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AI for climate impacts: applications in flood risk
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Sekou L. Remy 2, Kommy Weldemariam5 and Solomon Assefa5

In recent years there has been a surge of interest in the potential of Artificial Intelligence (AI) to address the global threat of climate
change. Here, we consider climate change applications, and review the ability of AI technologies to better quantify climate change-
induced hazards, impacts and risks, and address key challenges in this domain. We focus on three application areas: data-driven
modeling, enabling uncertainty quantification, and leveraging geospatial big data. For these, we provide examples from flood-
related applications to illustrate the advantages of AI, in comparison to alternative methods, whilst also considering its limitations.
We conclude that by streamlining the process of translating weather and climate data into actionable information, facilitated by a
suitable technology framework, AI can play a key role in building climate change resilience.
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INTRODUCTION
Artificial intelligence (AI) is the science and engineering of making
intelligent machines1. Recently, with the rapid growth of machine
learning (ML), a subset of AI in which models are learnt from data,
there has been considerable interest in understanding how AI
technologies can address climate change. The opportunities for
leveraging new ML techniques for weather and climate modelling
have been discussed extensively by previous authors2–4. Others
have considered a broader remit encompassing both climate
change mitigation and adaptation5,6. Here, we focus on the
usefulness of AI/ML in downstream applications to quantify the risk
and impacts of climate change and extreme events (for example,
floods, droughts, heatwaves, wildfire). While climate risk and
impact assessment considers predictive timescales of decades and
beyond, we also include shorter (days to months) timescales in the
scope of our discussion, since predictions on these timescales are
needed for climate resilience planning by organisations across
multiple sectors (e.g. energy distribution, logistics, supply chain,
agriculture, and infrastructure management).
We have been building and operationalising AI-based weather/

climate applications for research and commercial uses. In this paper,
based on our experience, we set out to consider to what extent AI/
ML can address key challenges in climate applications. This article is
intended to be informative both for climate impact scientists
interested in understanding what AI/ML may offer the particular
challenges they face, and to the broader climate science community
interested in how emerging technology can help translate climate
signals into consumable, decision-relevant information.
We begin by reviewing significant challenges in climate impact

quantification. We then discuss the main contributions we believe
AI/ML can make to addressing these challenges, illustrated with
examples from recent work by our group. While the challenges
and methods are chosen to be broadly applicable across multiple
impacts, the examples are taken from a range of flood-related
applications since this domain often experiences the challenges
most acutely, whilst also possessing a maturity of methodology,
due to the history and scale of flood modeling activities (driven by
the huge impact of flooding globally, and the consequent

demand for decision-relevant information). Finally, we draw
conclusions and consider future directions.

CHALLENGES IN CLIMATE IMPACT AND RISK QUANTIFICATION
Transforming climate variables into local-scale impacts involves
multiple scientific domains, models, and datasets. The challenges
associated with this process may be grouped into the following
somewhat overlapping categories: (1) system complexity; (2)
uncertainty quantification; (3) localisation; (4) computational and
practical constraints. We discuss each in turn below.

System complexity
Quantification of climate impacts requires the connection of models
in complex workflows in order to create a quantifiable representation
of the underlying physical systems. In some cases, creation of
individual models may be a challenge due to missing scientific
knowledge of some biophysical and earth system processes7 or
hazard-induced damage2. Integration of multiple model types (e.g.
simulation, ML, rules-based) written in different programming
languages, may be required, along with large spatio-temporal
datasets which vary in spatial and temporal resolution, extent,
projection, and file format. This process can be time-consuming and
inefficient if repeated for each new study. We illustrate this
complexity for the example of surface water flood in Fig. 1: the
workflow contains six different models and eight different datasets to
predict the impact of just one hazard. A further, related challenge is
that of compound events: combinations or sequences of different
hazards (e.g. droughts and heatwaves) which are climatically
correlated and highly impactful. Such events are rare and difficult
to model since they cannot be considered independently, or
modelled from data alone. Systemic modelling of such events would
require multiple, simultaneously-executed versions of Fig. 1. Previous
authors8 highlight the need for better tools that enable “bottom up”
(impact-centric) modelling to identify and better predict such events.

Uncertainty quantification
Uncertainty quantification (UQ) is a widely acknowledged
challenge in climate science, addressed in climate projections by
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ensembling across multiple emission scenarios and climate
models, and at shorter timescale predictions by ensembling over
initial conditions. Typically, applications propagate climate
ensembles through impact models, resulting in ensemble predic-
tions of crop yield9, disease10 or flood11. Whilst quantification of
the weather/climate contribution to uncertainty in this way is
often emphasised, uncertainties are introduced at every step of
the modelling process: due to observational errors, availability of
data for model validation, or unresolved processes. Traditional
approaches to extended UQ include the creation of “super-
ensembles” of multiple impact models driven by climate
ensembles12,13. Full UQ is considered a grand challenge in many
applications11.
Interestingly, climate risk assessment does not necessarily

require calculation of a combined probability distribution over
all contributing uncertainties: methodologies such as “robust”
decision-making avoid optimisation of solutions, and instead
identify risk management strategies, which minimise regret over
uncertainty envelopes14. This approach is of particular interest for
climate change predictions, where the considerable uncertainties
mean that ensembles such as CMIP615 cannot be used to quantify
the likelihood of a particular future climate state. Related is the
discrete scenario approach proposed by16, where experiments are
specifically designed to capture high impact, low-probability
events. This requires a flexible approach to integrated modelling,
and closer collaboration across physical climate science, impact
modelling, technologies, and decision-making.

Localisation
Climate impacts are experienced locally, and vary dramatically
across the globe17. A common challenge in impact modelling is
the mismatch between the high spatial and temporal precision
required for informative local impact predictions, and those of
driving climate datasets 18,19. This is particularly important for
high-impact extreme weather events. In the medium term, this
may be addressed via the development of very high-resolution
global climate models20, which themselves are likely to be hybrid
AI/physics-based models4, and will require dedicated “exascale”
climate computing technology which is yet to be built21. In the
interim, dynamic or statistical downscaling is required, which still
cannot completely correct the errors in current global climate
models.

To provide locally-accurate predictions, it is necessary to
parameterise or calibrate impact simulation models against local
conditions, or, in the case of data-driven models, use a training
dataset, which enables generalisation to a given region of interest.
This can be a challenge for applications where ground truth data
is limited or difficult to access; for example, disease outbreaks,
spatial flood extents, or building damage. This is also a challenge
for regions such as sub-Saharan Africa, where observations of
weather/climate data, geospatial parameters and impacts them-
selves may be limited22,23.

Computational and practical constraints
Computational constraints: the availability, speed, and cost of
compute (measured in CPU-hours) affect the accuracy achievable
by impact models, along with the timeliness of shorter-term
predictions. Examples of applications particularly constrained in
this way include complex Land Surface Models used to simulate
drought impacts24, economic models25, and flood models 26.
These constraints are particularly important when UQ is under-
taken via ensembles of simulations.
Impact modellers and decision-makers also face practical

challenges in carrying out climate risk assessment and adaptation
planning. These typically center around a lack of tools or expertise
to consume climate datasets, issues with data access and sharing,
and the need for close interdisciplinary collaboration18,19. Conse-
quently, some authors call for a standardisation of methods, data
sharing/access and tools for climate risk assessment27, and current
activities by the global community are working towards develop-
ing the technologies to support this (e.g.28). Such tools also need
to deal with the ever-increasing volume of climate data: estimated
to have grown from a few thousands Petabytes in 2010 to over
100,000 in 2020, with a projection of around 350,000 Petabytes by
203029.

AI METHODS FOR CLIMATE APPLICATIONS
We now consider how AI/ML might address the challenges
highlighted in the previous section. We categorise the discussion
into three areas, each illustrated with an example: (1) Data-driven
modelling; (2) Surrogate modelling, and (3) Leveraging geospatial
big data.

Fig. 1 Example impact modelling workflow to calculate pluvial flood impact. Solid boxes correspond to datasets, dashed boxes correspond
to data transformations, consisting of simulation, ML or rules-based models, or other simple processing steps. A flood simulation model is
driven by multiple spatiotemporal datasets. A separate flood mapping model is used to derive flood extents from satellite data. A simulation
controller (which may be human, automated, or semi-automated) interacts with the flood simulations to calibrate and validate against the
satellite-derived ground truth. The calibrated model is then deployed to map flood hazard using a weather generator to transform climate
drivers into the daily rainfall inputs required by the flood model. Hazard predictions are then combined with asset locations and damage
functions to predict impact in terms of percent of assets damaged or financial cost.
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AI for data-driven modelling
Data-driven modelling - using ML to derive empirical models from
data alone - is a commonly-cited application of AI, which can
address several of the challenges previously described: system
complexity (by using data-derived models to fill gaps where
scientific knowledge is missing), computational constraints (ML
models are cheaper to run for inference than simulations) and
localisation (ML models are particularly suited to tuning or post-
processing of predictions from physically-based models to specific
local conditions). Examples include real-time predictions of
wildfire risk30, ML-based downscaling of climate variables such
as rainfall2, and prediction of localised flood patterns6. One
disadvantage of ML models is their “black-box” nature, meaning it
can be difficult to interpret why a model is predicting a particular
result. This had led to the field of explainable AI (XAI), which uses a
variety of techniques to examine the relative importance of each
predictor for specific AI model predictions. XAI is now beginning
to be applied to ML modelling in meteorology, climate science,
and applications31,32.
Common to many climate applications of AI/ML is the

constraint of lack of relevant data for model training at the
location of interest. One approach is transfer learning: using
models trained in one setting and then refining them with local
data33. The new paradigm of Foundation AI models (to date
mainly focused on text and image applications) use this approach
at scale, with self-supervised learning on “broad” unlabelled data
to develop a general model which can then be refined with
minimal training for a range of different applications34. This also
addresses the high computational cost of training complex AI
models, which may outweigh their advantage in speed over
simulation models when making predictions, especially if they
cannot generalise to unseen case studies26.
Published examples of AI/ML used for climate applications

(e.g.3) are dominated by the use of older ML architectures (e.g.
Decision Trees, Random Forest, Support Vector Machines, and
Perceptron Neural Networks). Newer architectures, such as those
used in Deep Learning (DL) - for example, Convolutional Neural
Networks and Long Short-term Memory Networks - are less
common, except for specific domains such as remote sensing. This
partly due to the age of the technology, but also because they
require specialist ML expertise and tools which may not be easily
accessible or transferable to climate applications30. This is starting
to be addressed via application-specific libraries, for example,
TorchGeo35, which supports the application of computer vision
models to Earth observation data.
While ML has been used extensively for mapping susceptibility

to climate hazards with multivariate spatial drivers, these maps are
usually derived for average climate conditions36,37. In38, we
demonstrated how ML can also be used to map the risk
corresponding to specific unseen and extreme scenarios, there-
fore potentially providing an alternative to expensive simulations.
The flood inundation generated by the ML model for a case study
event in the Humber estuary, UK, from38, is compared in Fig. 2, to
two alternatives: a simple static “flood fill” model, and a dynamic
simulation model. More details are given in38 and the Supple-
mentary Material. The ML model took less than one minute to
train on 10,000 sample points across England. Inference times for
the ML model depended on the flood map resolution, and were
longer than the static model, but substantially shorter than the
dynamic model (Table 1). Interestingly, when compared to the
flood extent recorded by the Environment Agency, all three
models over-predict the inundated area, with over-prediction
lowest in the ML model. This is likely to be because of the inability
of the DEMs used to resolve features such as sea defenses. This
poses a challenge for AI/ML: could a DL model be used to take
into account more complex surface features? And if so, would it be
at the expense of the fast ML training time? An alternative solution

could involve a hybrid of AI and simulation, which we will discuss
in the next section.

AI surrogates of simulations
Surrogate or emulator modelling typically involves training an ML
model on simulated data with the aim of replacing the simulation
with a cheaper ML version, addressing the challenge of
computational constraints. Surrogates may be chosen to represent
climate components39, or impact models, such as those for crop
yield17, or hydrological processes40. Surrogates also may be used
as part of a hybrid AI/physics approach, for example by reducing
simulation model resolution to improve efficiency whilst main-
taining accuracy41. A different type of surrogate can be used in
simulation model calibration and sensitivity testing, to map model
parameter space42,43. We next illustrate how an application of this
second kind of surrogate modelling - to find extreme model
scenarios in the combined space of climate drivers and impact
model parameters - could address the challenge of UQ for climate
impacts by efficiently identifying the simulations required to find
the limits of the uncertainty envelope.
In this example we quantify pluvial flood risk using a simulation

model44 driven by a sub-seasonal ensemble rainfall forecast45, for
a case study event in December 2021, southwest of Bristol, UK.
The flood model predicts water depth spatiotemporally, and
includes spatially-varying parameters of land use and soil type, as
described in Fig. 1. Calibration against past flood events resulted
in parameter sets that corresponded to similarly-acceptable
simulated flood. We then used an AI method, Gaussian Process
(GP)-based Bayesian optimization46, a popular technique for
optimizing ML model parameters47, to efficiently explore a
combination of parameter and rainfall driver uncertainty. The
optimization determines the set of parameters that, for each
member of the rainfall ensemble, maximizes or minimizes an
impact metric (here the spatial mean of the maximum flood depth
during the event). The GP builds a surrogate function of
uncertainty space, which is used to rapidly find the extremes of
the metric, by guiding the choice of setting for the next
simulation. More details are given in the Supplementary Material.
Maps illustrating the range of flooding obtained for default and
UQ-optimized parameter show considerable difference in flood
extent (Fig. 3). The optimization process and predicted uncertainty
envelope across climate driver and impact parameter space are
shown in Fig. 4. The predicted uncertainty envelope can then be
used to determine the potential minimum and maximum severity
and impact of plausible events, in line with the “robust” decision-
making approach previously described. Furthermore, the samples
collected during optimization can directly be used to evaluate the
relative importance of parameters and the climate drivers, to
inform the choice of preventive or adaptive measures43.

AI to leverage geospatial big data
AI/ML methods are particularly suited to gathering, structuring,
and processing large and diverse geospatial datasets, for example,
Earth Observation (EO) satellite images, text documents, or sensor
data5. Applications of ML to EO data have increased substantially
over the last decade, due to great advances in the field of deep
learning, especially computer vision algorithms and increasing
availability of high resolution satellite imagery48,49, coupled with
new generation compute (e.g.50). Applications in climate impacts
are relatively small in number, and include identification of
desertification trends51, mapping fuel and detection of wildfires 30,
and flood mapping 26,49. These applications address the challenge
of system complexity by providing new data and models which
can fill gaps in scientific knowledge, and localisation, by providing
high-resolution data which can be used to replace or improve
physical models. However, satellite data in particular poses a
challenge due to its complexity, and increasing data variety and

A. Jones et al.

3

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2023)    63 



volumes. For example, the Copernicus Sentinel 2 program
provides multi-spectral data (13 output channels from 10 to 60
meters), in 100 × 100km tiles, with a size of 700 Megabytes each.
This scales to 35 Gigabytes for an individual satellite pass for a
country the size of the UK, increasing to 100 Gigabytes if Synthetic
Aperture Radar (SAR) imagery from the Copernicus Sentinel 1

program, is also included. Therefore, it is important that AI models
are deployed within a technology framework to address these
practical challenges.
In52, we described such a framework for operational deployment

and scaling of an ML model to automatically detect flood water
from Sentinel 1 satellite data. Flood extent mapping using Synthetic

Fig. 2 Comparison of coastal flood inundation maps for the case study of Storm Xavier.Models run at 250m resolution: (a) Static model; (b)
Simulation model; (c) Machine learning model. In (a) and (b), black pixels indicate the predicted maximum extent of flood of depths above
0.1m on 5 December 2013. In (c), the model predicts probability of flood inundation for the event. Flood extent recorded by the Environment
Agency for 5/6 December 2013 is shown as hatched area.
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Aperture Radar (SAR) satellite imagery has been traditionally
undertaken using time-consuming manual or semiautomated
statistical methods53. More recent work has demonstrated the
potential of fully-automated AI methods using labelled data for
training54,55. Both52 and55 used a “Resnet-Unet” architecture (a state-
of-the-art neural network for image segmentation tasks), and

obtained high performance for detection of flood water (0.98 and
0.99 accuracy, respectively) when validated against published
quality-controlled flood extent data56,57. An example is illustrated
in Fig. 5. By automating the process of flood detection, AI methods
can result in time savings of up to 80 percent55. The resulting flood
extents can be used as “ground truth” data to derive ML flood risk
models, and to validate, calibrate and improve UQ in flood
simulations, as illustrated in Fig. 1.

FUTURE OUTLOOK AND SUMMARY
Quantification of climate hazards, impacts and risks forms the vital
connection between climate science and the adaptation decisions
which are needed for climate change resilience. This requires
modelling of complex systems in the face of multiple constraints:
uncertainties and inaccuracies in data and models, computational
resources, and the need to connect both technically and practically
across scientific communities and end users. In this paper, we have
illustrated how AI/ML can begin to address some of these
challenges: by improving computational efficiency of models and

Fig. 4 Time series illustrating flood prediction uncertainty quantification. a Evolution of normalized metric value defined by the average of
the flood depth maxima at all pixels over the entire time period. With increasing iteration number, the samples from maximization and
minimization gather around higher and lower values, respectively. Samples from all 10 climate driver ensemble members are shown together.
b Climate driver uncertainty alone and combined with parameter uncertainty as a function of prediction time, measured by the evaluation
metric.

Fig. 3 Flood map for different climate driver ensemble members and parameter sets. a, b Use the same rainfall input, as do (c) and (d). The
default parameter sets are used in (a) and (c), while (b) and (d) are modeled based on optimized parameters to maximize the flood metric.
Snapshots taken at the last timestamp of the prediction period, on December 30, 2021.

Table 1. Computation times for Storm Xavier coastal flood case study
inference.

Resolution Static model ML model Dynamic model

250m 0h01 0h03 0h37

50m 0h04 0h30 16h

Times given in CPU hours/minutes and do not include data preparation.
Training time is also excluded, since, due to the use of point samples, ML
model training time was less than 1 minute for both resolutions. Case
study duration was 7 days and extent approximately 4400 km2. CPU
specification was Intel Xeon 3.3GHz with 16GB RAM.
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enabling uncertainty quantification, and by leveraging new
geospatial datasets. In a related article58, we outline the design of
a modelling platform to enable modular, flexible development and
deployment of impact modelling workflows. We envisage a future
extension of the techniques described in this paper, in combination
with such a platform, will enable efficient and easy development
and deployment of multiple weather/climate application workflows.
Such a system could then begin to address the challenge of flexible,
bottom-up modelling and address acute challenges such as deep
uncertainty and compound impacts, whilst enabling more stream-
lined collaboration between scientists and end users. Finally, we
note that emerging AI methods now offer the potential to advance
scientific knowledge and accelerate solutions in this multi-
disciplinary science: for example, to enable data-based discovery
of dynamical relationships3, or more easily draw conclusions from
vast bodies of existing scientific literature59. The full potential of AI in
this context remains to be explored.

DATA AVAILABILITY
The coastal flood models used entirely open datasets: DEM data from60, recorded
flood outlines from the UK Environment Agency, available from https://
www.data.gov.uk/dataset/16e32c53-35a6-4d54-a111-ca09031eaaaf/recorded-flood-
outlines, land cover data from61 and SSH from62. The pluvial flood model used for the
uncertainty quantification example used subseasonal rainfall forecast data45,

available to purchase from ECMWF. The remaining datasets used to drive the model
are all open: soil type from https://soilgrids.org, land use data from63, ERA5 soil
moisture data64, available from https://cds.climate.copernicus.eu, and 50m elevation
data available from https://www.ordnancesurvey.co.uk/business-government/
products/terrain-50. The datasets used for the flood detection example are all open,
with full details given in52.

CODE AVAILABILITY
The AI flood detection, coastal inundation, and pluvial flood model are proprietary
models used in the examples and may be made available subject to license, please
contact anne.jones@ibm.com. Bayesian optimization was carried out using the
python library GPyOpt, freely available from46.
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