ARTICLE OPEN Check for updates Precipitation trend increases the contribution of dry reduced nitrogen deposition

Weihua Chen $\mathbb{D}^{1,10}$, Shiguo Jia^{2,10}, Xuemei Wang $\mathbb{D}^{1} \cong$, Min Shao $\mathbb{D}^{1} \cong$, Wenhui Liao³, Alex Guenther \mathbb{D}^{4} , Chris Flechard \mathbb{D}^{5} , Pengfei Yu¹, Buqing Zhong⁶, Ming Chang \mathbb{D}^{1} , Weiwen Wang \mathbb{D}^{1} , Jingying Mao¹, Xuejun Liu \mathbb{D}^{7} , Guirui Yu⁸ and Gregory Carmichael⁹

Given the leveling off in oxidized nitrogen emissions around the world, the atmospheric deposition of reduced nitrogen $(NH_x = NH_3 + NH_4^+)$ has become progressively critical, especially dry deposition, which presents great threats to plant growth. A combination of historical deposition data of measured wet NH_x and modeled dry NH_x in China suggests that dry NH_x deposition has been increasing substantially (4.50% yr⁻¹, p < 0.05) since 1980. Here, chemical transport model (WRF-EMEP) results indicate that variation in NH₃ emissions is not a dominant factor resulting in the continually increasing trends of dry NH_x deposition, while climate change-induced trends in precipitation patterns with less frequent light rain and more frequent consecutive rain events (with ≥ 2 consecutive rainy days) contribute to the increase in dry NH_x deposition. This will continue to shift NH_x deposition from wet to dry form at a rate of 0.12 and 0.23% yr⁻¹ (p < 0.05) for the period of 2030–2100 in China under the RCP4.5 and RCP8.5 scenarios, respectively. Further analysis for North America and Europe demonstrates results similar to China, with a consistent increase in the contribution of dry NH_x deposition driven by changing precipitation patterns from ~30% to ~35%. Our findings, therefore, uncover the change of precipitation patterns has an increasing influence on the shifting of NH_x deposition from wet to dry form in the Northern Hemisphere and highlight the need to shift from total NH_x deposition-based control strategies to more stringent NH₃ emission controls targeting dry NH_x deposition in order to mitigate the potential negative ecological impacts.

npj Climate and Atmospheric Science (2023)6:62; https://doi.org/10.1038/s41612-023-00390-7

INTRODUCTION

Nitrogen deposition, an important component of the global nitrogen cycle, has increased twofold over the past 100 years globally¹ and by 60% from 1980 to 2010 in China², as a result of reactive nitrogen emissions associated with rapid expansion in agriculture and increased fossil fuel combustion³. These reactive nitrogen species include reduced $(NH_x = NH_3 + NH_4^+)$ and oxidized $(NO_v = NO_x (NO + NO_2) + its oxidation products)$ compounds. Given the continual reductions in NO_{x} emissions, NH_{y} deposition has become increasingly important, with its contribution currently reaching 60-85% of the total nitrogen deposition in the United States and Europe^{4–6}. Enhanced NH_x deposition is favorable for crop production and plant growth in nitrogenlimited regions⁷, whereas excess NH_x deposition causes greater damage to nitrogen-sensitive ecosystems, including global biodiversity loss and eutrophication, compared with NO_v deposition⁸.

The removal of NH_x from the atmosphere can occur by dry or wet processes^{1,9,10}. Wet deposition occurs mainly through scavenging by rainfall, sleet, fog, snow, and hail^{2,11}, while dry deposition occurs by vertical turbulent transfer to the earth's surface^{8,9}. Dry NH_x deposition (often dominated by gaseous NH_3) is a continuous process that drives plant species composition change and reduces species cover and diversity much faster, and inflicts greater threats to plant growth compared to the same unit of wet NH_x deposition^{12,13}. Previous studies have characterized the spatiotemporal variation and ecological effects of NH_x deposition; however, the main focus of these studies has been on wet NH_x deposition because it is relatively easy to measure in existing networks^{2,11}, whereas long-term and large-scale dry NH_x deposition has been less studied due to the technical difficulty in directly measuring and monitoring dry deposition. It has been reported that dry NH_x deposition has been a critical component of total NH_x deposition in recent years^{14,15}. Based on a combination of historical measurement-based wet NH_x deposition and modelbased dry NH_x deposition data, Yu et al.¹⁶ suggested that there has been a shift in the relative contributions of wet and dry deposition to total NH_x deposition in China from 1980 to 2015; wet deposition previously dominated total NH_x deposition, but the modeled ratio of dry to wet NH_x deposition ($R_{NHx(drv/wet)}$) gradually rose from 1980 to 2015, to the point where wet and dry deposition now have an approximately equal contribution to total NH_x deposition (Fig. 1). Thus, there is an urgent need to better understand why dry NH_x deposition and $R_{NHx(drv/wet)}$ have increased in China during the past decades according to the modeled deposition, especially when NH₃ emissions have remained stable since 2005¹⁶.

The major factors that control the variation of NH_x deposition include emissions, meteorology, and land cover^{9,17,18}. Chemical transport models (CTMs) have been widely used to investigate the

¹Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, PR China. ²School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yatsen University, Guangzhou 510275, PR China. ³Guangdong University of Finance, Guangzhou 510521, PR China. ⁴Department of Earth System Science, University of California, Irvine, CA 92697, USA. ⁵INRA, Agrocampus Ouest, UMR1069 Sol Agro-hydrosysteme Spatialisation, 35042 Rennes, France. ⁶Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China. ⁷Key Laboratory of Plant-Soil Interactions of MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, PR China. ⁸College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China. ⁹Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA. ¹⁰These authors contributed equally: Weihua Chen, Shiguo Jia. ^{Sem}email: eciwxm@jnu.edu.cn; mshao@jnu.edu.cn

Fig. 1 Temporal trends in NH_x deposition and precursor emissions over China from 1980 to 2015. a Deposition flux (kg N ha⁻¹ yr⁻¹) and the ratio of dry to wet NH_x deposition ($R_{\text{NHx}(dry/wet)}$). b Anthropogenic emissions of SO₂, NO_x, and NH₃ (Tg yr⁻¹) (data obtained from Yu et al.¹⁶); circles represent the average modeled dry deposition, measured wet deposition, total deposition (dry + wet), and emissions for a given time period; the dashed lines are a linear fit to the points; gray bars are $R_{\text{NHx}(dry/wet)}$ and are plotted on the right-hand axis; error bars indicate standard deviation (s.d.).

relative impact of these factors on nitrogen deposition. The results suggest that the long-term trends of NH_x deposition depend to a large extent on emissions and meteorology on regional and global scales, while land use and land cover are important for the spatial distribution of NH_x deposition^{19–22}. Specifically, variations in meteorological variables (e.g., precipitation, surface air temperature, wind speed, solar radiation, and atmospheric stability) driven by global climate change are closely related to the partitioning of dry and wet NH_y deposition, although they play only a minor role (less than 20%) in controlling the long-term trends of total nitrogen deposition¹⁹⁻²². Precipitation, in particular, controls the partitioning of dry and wet NH_x deposition due to its role in the wet scavenging process. Regardless of the importance of precipitation amount in the partitioning of dry and wet NH_x deposition^{18,23}, regional and global annual precipitation amounts have not shown a statistically significant trend in the past decades²⁴ and accordingly cannot explain the decadal-scale variation of the modeled partitioning of dry and wet NH_x deposition. Precipitation patterns (e.g., occurrence, intensity, and duration), however, have changed significantly around the world. Specifically, extreme and consecutive rain events have intensified in the past 100 years^{25,26} and are projected to intensify further in the future around the world^{27,28}. The change in the precipitation patterns can be mainly attributed to the increased moisture in the atmosphere due to global warming and persistent low pressure due to the slowing of atmospheric circulation^{29,30}. Nevertheless, the influence of changing precipitation patterns on the partitioning of dry and wet NH_x deposition remains poorly understood^{19,20,23,31–33}.

In this work, we address the following questions: how do the variations in climate change-induced precipitation patterns

contribute to the continual increase in dry NH_x deposition and $R_{\rm NHx(dry/wet)}$ in China¹⁵ ? Is the importance of climate changeinduced precipitation patterns for the partitioning of dry and wet NH_x deposition specific to China, or is it a ubiquitous phenomenon that also occurs in other regions worldwide? We first establish a linear emission-deposition response relationship based on CTM (WRF-EMEP) simulations to estimate the contribution of precursor emission variation to the change in dry NH₂ deposition and $R_{\rm NHx(dry/wet)}$. The change in dry NH_x deposition and $R_{\rm NHx(dry/wet)}$, which cannot be explained by precursor emissions, suggests the effect of the interdecadal variability of precipitation patterns driven by climate change. We further explore the potential impact of future climate change on the partitioning of dry and wet NH_v deposition by relying on prediction equations established through historical data and predicted data under two future climate change scenarios, representative concentration pathway (RCP) 4.5 and 8.5, for the period of 2030-2100. Finally, we broaden our analysis to include the United States (USA) and Europe, the other two hotspots of NH, deposition, to assess the universality of the increasing importance of dry NH_x deposition. The purpose of this study is to advance our understanding of the partitioning of dry and wet NH_x deposition driven by global climate change to date and in the future, which will have important implications for assessing ecological impacts and formulating policy to reduce NH₃ emissions in the face of climate change.

RESULTS

Historical perspective of NH_x deposition

Historical NH_x deposition data based on a combination of measured wet NH_x deposition and modeled dry NH_x deposition¹⁵ (see "Methods" section for detailed information regarding data sources and methodology) for the period of 1980–2015 indicate that the total NH_x deposition in China increased considerably at the rate of 0.188 kg N ha⁻¹ yr⁻² (1.77% yr⁻¹, p < 0.05) before 2005 and showed a slight decreasing trend (0.112 kg N ha⁻¹ yr⁻², 0.80% yr⁻¹) after 2005 (Fig. 1). On average, the total NH_x deposition was estimated at 12.7 ± 1.1 kg N ha⁻¹ yr⁻¹ in China from 1980 to 2015. In general, the variation in total NH_x deposition was consistent and in line with the trends of NH₃ emissions, with a significant positive correlation observed between them (r = 0.95, p < 0.05).

With respect to the forms of NH_x deposition, variation in wet NH_x deposition was consistent with total NH_x deposition, but the growth rate for wet NH_x deposition (0.055 kg N ha⁻¹ yr⁻², 0.74% yr⁻¹) was lower than that of total NH_x deposition before corresponding 2005. while the rate of decrease $(0.258 \text{ kg N} \text{ ha}^{-1} \text{ yr}^{-2}, 3.07\% \text{ yr}^{-1})$ was relatively higher after 2005. In contrast, modeled dry NH_x deposition was on the rise during the study period, at the rate of $0.143 \text{ kg N} \text{ ha}^{-1} \text{ yr}^{-2}$ (4.50% yr⁻¹, p < 0.05), leading to an upward trend for modeled $R_{\rm NHx(dry/wet)}$ (ratio of dry to wet NH_x deposition) at the rate of 0.026 per year (6.21% yr⁻¹, p < 0.05). These results indicate a shift in the relative contributions of wet and dry deposition to total NH_x deposition, with modeled $R_{NHx(dry/wet)}$ increasing from 0.42 (1980s) to 1.20 (2010s), implying that China has gone from having wet deposition as the dominant contributor to total NH_y deposition to having approximately equal dry and wet NH_x deposition for the last two decades.

Variation in deposition velocity is not responsible for the partitioning of $\rm NH_{x}$ deposition

The dry deposition flux is calculated as the product of ambient concentration and vertical deposition velocity $(V_d)^5$ (see detailed information in Supplementary Note 1); ambient concentration depends heavily on precursor emissions while V_d relies heavily on meteorological conditions, surface characteristics, and the

pollution regime^{34–36}. The parameterization of gaseous V_d utilizes a resistance approach analogous to Ohm's law in electrical circuits^{34–36} (see detailed information in Supplementary Note 1). The resistance includes aerodynamic resistance (R_a) , guasi-laminar sublayer resistance (R_b) and canopy resistance (R_c) , among which, R_c is generally the most dynamic and difficult to estimate³⁷⁻⁴⁰. Furthermore, R_c is dominant in the deposition process as it is typically the largest in magnitude among the three resistances⁴⁰. Non-stomatal resistance (R_{ns}) is one of the most important terms of R_c for gaseous NH₃ V_d since non-stomatal uptake is the dominant pathway for highly water-soluble gaseous $NH_3^{37,38}$. R_{ns} , is mostly influenced by surface temperature, relative humidity, and the presence of other trace substances (i.e., SO_2 and NH_2)^{38,39}. According to the work of Simpson et al.³⁹, R_{ns} was calculated in this study (see Supplementary Eqs. (3 and 4)). Stomatal resistance, R_{ns} , did not change significantly during the study period (Supplementary Fig. 1), although surface temperature (Supplementary Fig. 2) and precursor emissions (Fig. 1b) changed substantially in the past few decades. Further evidence provided by the WRF-EMEP model also revealed that the annual average V_d for gaseous NH_3 and particulate NH_4^+ had no obvious change between 2010 and 2017 (Supplementary Fig. 3, see detailed information in Supplementary Note 5). The results suggest that V_d affected by anthropogenic emissions and meteorology was not responsible for the partitioning of dry and wet NH_x deposition.

Variation in emissions is not a dominant factor affecting the partitioning of NH_x deposition

Among the precursor emissions, NH₃ emissions are the primary driver determining the magnitude and trends of NH_x deposition. On the other hand, emissions of the acidic gases SO_2 and NO_x can affect the equilibrium between gaseous NH₃ and particulate NH₄⁺ through the variation of aerosol acidity. The variation in aerosol acidity can, in turn, influence the partitioning of dry and wet NH_{ν} deposition^{11,14}. In order to quantify the contribution of variations in precursor emissions to the change in modeled dry NH_x deposition and R_{NHx(dry/wet)}, we first establish a linear emission-deposition response relationship based on CTM (WRF-EMEP) simulations (see "Methods" section for detailed information). As a result, we estimated that the changes in precursor emission amounts during 1985-2015, with values of +5.4 $(+73\% \text{ yr}^{-1})$, $+10.3 \ (+62\% \text{ yr}^{-1})$, and $+13.2 \ (298\% \text{ yr}^{-1}) \text{ Tg yr}^{-1}$ for NH₃, SO₂, and NO_x, respectively, resulted in changes of +1.00 kg N ha⁻¹ yr⁻¹ and +0.03 for the variation in modeled dry NH_x deposition (Δ Dry) and modeled R_{NHx(dry/wet)} (Δ Ratio), respectively. To summarize, changes in precursor emissions explained 26% of the increase in modeled dry NH_x deposition and 4% of the increase in modeled R_{NHx(dry/wet)}, with an overall variation of +3.85 kg N ha⁻¹ yr⁻¹ and +0.78 for Δ Dry and Δ Ratio, respectively, suggesting that variation in anthropogenic emissions is not a dominant factor affecting the partition of dry and wet NH_x deposition from the perspective of long-term trends. This finding is also confirmed by the spatial analysis of NH_x deposition (Supplementary Fig. 4) and anthropogenic emissions (Supplementary Fig. 5), which corroborate the finding from the temporal analysis that variation in anthropogenic emission is not a dominant factor affecting the partition of dry and wet NH_x deposition (Supplementary Note 3).

Effect of climate change-induced precipitation patterns on the partitioning of NH_x deposition

It is widely accepted that precipitation amount is the most important meteorological factor affecting the magnitude of NH_x deposition flux^{18,41}. However, there has been no significant variation in the long-term annual accumulated precipitation amount in China during the past few decades, with an average value of 1009–1047 mm yr⁻¹ (Supplementary Fig. 6a). In addition,

there has been no statistically significant correlation between precipitation amount and modeled dry NH_x deposition, modeled $R_{\rm NHx(dry/wet)}$, suggesting that interdecadal variability in precipitation amount is not sufficient to explain the upward trends in modeled dry NH_x deposition and $R_{\rm NHx(dry/wet)}$. However, precipitation patterns (e.g., intensity and duration) have changed significantly around the world despite stable precipitation amounts. In order to characterize rain intensity and rain event duration quantitatively, rain intensity was classified as light rain (0.1–10 mm d⁻¹) and moderate rain or above (≥ 10 mm d⁻¹). Based on rainfall duration, a rain event was classified as a consecutive rain event (with two or more consecutive rainy days) or a single rain event.

As shown in Supplementary Fig. 6b, c, the frequency of light rain decreased significantly while upward trends were observed for consecutive rain events in China during 1985–2015 under the effect of climate change. Moreover, the frequency of light rain was negatively correlated with modeled dry NH_x deposition (r = -0.73) and modeled $R_{\text{NHx}(dry/wet)}$ (r = -0.90), and the occurrence of consecutive rain events was positively correlated with modeled dry NH_x deposition (r = 0.55) and modeled $R_{\text{NHx}(dry/wet)}$ (r = 0.70), indicating that rain intensity and rain event duration may be responsible for the upward trends in modeled dry NH_x deposition and $R_{\text{NHx}(dry/wet)}$ in China.

Previous studies have revealed that owing to global climate change, variation in precipitation patterns plays a more important role than the amount of rain in the removal of air pollutants^{42,43}. In terms of rain intensity, it has been theoretically and empirically proven that pollutant concentration in rainwater has a negative correlation with rainfall intensity and that light rain is the most effective at removing water-soluble pollutants through belowcloud scavenging processes⁴⁴⁻⁴⁹. Wang et al.⁵⁰ further demonstrated that aerosol wet scavenging on a global scale is predominantly constrained by light rain and that the magnitude of scavenging varies approximately exponentially with precipitation intensity. To verify the relationship between the wet removal of NH_4^+ and rain intensity, the concentration of NH_4^+ in rainfall and the rain intensity was analyzed with data across China, the USA, and Europe. Results showed an exponential relationship between the two parameters, with r-squared values above 0.80 and p-values less than 0.001 (Supplementary Fig. 7, see Supplementary Note 2.1 for data sources), providing additional evidence that light rain has a stronger washout capacity for NH₄⁺ globally. With respect to rain event duration, the washout amount of NH_4^+ from the atmosphere by consecutive rain events is less than that by an equivalent amount of inconsecutive rain events. This is because as a rain event continues, less NH_x content is removed from the atmosphere due to less available NH₃ in the atmosphere. NH₃ is less available because of suppressed NH₃ emissions during the rainfall process and less accumulated NH₃ due to washout in the previous time period⁵¹. As an example, the dynamics of NH₄⁺ concentrations recorded during two consecutive rain events on April 11th, 2009, in Guiyang, China, revealed that NH₄⁺ was scavenged quickly at the start of each precipitation event, followed by a relatively low level of scavenging until the end of the event⁴¹ (Supplementary Fig. 8).

In order to characterize the precipitation pattern-induced effect on the below-cloud wet removal of NH_x content with the coinfluence of rain intensity and rain event duration, we have defined a new indicator, the precipitation scavenging index (PSI), in this study. The PSI is calculated as follows:

$$\mathsf{PSI} = \frac{\mathsf{LR}}{\mathsf{CR}} \tag{1}$$

Where LR represents the frequency of days with light rain each year, and CR represents the occurrence of consecutive rain events each year. PSI is, therefore, a dimensionless indicator. A lower value of PSI suggests that less frequent but increasingly intense rainfall events are less efficient at "cleaning" the atmosphere of gaseous NH_3 and particulate NH_4^+ . This implies that more NH_x remains in the atmosphere for dry deposition by turbulent diffusion to vegetation and other surfaces. This indicator, despite not having a specific physical meaning, provides a simple way to reflect the negative correlation between LR and dry NH_x deposition and $R_{NHx(dry/wet)}$, as well as the positive correlation between CR and dry NH_x deposition and $R_{NHx(dry/wet)}$, and comprehensively represents the contrasting effect of LR and CR on the below-cloud wet removal of NH_x .

An overall negative trend was found for PSI in China during 1980–2015 (Fig. 2). The negative correlations were found between PSI and modeled dry NH_x deposition (r = -0.79) as well as modeled $R_{\rm NHx(dry/wet)}$ (r = -0.63), indicating that variation in climate change-induced precipitation patterns favor a shift in NH_x deposition from the wet to dry form. Spatial analysis of NH_x deposition (Supplementary Fig. 4) and precipitation patterns (Supplementary Fig. 9) in China further confirmed that changing precipitation patterns contributed to the increase in dry NH_x deposition in China (Supplementary Note 3). Our finding is supported by studies conducted in the USA, which also revealed that most of the increases in ambient NH₃ concentration are a manifestation of climate change^{52,53}.

Implications for future partitioning of NH_x deposition

As global climate change is accelerating, partitioning of dry and wet NH_x deposition driven by precipitation pattern changes is expected to continue in the future. The results from the two future global climate scenarios (RCP4.5 and RCP8.5) show that less frequent light rain and more consecutive rain events are expected for the period of 2030-2100 (Supplementary Fig. 6b, c). Therefore, the PSI will continue to decline in the future (Fig. 2), implying that more NH_x remains in the atmosphere and can subsequently be removed from the atmosphere via dry deposition processes. Further reductions in anthropogenic SO₂ and NO_x emissions, and a steady increase in NH₃ emissions, are projected from 2030 to 2100 under these global climate scenarios (Supplementary Fig. 10). Hence, the projected $R_{NHx(dry/wet)}$, as a function of the emission index (EI) and PSI (see detailed information in Supplementary Note 6), will continue to increase between 2030 and 2100 at a rate of 0.007 per year (0.59% yr⁻¹, p < 0.05) and 0.010 per year (1.13% yr⁻¹, p < 0.05) for the RCP4.5 and RCP8.5 scenarios, respectively (Fig. 3a). As a result, modeled dry NH_x deposition shows increasing trends at a rate of $0.011 \text{ kg N} \text{ ha}^{-1} \text{ yr}^{-2}$ $(0.16\% \text{ yr}^{-1}, p < 0.05)$ for RCP4.5 and $0.020 \text{ kg N} \text{ ha}^{-1} \text{ yr}^{-2}$ $(0.30\% \text{ yr}^{-1}, p < 0.05)$ for RCP8.5, respectively (Fig. 3b). Accordingly, based on the projected dry NH_x deposition and $R_{NHx(dry/wet)}$,

Fig. 2 Long-term trends of the historical (1980–2015) and predicted (2030–2100) precipitation scavenging index (PSI) in China. Predicted PSI was calculated by using the meteorological parameters from the two global future climate change scenarios RCP 4.5 and RCP 8.5. Error bars indicate 1/3 standard deviation (s.d.).

Fig. 3 Temporal variations of NH_x deposition and $R_{NHx(dry/wet)}$ in China over the historical (1980–2015) and future period (2030–2100). a $R_{NHx(dry/wet)}$; b dry deposition; c wet deposition; d total deposition.

we extrapolated that wet NH_x deposition shows a continuing downward trend (Fig. 3c), while the total NH_x deposition remains stable since NH₃ emissions remain constant (Fig. 3d). Even though the total NH_x deposition remains almost stable at around 12–13 kg N ha⁻¹ yr⁻¹ in the future, the threats to natural ecosystems from NH_x deposition are expected to increase in the future since the projected increase in dry NH_x deposition could lead to greater damage to plant growth as compared to a similar amount of wet NH_x deposition ^{12,13}. Meanwhile, the shifting of the partitioning of NH_x deposition will also affect the air quality^{16,54,55}. This is because the shifting of the partitioning of NH_x deposition from the particulate phase to the gaseous phase would decrease particle pollution to some extent⁵⁴. However, the shifting of the partitioning of NH_x deposition would increase the lifetime of NH_x, and this can facilitate long-range transportation of NH_x, which may affect other regions⁵⁵.

DISCUSSION

In light of the importance of dry NH_x deposition to the nitrogen cycle and the associated ecological effects, we broaden our analysis to historical NH_x deposition data in the USA and Europe, which are recognized as additional hotspots of NH_x deposition (see more details in Supplementary Note 2.1 and Supplementary Note 4). Consistent upward trends for modeled $R_{NHx}(dry/wet)$ also

occur in the USA and Europe, irrespective of changes in total, wet, and dry deposition of NH_x (Supplementary Fig. 11). Specifically, modeled $R_{\rm NHx(dry/wet)}$ increased at a rate of 0.010 per year (2.05% yr⁻¹, p < 0.05) in the USA and 0.005 per year (1.19% yr⁻¹, p < 0.05) in Europe. Although wet deposition remained the dominant mechanism for NH_x removal in the USA and Europe, the contribution of modeled dry NH_x deposition to total NH_x deposition increased in the past two decades, from ~30% to ~35% for both the USA and Europe. Similar to the estimation in China, we extrapolate that precipitation pattern variations driven by climate change offset the effect of stable or decreasing NH₃ emissions and increase the contribution of modeled dry NH_x deposition to total NH_x deposition in the USA and Europe (see detailed information in Supplementary Note 4).

The results from the two additional continents further suggest the widespread and growing importance of dry NH_x deposition driven by precipitation patterns resulting from global climate change. This is in contrast with previous studies that suggest relatively little influence of climate change, which may partly be because they only considered changes in precipitation amount, whereas we show that precipitation patterns (intensity and duration) play a far more important role in the shifting of NH_x deposition partitioning ^{19–22}. Figure 4 schematically illustrates how NH_x deposition partitioning shifts under the influence of climate change-induced variations in precipitation patterns. In view of the

Fig. 4 Schematic representation of the shift in NH_x deposition partitioning driven by climate change-induced variations in precipitation patterns. Atmospheric reduced nitrogen (NH_x) is emitted in the form of NH₃ to a large extent by agricultural activities (nitrogen fertilizer application and livestock manure) and then deposited back to the earth's surface via dry and wet removal pathways. NH₃ emissions, in combination with emissions of the acidic gases SO₂ and NO_x can influence the partitioning of dry and wet NH_x deposition by affecting the equilibrium between gaseous NH₃ and particulate NH₄^{+11,18}. More importantly, as a consequence of climate change, global trends in precipitation patterns, in particular trends toward less frequent light rain and more frequent consecutive rain events, shift the partitioning of the dry and wet deposited NH_x fractions. Specifically, this leads to a decrease in wet deposition and an increase in dry deposition, leading to negative ecological consequences since the continued increasing dry NH_x deposition causes greater damage to plant growth as compared to the same unit of wet NH_x deposition^{12,13}. acceleration of global climate change, less frequent light rain and more frequent consecutive rain events are expected at present and in the coming decades. In particular, extreme rain events are projected to become more frequent in the future, which will further strengthen the shifting of NH_x deposition from the wet to the dry form. Consequently, relatively less NH_x content will be removed from the atmosphere via wet deposition, resulting in a continued increase in the contribution of dry NH_x deposition, which will have a series of side effects on natural ecosystems and human health and air quality^{12,54,56}. More importantly, other extreme weather events (e.g., drought and heatwave) due to global climate change will weaken the growth of plants and increase their susceptibility to increased dry NH_x deposition in the future⁵⁷.

Note that changes in NH_x deposition can reflect the tendency of total nitrogen deposition to a certain extent, although we focus only on the partitioning of dry and wet NH_x deposition in this study without analyzing NO_y deposition. For example, the increasing importance of NH_x deposition compared with NO_y deposition can be inferred based on the combination of historically measured wet nitrogen deposition and modeled dry nitrogen deposition data shown in Yu et al.¹⁶. Looking to the future, NH_x deposition will dominate total nitrogen deposition after 2030, as NH₃ emissions are expected to surpass NO_x emissions at that time (Supplementary Fig. 10), suggesting that the role of NH_x deposition in nitrogen deposition will become more prominent, especially with the continued strict control of NO_x emissions. Lamarque et al.⁵⁸ also reported that nitrogen deposition was projected to increase over certain regions around the world by the end of the 21st century, especially in Asia, owing to the projected increase in NH₃ emissions. Consequently, NH₃ emission control is still the most effective and fundamental way to reduce NH_x deposition and to curb its damage to natural ecosystems and human health, although NH₃ emission abatement cannot fully control NH_x deposition as previous studies documented that per-unit reduction in NH₃ emissions led to only a 60-80% mitigation of NH_x deposition^{10,59}. Nevertheless, the analysis in the USA and Europe also highlights that the expected benefits from NH₃ emission reductions on dry NH_x deposition are diminished by the effects of climate change. Hence, more stringent NH₃ emission controls are required to achieve the desired reductions in NH_x deposition levels in the future²⁰. A significant proportion of the NH₃ emissions in China can be attributed to its agricultural sources, and improving agricultural nitrogen management (e.g., reduced fertilizer application, covered manure storage, and implementation of the deep application of fertilizers during growing seasons) could be the most effective approach to reduce NH₃ emissions from agricultural sources in China to date and in the future^{54,60,61}.

This study prompts our re-examination of the significance of dry NH_x deposition in the global nitrogen cycle and ecosystem assessment and poses an urgent need to mitigate NH_x deposition in the face of global climate change. Nevertheless, this study is still subject to four major uncertainties and limitations (see more information in Supplementary Note 7): (1) Long-term trends of dry NH_x deposition are modeled results, which entail a higher degree of uncertainty than the observed wet NH_x deposition^{11,62,63}. Deposition velocity (V_d) is the dominant contributor to the uncertainty of dry deposition simulations and could potentially affect the estimation of dry NH_x deposition flux^{34–36}. However, year-specific instead of time-varying V_d was used to estimate long-term trends of dry NH_x deposition in this study, which could introduce additional uncertainties. (2) The historical NH₃ emissions data were calculated based on bottom-up activity data and static emissions factors, which did not consider the effect of interannual meteorological variability⁶⁴⁻⁶⁷. Whereas NH₃ emissions were extremely weather/climate-sensitive⁶⁸, the influence of climate change-induced precipitation patterns and other meteorological

factors (e.g., temperature and wind speed) are supposed to affect the emission processes of NH₃, which might also introduce additional uncertainties. (3) The land/atmosphere exchange of gaseous NH₃ is, in fact, bi-directional and controlled by a range of environmental factors⁶⁹⁻⁷¹. Nonetheless, owing to the difficulty of obtaining detailed input parameters and empirical tuning at a large scale, NH₃ bi-directional exchange process has been incorporated into only a few of the regional- and global-scale CTMs (i.e., CMAQ, CAM_X, GEM-MACH, and LOTOS-EUROS)^{35,36,72,73}. Therefore, the lack of consideration of bi-directional parameterization schemes simultaneously affects the estimation of NH3 emissions and NH_x deposition^{74–76} and introduces additional uncertainties. (4) Apart from precipitation patterns, global climate change can also affect NH_x deposition partitioning through other aspects such as surface temperature, solar radiation, relative humidity, soil temperature, and natural surface properties^{68,77,78}. However, the complex interactions of multiple meteorological parameters, as opposed to their individual effects on NH_x deposition partitioning, make it difficult to isolate and quantify the relative importance of these meteorological parameters. Hence, the quantification of global climate change-induced NH_x deposition partitioning is still subject to large uncertainty and remains a great challenge for the whole community. Development of climate-dependent models for better quantification of the dynamic relationship between NH₃ emissions, climate/meteorology, and deposition under global environmental change in the future is therefore needed⁷⁷.

METHODS

Historical dry and wet NH_x deposition data in China

Both the annual modeled dry NH_x deposition and measured wet NH_x deposition data in China for the period of 1980–2015 were obtained from Yu et al.¹⁶, which is the most comprehensive and current data on long-term NH_x deposition available in China. General information regarding the sources of the NH_x deposition data collected in China has been summarized in Supplementary Table 1. Briefly, observed wet NH_x deposition data were obtained from four sources, including (1) peer-reviewed published papers screened by Yu et al.¹⁶, (2) the Acid Deposition Monitoring Network in East Asia (https://www.eanet.asia/, last access: 3 January 2023), (3) the National Ecosystem Research Network of China (http://www.cnern.ac.cn/index.action, last access: 3 January 2023), and (4) the Nationwide Nitrogen Deposition Monitoring Network established by China Agricultural University⁷², with a total of 956 monitoring sites.

Modeled dry NH_x deposition fluxes were obtained from inferential methods, which combine ambient concentrations and dry deposition velocities (see Supplementary Note 1 for the parameterization of dry NH₃ deposition)^{5,79,80}. The average land use specific V_d collected from previous studies was used to calculate annual dry NH_x deposition (Supplementary Fig. 12, see Extended Data Table 4 in Yu et al.¹⁶). Specifically, modeled V_d for 9 land use types was derived from Xu et al.¹¹, who applied the GEOS-Chem model coupled with the scheme of Wesely⁸¹ and Zhang et al.⁸² to calculate V_d for gaseous NH₃ and particulate NH_4^+ , respectively. Modeled V_d in the rest of 5 land use types (i.e., desert, tundra, water, wetland, and ice) was estimated by using similar parameterization schemes used as in Xu et al.¹¹ but with different CTMs (CMAQ, RegAMDS)⁸³⁻⁸⁸. It is worth noting that the modeled V_d in the 14 land use types derived from Yu et al.¹⁶ was originally based on a unidirectional method, except for Su et al.⁸³, who used a bi-directional NH₃ exchange method to calculate V_d for gaseous NH₃ over deserts.

Yu et al.¹⁶ averaged the annual NH_x deposition during 1980–2015 for 6 periods, including 1980–1990, 1991–1995, 1996–2000, 2001–2005, 2006–2010, and 2011–2015¹⁵. Hence, we

also averaged precursor emissions for the corresponding six periods (see Supplementary Note 2.3 for detailed information regarding emissions data). The data in each period were fitted with the middle year of the corresponding period in order to obtain the linear regressions. Subsequently, the slope of the linear regression was used to represent the average annual rate of change. The relative annual rate of change was then calculated by normalizing the annual rate of change with the value for the first time period in each region.

Quantification of the contribution of emissions to NH_x deposition partitioning

The response relationship between NH_v deposition and precursor emissions was developed based on the WRF-EMEP model (the Weather Research and Forecasting model coupled with the European Monitoring and Evaluation Program)³². Model configuration and evaluation are presented in Supplementary Note 5. A series of sensitivity studies were conducted to quantify the response of NH_x deposition to reductions in SO_2 , NO_x , and NH_3 separately, as well as $SO_2 + NO_x + NH_3$ together. The reduction values for individual emissions were set to be 10%, 30%, 50%, 70%, and 90%, respectively. Sensitivity results show that the response of regional NH_x deposition to individual emission reductions is nearly linear. This is consistent with the study by Civerolo et al.¹⁹, which also revealed that the response of global nitrogen deposition to emissions was nearly linear based on six different tropospheric chemistry models. Furthermore, sensitivity results also revealed that the effect of NH₃ emission variation is far more important than that of SO₂ and NO_x emissions, which has also been found by previous studies^{74,89}. Last but not least, the response to the co-reduction of $SO_2 + NO_x + NH_3$ was nearly equal to the sum of the individual reductions of SO_{2r} , NO_{xr} , and NH_3 . Therefore, the total variations in dry NH_x deposition (ΔDry) and $R_{NHx(dry/wet)}$ ($\Delta Ratio$) caused by precursor emissions during 1980–2015 can be obtained using Eq. (2):

$$\Delta \text{Dry or } \Delta \text{Ratio} = a_1 \times \Delta \text{SO}_2 + a_2 \times \Delta \text{NO}_x + a_3 \times \Delta \text{NH}_3$$
(2)

Where a_1 , a_2 , and a_3 are constants, indicating the variations in dry NH_x deposition and $R_{\text{NHx}(dry/wet)}$ caused by per-unit reduction in SO₂, NO_x, and NH₃ emissions, respectively, as listed in Supplementary Table 2. Δ SO₂, Δ NO_x, and Δ NH₃ are the changes in SO₂, NO_x, and NH₃ emissions between 1980 and 2015, respectively.

DATA AVAILABILITY

All data used in this study are available in the main text or the supplemental materials. Links to download the NH_x data (i.e., ambient concentration, precipitation concentration, and deposition flux) can be found in Supplementary Table 1. Links to download historical and predicted anthropogenic emissions data and meteorological data are provided in the Supplementary Note 2.

CODE AVAILABILITY

We performed simulations using WRF v3.9.1 coupled with the EMEP rv4.17 model, which are freely available at https://www2.mmm.ucar.edu/wrf/users/ (last access: 3 January 2023) and https://github.com/metno/emep-ctm (last access: 3 January 2023), respectively.

Received: 6 July 2022; Accepted: 25 May 2023; Published online: 07 June 2023

REFERENCES

- 1. Galloway, J. N. et al. Nitrogen cycles: past, present, and future. *Biogeochemistry* **70**, 153–226 (2004).
- Liu, X. J. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).

- 50. Westla, W. et al. I date cha
 - Langner, J., Bergström, R. & Foltescu, V. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe. *Atmos. Environ.* 39, 1129–1141 (2005).
 - Simpson, D. et al. Impacts of climate and emission changes on nitrogen deposition in Europe: a multi-model study. *Atmos. Chem. Phys.* 14, 6995–7017 (2014).
 - Kang, Y. et al. High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmos. Chem. Phys. 16, 2043–2058 (2016).
 - Bash, J. O., Cooter, E. J., Dennis, R. L., Walker, J. T. & Pleim, J. E. Evaluation of a regional air-quality model with bidirectional NH₃ exchange coupled to an agroecosystem model. *Biogeosciences* **10**, 1635–1645 (2013).

- Galloway, J. N. et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. *Science* 320, 889–892 (2008).
- Jiang, Z. et al. Unexpected slowdown of US pollutant emission reduction in the past decade. Proc. Natl Acad. Sci. USA 115, 5099–5104 (2018).
- Li, Y. et al. Increasing importance of deposition of reduced nitrogen in the United States. Proc. Natl Acad. Sci. USA 113, 5874–5879 (2016).
- Tomlinson, S. J., Carnell, E. J., Dore, A. J. & Dragosits, U. Nitrogen deposition in the UK at 1 km resolution from 1990 to 2017. *Earth Syst. Sci. Data* 13, 4677–4692 (2021).
- Thomas, R. Q., Canham, C., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. *Nat. Geosci.* 3, 13–17 (2010).
- 8. Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. *Philos. T. R. Soc. B* **368**, 20130116 (2013).
- Lamarque, J. F. et al. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: analysis of nitrogen deposition. J. Geophys. Res. 110, D19303 (2005).
- Tan, J., Fu, J. S. & Seinfeld, J. H. Ammonia emission abatement does not fully control reduced forms of nitrogen deposition. *Proc. Natl Acad. Sci. USA* **117**, 9771–9775 (2020).
- Xu, W. et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmos. Chem. Phys. 15, 12345–12360 (2015).
- Sheppard, L. J. et al. Dry deposition of ammonia gas drives species change faster than wet deposition of ammonium ions: evidence from a long-term field manipulation. *Glob. Change Biol.* **17**, 3589–3607 (2011).
- Van der Eerden, L. J. M. Toxicity of ammonia to plants. Agric. Environ. 7, 223–235 (1982).
- Pan, Y. P. et al. Ammonia should be considered in field experiments mimicking nitrogen deposition. Atmos. Ocean. Sci. Lett. 13, 248–251 (2020).
- 15. Jia, Y. et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. *Sci. Rep.* **4**, 3763 (2014).
- Yu, G. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. *Nat. Geosci.* 12, 424–429 (2019).
- 17. Hertel, O. et al. Governing processes for reactive nitrogen compounds in the European atmosphere. *Biogeosciences* 9, 4921–4954 (2012).
- Pan, Y. P. et al. Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China. Atmos. Chem. Phys. 12, 6515–6535 (2012).
- Civerolo, K. L. et al. Simted effects of climate change on summertime nitrogen deposition in the eastern US. Atmos. Environ. 42, 2074–2082 (2008).
- Ellis, R. A. et al. Present and future nitrogen deposition to national parks in the United States: critical load exceedances. *Atmos. Chem. Phys.* 13, 9083–9095 (2013).
- Zhang, J. et al. Impacts of cli change and emissions on atmospheric oxidized nitrogen deposition over East Asia. Atmos. Chem. Phys. 19, 887–900 (2019).
- Zhao, X. et al. Spatial and temporal variation of inorganic nitrogen wet deposition to the Yangtze River Delta region, China. *Water Air Soil Pollut.* 203, 277–289 (2009).
- Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. *Rev. Geophys.* 56, 79–107 (2018).
- Fischer, E. M. & Knutti, R. Observed heavy precipitation increase confirms theory and early models. *Nat. Clim. Change* 6, 986–991 (2016).
- O'Gorman, P. A. Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci. 5, 697–700 (2012).
- Palmer, T. N. & Räisänen, J. Quantifying the risk of extreme seasonal precipitation events in a changing climate. *Nature* 415, 512–514 (2002).
- Donat, M. G., Lowry, A. L., Alexander, L. V., O'Gorman, P. A. & Maher, N. More extreme precipitation in the world's dry and wet regions. *Nat. Clim. Change* 6, 508–513 (2016).
- Butler, T., Vermeylen, F., Lehmann, C. M., Likens, G. E. & Puchalski, M. Increasing ammonia concentration trends in large regions of the USA derived from the NADP/AMoN network. *Atmos. Environ.* **146**, 132–140 (2016).
- 29. Kendon, E. J. Why extreme rains are gaining strength as the climate warms. *Nature* **563**, 461–461 (2018).
- 30. Westra, W. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. *Rev. Geophys.* **52**, 522–555 (2014).

- Sutton, M. A., Schjoerring, J. K. & Wyers, G. P. Plant-atmosphere exchange of ammonia. *Philos. Trans. R. Soc. A* 351, 261–278 (1995).
- Nair, A. A. & Yu, F. Quantification of atmospheric ammonia concentrations: a review of its measurement and modeling. *Atmosphere* 11, 1092 (2020).
- Flechard, C. R. et al. Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network. *Atmos. Chem. Phys.* 11, 2703–2728 (2011).
- Tanner, E., Buchmann, N. & Eugster, W. Agricultural ammonia dry deposition and total nitrogen deposition to a Swiss mire. *Agric. Ecosyst. Environ.* 336, 108009 (2022).
- Simpson, D. et al. The EMEP MSC-W chemical transport model—technical description. Atmos. Chem. Phys. 12, 7825–7865 (2012).
- Wu, Z. Y. et al. Evaluating the calculated dry deposition velocities of reactive nitrogen oxides and ozone from two community models over a temperate deciduous forest. *Atmos. Environ.* 45, 2663–2674 (2011).
- 41. Xiao, H. W. et al. δ^{15} N–NH₄⁺ variations of rainwater: application of the Rayleigh model. *Atmos. Res.* **157**, 49–55 (2015).
- González, C. M. & Aristizábal, B. H. Acid rain and particulate matter dynamics in a mid-sized Andean city: The effect of rain intensity on ion scavenging. *Atmos. Environ.* **60**, 164–171 (2012).
- Pan, Y. P. et al. Wet deposition and scavenging ratio of air pollutants during an extreme rainstorm in the North China Plain. *Atmos. Ocean. Sci. Lett.* **10**, 348–353 (2017).
- Andronache, C. Estimates of sulfate aerosol wet scavenging coefficient for locations in the Eastern United States. *Atmos. Environ.* 38, 795–804 (2004).
- Huo, M. et al. Chemical character of precipitation and related particles and trace gases in the North and South of China. J. Atmos. Chem. 67, 29–43 (2010).
- Jylhä, K. Relationship between the scavenging coefficient for pollutants in precipitation and the radar reflectivity factor. Part I: derivation. J. Appl. Meteorol. 38, 1421–1434 (1999).
- van der Does, M., Korte, L. F., Munday, C. I., Brummer, G. A. & Stuut, J. B. W. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic. *Atmos. Chem. Phys.* 16, 13697–13710 (2016).
- Xu, D. et al. Multi-method determination of the below-cloud wet scavenging coefficients of aerosols in Beijing, China. *Atmos. Chem. Phys.* **19**, 15569–15581 (2019).
- Zhang, L., Michelangeli, D. V. & Taylor, P. A. Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation. *Atmos. Environ.* 38, 4653–4665 (2004).
- Wang, Y. et al. Disproportionate control on aerosol burden by light rain. Nat. Geosci. 14, 72–76 (2021).
- İlker, O. R. U. C., Akkoyunlu, B. O., Dogruel, M. & Tayanç, M. Chemical analysis of wet deposition sequential samples at Istanbul, Turkey. *Int. J. Eng. Res.* **10**, 126–132 (2018).
- Lehmann, C. M., Bowersox, V. C. & Larson, S. M. Spatial and temporal trends of precipitation chemistry in the United States, 1985–2002. *Environ. Pollut.* 135, 347–361 (2021).
- Zhao, Y. et al. Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. *Atmos. Environ.* 153, 32–40 (2017).
- Liu, M. et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. *Proc. Natl Acad. Sci. USA* **116**, 7760–7765 (2019).
- Dennis, R. L., Mathur, R., Pleim, J. E. & Walker, J. T. Fate of ammonia emissions at the local to regional scale as simulated by the Community Multiscale Air Quality model. *Atmos. Pollut. Res.* 1, 207–214 (2010).
- Garrido, J. L., González-Rouco, J. F., Vivanco, M. G. & Navarro, J. Regional surface temperature simulations over the Iberian Peninsula: Evaluation and climate projections. *Clim. Dynam.* 55, 3445–3468 (2020).
- Sheppard, L. J. et al. Stress responses of *Calluna vulgaris* to reduced and oxidised N applied under 'real world conditions'. *Environ. Pollut.* 154, 404–413 (2008).
- Lamarque, J. F. et al. Global and regional evolution of short-lived radiativelyactive gases and aerosols in the Representative Concentration Pathways. *Clim. Change* 109, 191–212 (2011).
- Yu, F., Nair, A. A. & Luo, G. Long-term trend of gaseous ammonia over the United States: modeling and comparison with observations. *J. Geophys. Res.* **123**, 8315–8325 (2018).
- Pinder, R. W., Adams, P. J. & Pandis, S. N. Ammonia emission controls as a costeffective strategy for reducing atmospheric particulate matter in the eastern United States. *Environ. Sci. Technol.* **41**, 380–386 (2007). 2.
- Guo, Y. X. et al. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. *Nat. Food* 1, 648–658 (2020).
- Trebs, I. et al. Dry and wet deposition of inorganic nitrogen compounds to a tropical pasture site (Rondônia, Brazil). Atmos. Chem. Phys. 6, 447–469 (2006).
- 63. Pleim, J. & Ran, L. Surface flux modeling for air quality applications. *Atmosphere* **2**, 271–302 (2011).

- Schoof, J. T. & Robeson, S. M. Projecting changes in regional temperature and precipitation extremes in the United States. *Weather Clim. Extremes* 11, 28–40 (2016).
- Zhang, L. et al. Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. *Atmos. Chem. Phys.* 18, 339–355 (2018).
- Leneman, H., Oudendag, D. A., Van der Hoek, K. W. & Janssen, P. H. M. Focus on emission factors: a sensitivity analysis of ammonia emission modelling in the Netherlands. *Environ. Pollut.* **102**, 205–210 (1998).
- 67. Xu, R. et al. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: empirical and process-based estimates and uncertainty. *Glob. Chang Biol.* **25**, 314–326 (2009).
- Fowler, D. et al. Atmospheric composition change: ecosystems-atmosphere interactions. Atmos. Environ. 43, 5193–5267 (2009).
- Flechard, C. R. et al. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange. *Biogeosciences* 10, 5183–5225 (2013).
- Flechard, C. R., Fowler, D., Sutton, M. A. & Cape, J. N. A dynamic chemical model of bi-directional ammonia exchange between semi-natural vegetation and the atmosphere. Q. J. R. Meteorol. Soc. 125, 2611–2641 (1999).
- Nemitz, E., Milford, C. & Sutton, M. A. A two-layer canopy compensation point model for describing bi-directional biosphere-atmosphere exchange of ammonia. Q. J. Roy. Meteor. Soc. 127, 815–833 (2001).
- 72. Wen, Z. et al. Changes of nitrogen deposition in China during 1980 and 2018. Environ. Int. **144**, 106022 (2020).
- Sorteberg, A. & Hov, Ø. Two parametrizations of the dry deposition exchange for SO₂ and NH₃ in a numerical model. *Atmos. Environ.* **30**, 1823–1840 (1996).
- Han, X., Zhang, M., Skorokhod, A. & Kou, X. X. Modeling dry deposition of reactive nitrogen in China with RAMS-CMAQ. *Atmos. Environ.* 166, 47–61 (2017).
- Dennis, R. L. et al. Sensitivity of continental United States atmospheric budgets of oxidized and reduced nitrogen to dry deposition parameterizations. *Philos. Trans. R. Soc. B* 368, 20130124 (2013).
- Pleim, J. E., Bash, J. O., Walker, J. T. & Cooter, E. J. Development and evaluation of an ammonia bidirectional flux parameterization for air quality models. *J. Geophys. Res.* **118**, 3794–3806 (2013).
- Sutton, M. A. et al. Towards a climate-dependent paradigm of ammonia emission and deposition. *Philos. Trans. R. Soc. B* 368, 20130166 (2013).
- Zhang, L., Wright, L. P. & Asman, W. A. H. Bi-directional air-surface exchange of atmospheric ammonia: a review of measurements and a development of a bigleaf model for applications in regional-scale air-quality models. *J. Geophys. Res.* 115, D20310 (2010).
- Liu, X., Xu, W., Du, E. Z., Pan, Y. P. & Goulding, K. Reduced nitrogen dominated nitrogen deposition in the United States, but its contribution to nitrogen deposition in China decreased. *Proc. Natl Acad. Sci. USA* **113**, E3590–E3591 (2016).
- Du, E., de Vries, W., Galloway, J. N., Hu, X. Y. & Fang, J. Y. Changes in wet nitrogen deposition in the United States between 1985 and 2012. *Environ. Res. Lett.* 9, 095004 (2014).
- Wesely, M. L. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. *Atmos. Environ.* 23, 1293–1304 (1989).
- Zhang, L., Gong, S., Padro, J. & Barrie, L. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. *Atmos. Environ.* 35, 549–560 (2001).
- Su, H. et al. Numerical simulation for dry deposition of ammonia and nitrogen dioxide in a small watershed in Jurong County of Jiangsu Province. *Chin. J. Agrometeorol.* **30**, 335–342 (2009). (in Chinese).
- Zhang, L., Brook, J. R. A. & Vet, R. A revised parameterization for gaseous dry deposition in air-quality models. *Atmos. Chem. Phys.* 3, 2067–2082 (2003).
- Zhang, Y., Wang, T. J., Hu, Z. Y. & Xu, C. K. Temporal variety and spatial distribution of dry deposition velocities of typical air pollutants over different landuse types. *Clim. Environ. Res.* 9, 591–604 (2004).
- Zhang, G., Zhang, J. & Liu, S. M. Characterization of nutrients in the atmospheric wet and dry deposition observed at the two monitoring sites over Yellow Sea and East China Sea. J. Atmos. Chem. 57, 41–57 (2007).
- Zhang, L. et al. Dry deposition of individual nitrogen species at eight Canadian rural sites. J. Geophys. Res. 114, D02301 (2009).
- Zhang, Y., Yu, Q., Ma, W. C. & Chen, L. M. Atmospheric deposition of inorganic nitrogen to the eastern China seas and its implications to marine biogeochemistry. J. Geophys. Res. 115, D00K10 (2010).
- Schiferl, L. D. et al. Interannual variability of ammonia concentrations over the United States: Sources and implications. *Atmos. Chem. Phys.* 16, 12305–12328 (2016).

ACKNOWLEDGEMENTS

This study was supported by the National Natural Science Foundation of China (42121004, 42230701, 41905086, 41905107, 42077205, and 41425020), the second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0604), the Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province (2019B121205004), the AirQuip (High-resolution Air Quality Information for Policy) Project funded by the Research Council of Norway, the Collaborative

Innovation Center of Climate Change, Jiangsu Province, China, and the highperformance computing platform of Jinan University. The authors thank Dr. Huan Liu (Tsinghua University), Dr. Lin Zhang (Peking University), Dr. Sayantan Sarka (Indian Institute of Technology), and Dr. Padmaja Krishnan (National University of Singapore) for valuable suggestions and improvements to the paper. The authors would like to thank the four anonymous reviewers for their constructive feedback.

AUTHOR CONTRIBUTIONS

W.H.C., S.G.J., X.M.W., and M.S. conceived the study and led the analysis. W.H.L. helped with precipitation data processing. B.Q.Z., W.W.W., and J.Y.M. helped with emissions and ammonium deposition data processing. M.C. helped with the EMEP model simulation. C.F., A.G., P.F.Y., X.J.L., G.R.Y., and G.C. provided important views on the study. All co-authors contributed to improving the analysis and interpretation.

COMPETING INTERESTS

The authors declare no competing interests s as defined by Nature Research, or other interests that might be perceived to influence the interpretation of the article.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41612-023-00390-7.

Correspondence and requests for materials should be addressed to Xuemei Wang or Min Shao.

Reprints and permission information is available at http://www.nature.com/ reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http:// creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023