, we may be able to use them
to project future changes in TC precipitation at relatively low
computational cost.
TC intensities are known to influence their precipitation rates,

especially in the TCs’ inner cores47,48. Figure 2 shows the
distributions of relative frequencies of TC intensities, measured
by both the maximum low-level wind speed in m/s and the
minimum sea level pressure (MSLP) in hPa. To be as consistent as
possible with observations, the 10-meter maximum wind speed
was estimated for the RCEMIP, AMIP Historical, and AMIP Future
output from the lowest model level wind speed using a
logarithmic law with an open sea roughness coefficient49. This
results in a reduction factor of about 15% from CAM5’s lowest
model level, which is about 60m. Looking at the maximum wind
speed distributions (Fig. 2a), the shapes of all the distributions are
similar, and the medians (diamonds on the x-axis) all cluster
between 30 and 31 m/s, with the largest difference between any
two medians being 2.9%. Only TCs with intensities greater than or
equal to 20 m/s are included in the median calculations and in the
subsequent TC precipitation analysis. While the AMIP Historical
and AMIP Future medians of the maximum wind speed
distributions are very similar, the median of the AMIP Future
lifetime maximum wind speed distribution is about 5% (1.5%
per K) higher than the AMIP Historical median (not shown). This is
consistent, albeit on the low side of the range, with the future

Fig. 1 Sample sizes of TCs over different TC-local SSTs. Counts of
6-hourly timesteps when TC centers were over TC-local SSTs ranging
from 295 to 307 K for observations (blue), AMIP Historical (purple),
AMIP Future (pink), and RCEMIP (black). For the observations and
the two AMIP simulations, the TCs are binned into 1 K bins centered
on each SST value (e.g., the 300 K bin includes 299.5 K to 300.5 K).
The numbers in the legend show the total summed counts for each
dataset. Only TCs with center locations over the ocean and between
5∘ and 20∘ latitude in both hemispheres are included.

Fig. 2 Distributions of two measures of TC intensity. Relative frequencies of TC intensities, measured by the a maximum low-level wind
speed [m/s] and b minimum sea level pressure [hPa], for observations (blue), AMIP Historical (purple), AMIP Future (pink), and RCEMIP (black).
Only TCs over the ocean with center locations between 5∘ and 20∘ latitude in both hemispheres are included. Medians of the distributions are
marked by the diamonds on the x-axis.
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projections of TC lifetime maximum intensity from Knutson et al.33

of 0.5–5% per K. Looking at the MSLP distributions (Fig. 2b), the
observed distribution has the lowest median of 980.0 hPa,
followed by RCEMIP at 981.8 hPa, AMIP Future at 984.6 hPa, and
AMIP Historical at 984.9 hPa. The distributions again have similar
shapes and medians, with a maximum 0.5% difference between
any two medians. While the TC intensity distributions in Fig. 2 do
not match exactly between the different datasets, this is to be
expected to an extent since 10-meter wind speeds in models are
not direct comparisons to those from IBTrACS. Model wind speeds
have different averaging periods and must be adjusted down to
10 meters from the lowest model level. It has also been shown
that TC intensities do not impact TC precipitation scaling rates
nearly as much as thermodynamic warming13,50, so any small
differences in TC intensity distributions are unlikely to greatly
affect the overall results.

SST dependence of TC precipitation
Focusing on precipitation characteristics, the mean radial profiles of
the 6-hourly TC precipitation rates separated by TC local-SST are
shown in Fig. 3. The profiles are only plotted for SSTs that have at
least 100 samples, and these are the SSTs for each dataset that are
used for all TC precipitation analysis. In all of the radial profiles,
precipitation rates decrease with increasing distance from the TC
center, as expected based on previous work on TC precipitation
structure47. The AMIP Historical inner-core precipitation magnitudes
are larger than the observed values for the same SSTs. This has
been demonstrated for TCs in CAM5 in at least one previous study29

and could be related to the relationship between the model’s
physics timestep and the partitioning between large-scale and
parameterized precipitation in CAM551,52. Moon et al.53 also found
higher peak inner-core 6-hourly precipitation rates compared to
observations in HighResMIP model simulations54 with similar grid
spacings as the AMIP simulations in this study. For the common
SSTs between AMIP Historical and AMIP Future (301–303 K), the
peak precipitation rates are lower or about the same for AMIP
Future. This may be because the background SST in AMIP Future is
warmer than in AMIP Historical by about 3 K, but weak TCs still exist
(Fig. 2). While TCs in AMIP Historical over 301–303 K SSTs are likely
to be more intense since these are very warm SSTs for the current
climate, there are less and weaker TCs over this SST range in AMIP
Future. Another possible explanation is an increase in atmospheric
stability in the future climate30,55 over this SST range, which could
decrease extreme precipitation rates in the AMIP Future storms
compared to AMIP Historical storms. In all datasets, increasing SST
leads to increases in precipitation rate. The change in precipitation
rate, however, is not uniform in space: changes in the TC inner-core
appear larger than changes farther from the TC center, especially in
the models. The observations suggest a more uniform increase in
precipitation rate with SST. The response of inner-core precipitation

to SST warming in the observations in Fig. 3 appears to contradict
the decreasing trend in average inner-core precipitation rates found
using about 20 years of TRMM data27,56,57. However, we argue these
results do not disagree with each other but instead suggest that the
present-day relationship between inner-core TC precipitation and
SST is different than the pattern of TC precipitation structure
change over time. It is also possible that our results are different
due to different precipitation and SST datasets, analysis time
periods, and latitude limits.
Figure 4 shows the relationship between two metrics of

6-hourly TC precipitation rates (99th percentile within the radius
of the 8 m/s tangential wind speed, r8, in panel a and mean within
1∘ from the TC center in panel b) and SST. These plots are
motivated by Figure 4 in Zhang et al.58, and details of how the
scaling rates are calculated are in the section “Scaling rate
calculations”. Looking at the magnitudes of the precipitation
metrics, there is some spread between the datasets, with
observations having the highest 99th percentiles consistently.
This may seem to contradict Fig. 3, but looking at the mean
precipitation within 1∘, the observational values are smaller than
AMIP Historical. This shows that IMERG has higher extreme
precipitation values than AMIP Historical but lower precipitation
averaged within the TC inner-core. The RCEMIP simulations have
the lowest magnitudes for both metrics across all SSTs. This may
seem counter-intuitive since TCs in the idealized RCEMIP
simulations have similar intensities as the AMIP simulations and
observations (Fig. 2) and do not encounter SST gradients or high
wind shear. More work comparing TC precipitation in RCEMIP
simulations to observations is needed but is beyond the scope of
this study.
The slopes of the lines in Fig. 4 represent the apparent scaling

of each precipitation metric. For visual comparison, the light gray
lines in the background show the C-C rate (7% per K). The
estimated apparent scaling rate for each line and the 95%
confidence intervals for the rate are noted in the plot legends, and
an explanation of the calculation of these values is in the section
“Scaling rate calculations”. For the 99th percentile TC precipitation,
the observed apparent scaling is the smallest at 6.1% per K while
the largest is AMIP Historical at 9.5% per K. AMIP Future and
RCEMIP have similar scaling rates at 7.7% and 8.0% per K,
respectively. For the mean precipitation within 1∘, the observed
scaling rate is the largest at 9.8% per K while the smallest is
RCEMIP at 5.9% per K. AMIP Historical and Future are closer to the
RCEMIP rate at 6.3% and 6.0% per K, respectively. These results
show that the apparent scaling of TC precipitation can depend on
precipitation metric. While the apparent scaling rates do not
match exactly between observations and models, their 95%
confidence intervals overlap. Note that the 8.0% per K scaling rate
for 99th percentile precipitation in RCEMIP is different than the
8.6% per K value from Stansfield and Reed13. This is because the

Fig. 3 Radial profiles of TC precipitation over different TC-local SSTs. Mean radial profiles of 6-hourly TC precipitation rates [mm/day] for
different SSTs for a observations, b AMIP Historical, c AMIP Future, and d RCEMIP. For the observations and the two AMIP simulations, the TCs
are binned into 1 K bins centered on each SST value (e.g., the 300 K bin includes 299.5 K to 300.5 K), and different colored profiles represent
the different SSTs as noted in the legends.
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rates are calculated in slightly different ways and because in this
paper the latitude limits for the analysis are 5∘–20∘ while in the
previous paper they were 40∘S–40∘N.
In the Supplementary Information, we explore how the

apparent scaling can depend on the TC precipitation extraction
radius, the exclusion or inclusion of non-precipitating points, and
the choice of SST bins. Generally the apparent scaling is the most
consistent between all the variations for the RCEMIP simulations,
likely because the TCs in those simulations do not encounter
many factors that impact TC precipitation in the real world, like
large vertical wind shear or SST gradients. The apparent scaling
rates between AMIP Historical and AMIP Future tend to be fairly
similar, varying by a maximum of 4.4% per K across the
methodologies. The observational scaling rates vary depending
on the analysis choice but range between around the C-C scaling
to just over double the C-C scaling. This variability in apparent
scaling rate with different analysis choices is unsurprising in light
of Fig. 3. If the change in TC precipitation with SST varies in the
radial dimension, then any metric that uses a spatial averaging
length would indicate different scaling rates with different
averaging lengths.
The slope between the AMIP Historical and AMIP Future lines in

Fig. 4 represents the climate scaling between those two
simulations. Where the AMIP Future line is in relation to the AMIP
Historical line shows how the magnitude of the climate scaling
relates to the magnitude of the AMIP Historical apparent scaling
(see Figure 3 in Zhang et al.58 for a schematic explanation). The
thick dotted purple line shows the AMIP Historical line multiplied
by 0.07 (i.e., the C-C rate) and by the difference in the mean SSTs
under TCs between AMIP Historical and AMIP Future (3.3 K), which
shifts the line by 7% per K. If the AMIP Future results were to
exactly line up with this dotted purple line, this would indicate
that the climate scaling of the AMIP simulations is following C-C.
The AMIP Future line is shifted right downward compared to the
AMIP Historical line for both precipitation metrics, indicating the
apparent scaling is larger than the climate scaling, and is slightly
below the dashed purple line, meaning the climate scaling should
be below C-C. Note that since the apparent scaling is larger than
the climate scaling and the AMIP Future line is shifted right

downward compared to the AMIP Historical line, it is expected
that the AMIP Future line will be below the AMIP Historical line at
their common SSTs. The climate scaling is 4.9% per K for 99th
percentile precipitation, with a range from 4.2 to 6.4% per K, and
4.7% per K for mean precipitation within 1∘, with a range from 3.6
to 6.1% per K (see section “Scaling rate calculations” for details of
the calculation). If the climate scaling is instead calculated using
the percentage difference between the medians of all precipita-
tion within r8 for AMIP Historical and AMIP Future, which is the
method used in many previous studies of TC precipitation
scaling33, the rate is 5.0% per K. One reason the climate scaling
may be less than the C-C scaling is because in AMIP Future, the
tropical-mean atmospheric moisture deficit is larger than in AMIP
Historical (not shown), meaning this relatively drier air may be
ventilated into the TCs in AMIP Future and decrease their
precipitation rates.
If the climate scaling is calculated for RCEMIP by splitting the

dataset into cooler and warmer halves (i.e., 299–302 K and
302–305 K), the rates are 7.7% per K for 99th percentile and 5.1%
per K for mean precipitation, which are within the confidence
intervals for the apparent scaling for both metrics. These values
are both larger than the climate scaling in the AMIP simulations,
with the value for mean precipitation within 1∘ being more similar.
It is possible that the larger climate scaling in RCEMIP is caused by
different TC characteristics compared to the AMIP simulations,
such as the greater increase in lifetime maximum intensity with
increasing SST or the larger mean size of the outer TC circulation
(not shown). The apparent scaling rate for the 299–302 K RCEMIP
simulations is 9.3% per K for 99th percentile precipitation and
8.8% per K for mean precipitation. For 302–305 K, the 99th
percentile apparent scaling is 8.0% per K and the mean
precipitation apparent scaling is 5.8% per K. For both TC
precipitation metrics, the apparent scaling is lower for the
302–305 K simulations compared to the 299–302 K simulations.
This is consistent with the change in apparent scaling when
comparing the AMIP Historical to AMIP Future; therefore, both the
RCEMIP and AMIP simulations suggest that the apparent scaling of
TC precipitation may decrease in the future as SSTs warm.

Fig. 4 Two metrics of TC precipitation and their relationship to TC-local SST. a 99th percentile of 6-hourly TC precipitation rates within r8
and b mean of 6-hourly TC precipitation rates within 1∘ of the TC center, binned by SST, for observations (blue), AMIP Historical (purple), AMIP
Future (pink), and RCEMIP (black). The y-axis is on a logarithmic scale, and the units of precipitation rate are mm/day. Values are binned into 5
SST bins that each have approximately the same number of samples. The thin dashed colored lines show the exponential regression fit. The
light gray lines in the background show the C-C rate. The thick dotted purple line shows the AMIP Historical line multiplied by 0.07 and by the
difference in global mean SST between AMIP Historical and AMIP Future (3.3 K). The shaded regions behind the lines show the 95%
confidence intervals, calculated using bootstrapping with 10,000 repetitions with replacement. Numbers in the legends are the apparent
scaling of the precipitation metric, shown with 95% confidence intervals estimated using a student’s t-distribution.
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DISCUSSION
As air and ocean temperatures warm due to climate change, it is
expected that extreme precipitation will increase over most of the
globe59. Understanding how changes in the storm systems that
produce extreme precipitation will impact the precipitation itself is
challenging. A lack of long-term, high-resolution observations over
the tropical oceans has made this task especially difficult for TCs.
This work explores two TC precipitation scaling rates in the
context of CAM5 simulations and observations: (a) the apparent
scaling, which is the present-day variability between TC precipita-
tion and SST and (b) the climate scaling, which is the long-term
response of TC precipitation to SST warming. The main results of
this paper are:

● The apparent scalings of TC precipitation are all around the
Clausius–Clapeyron rate of 7% per K and compare well
between models and observations.

● The climate scaling is estimated to be about 5% per K, smaller
than the apparent scalings and the Clausius–Clapeyron rate.

● Scaling rate values can depend on various analysis choices,
such as precipitation metric and averaging radius around the
TC center.

All of the apparent scaling rates for TC precipitation calculated
in this work are positive. This is different than the negative rates
found in Traxl et al.21 when only TC precipitation was isolated and
is likely a result of the temporal frequency of the SST datasets.
Their argument is that the broad TC wind fields and large-scale
cirrus cloud cover lead to SST cooling that precedes the storm
itself and its heaviest precipitation rates, resulting in a negative
apparent scaling between TC precipitation and SST. While Traxl
et al.21 used hourly SSTs from ERA5, this analysis used daily
observed SSTs. Cold wakes from previous TC passages do appear
in daily mean SSTs60, but daily mean SSTs are not likely to see as
large of a preceding cooling effect from outer TC winds and cloud
cover as hourly SSTs, which could explain the discrepancy
between the results presented here and in Traxl et al.21.
The apparent scaling rates depend on precipitation metric and

other analysis choices (see Supplementary Table 1). The authors
want to emphasize that these results are not implying that one TC
precipitation metric is better than any others, but that future work
should choose precipitation metrics based on their specific
application61 and consider using multiple metrics to see if their
results are consistent for various metrics. The apparent scaling rate
ranges between 6.1 and 9.5% per K for the 99th percentile within
r8 and 5.9 and 9.8% per K for the mean within 1∘ from the TC
center. For the observations, the rate is smaller for 99th percentile
than for mean storm inner-core precipitation (within 1∘), but the
opposite is true for all of the model simulations. Xi et al.62

calculated the scaling of TC precipitation within 600 km from the
storm center in Weather Research and Forecast (WRF) model
simulations with 3 km grid spacing. These simulations had
domain-constant and time-invariant SSTs ranging from about
299 to 307 K. They found a TC precipitation scaling of 9% per K,
which is similar to the RCEMIP apparent scaling of 8% per K for
99th percentile precipitation although their study used a different
precipitation metric and different model set-up.
The climate scaling calculated between the AMIP Historical and

AMIP Future was just under 5% per K for both 99th percentile and
mean TC precipitation within 1∘. While the CAM5 AMIP TC
precipitation climate scaling rate is less than the apparent scaling
in the model simulations and observations, there is no clear
theoretical model or framework linking the apparent and climate
scaling rates, so it is difficult to argue whether we expect this
qualitative relationship to hold in observations and other models.
Previous work using a hindcast attribution approach for Hurri-
canes Florence and Dorian found that climate change increased
the total precipitation accumulations from these storms by about

5–7% per K63,64; however, accumulated precipitation may be
influenced by other TC characteristics that do not influence inner-
core extreme precipitation rates as much, like storm translation
speed, so the climate scaling for accumulated precipitation may
be different than extreme precipitation rates. When using a similar
methodology on the entire 2020 North Atlantic Hurricane season,
Reed et al.65 found increases in 3-hourly 99th percentile
precipitation rates of about 14% per K for all storms of at least
tropical storm strength. Liu et al.32 used current and future climate
simulations with the HiFLOR model and estimated increases in
mean 6-hourly TC precipitation rates within 100 km of the center
(comparable to the mean 6-hourly precipitation rates within 1∘

used in this paper) of 13 to 17% per K, dependent on ocean basin.
This climate scaling is more than double the one estimated with
the CAM5 AMIP simulations presented here, but this may be
because the HiFLOR simulates 2.0–5.4% per K increase in mean TC
intensity while our change in mean intensity between AMIP
Historical and Future is about 1% per K. Their HiFLOR simulations
were also coupled to an ocean model while the CAM5 AMIP
simulations were forced with SST boundary conditions. Our results
suggest that the climate scaling of TC precipitation has a smaller
magnitude than the apparent scaling of TC precipitation, and this
result is the same for both precipitation metrics analyzed in this
paper. A potential explanation for the smaller climate scaling is an
increase in the atmospheric moisture deficit throughout the
troposphere in warmer climates (not shown). This indicates that
using the apparent scaling to project future changes in TC
precipitation in response to long-term climate warming would be
inaccurate, since the apparent and climate scaling rates are
different.
When studying the response of TC precipitation to warming, it

is important to clarify which TC scaling rate (apparent or climate) is
being estimated. In the case of RCEMIP simulations with fixed
SSTs, it is not clear which scaling rate is being studied by
comparing precipitation rates between runs with different SSTs.
The TCs do not experience SST variability so the scaling rate is not
the apparent scaling rate. On the other hand, the TCs only
respond to total-domain SST warming and do not experience
other changes that are expected to occur with climate change and
impact TC precipitation, such as relative SST change in the
tropics66,67 and shifts in wind shear68. This means that the scaling
rate calculated from these RCEMIP simulations is not exactly a
climate scaling either. When estimating the climate scaling by
breaking the RCEMIP simulations into warmer and cooler halves,
the scaling rates are larger than the climate scaling estimated
using the AMIP simulations, suggesting that the RCEMIP simula-
tions may overestimate TC precipitation’s response to warming
SSTs. While the authors are not arguing that RCEMIP simulations
are not useful to study TCs and their precipitation, it is important
to consider what these types of simulations can imply about the
real world.
As the high-resolution observational record of TC precipitation

lengthens, more insights will be gained about its sensitivity to
climate change. To try to understand this sensitivity at present,
model simulations are beneficial, but do have limitations. Global
climate models with resolutions of tens of kilometers have
parameterized convection, which may cause unrealistic responses
of precipitation to climate warming. It also may be important for
models to have coupled ocean models in order to accurately
simulate the relationship between TC precipitation and SST. TCs
typically have a cooling effect on SSTs due to their high winds
mixing up cooler ocean water from below the surface60, and this
cooling impacts precipitation rates within the storm69. This effect
of TCs on SSTs is likely not fully captured in the SST boundary
conditions used to force AMIP-style (or RCEMIP-style) runs. Future
work should include exploring the relationship between SST and
TC precipitation in fully-coupled model runs and in next-
generation global models without parameterized convection.
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In summary, CAM5 shows limitations in the ability to represent
the TC precipitation apparent scaling with SST when compared to
observations, but all of the rates are in the same magnitude range
(within 4% per K) and their 95% confidence intervals overlap.
More work is needed to examine what is causing these biases. It is
possible that these results could be specific to CAM5; therefore,
future work could entail extending this work to different climate
models. For all of the datasets, the apparent scaling rates varied
based on various analysis choices, such as averaging radius;
therefore for future work on TC precipitation scaling, the authors
recommend using multiple precipitation metrics or focusing on
specific metrics that would be most useful for hydrologic models
that can project TC flooding. The climate scaling calculated from
the two CAM5 AMIP simulations was just under 5% per K for both
precipitation metrics used in this paper. Based on CMIP6 model
projections of the global mean SST in 2071–2100 under the
SSP245 and SSP585 scenarios, the multi-model mean SST will be
about 1.5 K or 2.8 K warmer, respectively, than the global mean
SST in 1985–2014 in the CMIP6 Historical simulations70. Using our
estimate of the TC climate scaling, we expect extreme precipita-
tion rates and mean inner-core rates in TCs to increase by 7.5%
(i.e., 5% per K * 1.5 K) for SSP245 or 14.0% (i.e., 5% per K * 2.8 K) for
SSP585 by the end of the century. That increase would be the
change from the background increase in temperatures due to
climate change, but it is important to mention that some TCs may
see larger increases in precipitation rates due to SST variability (i.e.,
the apparent scaling) or changes in other characteristics that
influence TC precipitation, such as TC translation speed or vertical
wind shear. How much precipitation from TCs increases in the
future has important implications for coastal communities and
infrastructure around the world.

METHODS
Datasets
Six-hourly TC track and intensity observations are sourced from
the International Best Track Archive for Climate Stewardship
(IBTrACS) database42. The SSTs are from the NOAA Optimum
Interpolation (OISST), version 2, database40,41, which has daily
temporal resolution and 0.25∘ spatial resolution. It incorporates
SST data from ships, buoys, and a satellite radiometer. The
precipitation data is from the Integrated Multi-satellitE Retrievals
for GPM (IMERG) algorithm39. The data is derived from multiple
satellite passive microwave sensors from the GPM constellation,
and the final run is calibrated using monthly rain gauge
accumulations. The product is available on a 0.1∘ spatial grid at
half-hourly time intervals. For this analysis, the half-hourly data is
converted to 6-hourly to match the other datasets. Observational
analysis is limited to 2001–2020 due to the availability of IMERG.
The realistic model simulations are completed with the

Community Atmosphere Model (CAM), version 571. The first is an
Atmospheric Model Intercomparison Project (AMIP)72 simulation
forced with observed SSTs73 from 1980 to 2012. It will be known
as “AMIP Historical" throughout this paper. This simulation has
been used previously to study the impact of the model dynamical
core on TCs74 and the impact of dust on North Atlantic TCs75. The
second is a simulation run under the RCP8.5 for 2079–2099, which
has been utilized, in addition to the AMIP Historical simulation, to
understand how TCs and their precipitation may change in the
future76. This simulation was forced with bias-corrected SSTs from
a fully-coupled Community Earth System Model (CAM’s parent
model) simulation run under the RCP8.5 scenario. More details
about the SSTs used to force this future CAM5 simulation and the
characteristics of TCs in the simulation can be found in Bacmeister
et al.76. For convenience, this RCP8.5 simulation will be referred to
as “AMIP Future". The horizontal grid spacing for both AMIP

Historical and AMIP future is about 28 km globally. All output is
converted to 6-hourly temporal frequency.
The idealized model simulations are described in detail in

Stansfield and Reed13. They are also CAM5 simulations but run in a
state of radiative-convective equilibrium (RCE). These simulations
followed the protocols of the Radiative Convective Equilibrium
Model Intercomparison Project (RCEMIP)77 and utilized the preset
Community Earth System Model (CESM) compset78. The only
modification made to the CESM RCEMIP compset is that rotation is
added by setting the planetary rotation rate to that of the real
Earth. The simulations have no diurnal or seasonal cycles, and the
SST is globally-uniform. SSTs vary between 295 and 305 K in 1 K
increments, adding up to a total of 11 simulations, although only
the 299 to 305 K simulations are used for this analysis to match
the SSTs found under the TCs in observations and the realistic
model simulations. The horizontal grid spacing is approximately
28 km over the whole globe, the same as the two AMIP
simulations. The simulations are run for 2 years with the first
2 months discarded to allow for spin-up time. Similar simulations
have been used to study planetary dynamic controls on TC
structure43,79,80 and the impact of SST on TC counts and
intensities55,81. The model output and TC track data are publicly
available82. The data are converted from 3-hourly to 6-hourly
output. This dataset will be referred to as “RCEMIP".

TC tracking and precipitation extraction
All TC tracking, precipitation extraction, and compositing are
performed using the TempestExtremes software package83,84. TC
tracking parameters are detailed in Stansfield and Reed13 for the
RCEMIP simulations. For AMIP Historical and Future, tracking
settings are based on those used in Bacmeister et al.76. Bacmeister
et al.76 used a different TC tracker, so an effort was made to adjust
TempestExtremes parameters to ensure that annual TC counts
closely match those in Bacmeister et al.76. The annual mean TC
count for AMIP Historical using our TempestExtremes settings is
70 compared to 71 in Bacmeister et al.76. For AMIP Future, our
settings produce an annual mean TC count of 56 compared to 58
in Bacmeister et al.76. The command line used to track TCs in the
AMIP Historical and Future simulations using TempestExtremes is
reproduced below:

./DetectNodes --in_data_list "$infiles"
--timestride 2

--in_connect $connectivityfile --out
$outfiles"

--closedcontourcmd
PSL,400.0,3.0,0;_DIFF(Z200,Z500),-
10.0,2.0,1.0"

--mergedist 5.0 --searchbymin PSL
--outputcmd PSL,min,0;_VECMAG(U10,V10),-

max,2;PHIS,max,0"
./StitchNodes --format lon,lat,slp,wind,-

phis" --range 4.0
--mintime 72h" --maxgap 0 --in $outfiles"

--out $trackfilename"
--threshold wind,>=,17.0,11;lat,<=,50.0,10;
lat,>=,-50.0,10;phis,<=,150.0,10"
TC precipitation extraction is performed using the radius of the

8 m/s tangential wind speed (r8) as in Stansfield et al.85. For the
observations, r8s are calculated using 10-meter wind output from
ERA520, again as in Stansfield et al.85. Precipitation extraction and
subsequent scaling analysis is also done using a 5∘ great-circle
distance (GCD) and a 1∘ GCD to compare the impact of using
different extraction radii. At each timestep in each TC’s lifetime,
extracted TC precipitation is re-gridded onto a common 0.25∘ grid
centered on the TC center location using TempestExtreme’s
NodeFileComposite function. This 0.25∘ grid is chosen to match
the 28 km spacing of the CAM5 native grid. For observations, AMIP
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Historical, and AMIP Future, only timesteps when the TCs’ center
points are over the ocean are included. This choice is made to
isolate the TCs that are likely to be most similar to TCs in the
RCEMIP simulations, since landfall can greatly impact the structure
and precipitation of a TC47,86.

TC local-SST calculation
To calculate the SST local to the TC, TempestExtreme’s NodeFi-
leComposite function is used again. All SST data is re-gridded onto
the same 0.25∘ common grid, centered on each TC’s center
location output from the TC tracker or from IBTrACS observations
and that extends out about 5∘ in each direction. The SST is then
averaged over this spatial grid at each timestep to calculate the TC
local-SST. The sensitivity of results to the size of the SST composite
grid was tested by halving the size of the grid, and the results
were impacted very little.

Scaling rate calculations
Before calculating the scaling rates, the TC precipitation is first
binned by the TC local-SST. The data are divided into 5 bins of
approximately equal sample size, and a precipitation metric (i.e.,
either 99th percentile or mean) is calculated for each bin. Note
that when calculating the precipitation metrics, only precipitating
points (values greater than 0 mm/day) are included. The apparent
scaling rate of TC precipitation is estimated using an exponential
regression by fitting a least-squares linear regression to the
logarithm of the precipitation metrics across the 5 bins. The
middle of each SST bin is used in the regression. This method is
commonly used to estimate the apparent extreme precipitation-
temperature scaling6,18,21. To estimate the climate scaling, a
methodology very similar to that described in Zhang et al.58 is
utilized. Where PHist is the precipitation metric in a specific bin
from AMIP Historical, PFut is the AMIP Future precipitation metric in
the same bin, δT is the difference in SST between AMIP Historical
and AMIP Future in that bin, and β is the climate scaling rate for
that bin, log PFut

PHist
¼ ð1þ βÞδT . β is calculated for each of the 5 bins,

and the median is reported as the climate scaling between AMIP
Historical and AMIP Future.

DATA AVAILABILITY
The International Best Track Archive for Climate Stewardship (IBTrACS)42 database is
available online at https://www.ncei.noaa.gov/products/international-best-track-
archive. The NOAA Optimum Interpolation Sea Surface Temperature (OISST), version
2, database40,41 is available at https://www.ncei.noaa.gov/products/optimum-
interpolation-sst. Integrated Multi-satellitE Retrievals for GPM (IMERG) data39 is
available for download at https://gpm.nasa.gov/data/imerg. ERA520 data is available
for download at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/
era5. The CAM5 AMIP simulation (Historical and Future) output is stored on the
National Energy Research Scientific Computing Center’s High-Performance Storage
System (HPSS), available via Globus Endpoint. The CAM5 RCEMIP simulation output is
documented and available for download82. The CMIP6 model output used in this
manuscript is available for download at https://cds.climate.copernicus.eu/cdsapp#!/
dataset/projections-cmip6?tab=form.

CODE AVAILABILITY
All code is available upon request to Alyssa Stansfield.
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