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An extratropical window of opportunity for subseasonal
prediction of East Asian summer surface air temperature
Jing Yang 1✉, Tao Zhu 1 and Frederic Vitart2

Previous studies suggest that boreal summer intraseasonal variations along the subtropical westerly jet (SJ), featuring quasi-
biweekly periodicity, frequently modulate downstream subseasonal variations over East Asia (EA). Based on subseasonal hindcasts
from six dynamical models, this study discovered that the leading two–three-week prediction skills for surface air temperature (SAT)
are significantly higher in summer with stronger intraseasonal oscillation along the SJ, which are best demonstrated over the
eastern Tibetan Plateau, Southwest Basin, and North China. The reasons are that the enhanced quasi-biweekly wave and its energy
dispersion along the SJ cause more regular quasi-biweekly periodic variations of downstream SAT, which potentially increase
regional predictability. This study suggests that the strengthened intraseasonal periodic signals along the SJ would enhance the
subseasonal predictability in downstream regions, which could provide a window of opportunity for achieving better subseasonal
prediction for EA SAT.
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INTRODUCTION
Subseasonal prediction, which is crucial for many sectors of
society and for decision makers in terms of improved planning
and preparations for saving lives, protecting property, and
increasing economic vitality1, is a challenging task in operational
service2,3. One current barrier to improved subseasonal prediction
is the sources of predictability on this time scale. Previous studies
have attempted to identify the subseasonal prediction sources,
including tropical intraseasonal oscillations (e.g., the
Madden–Julian Oscillation (MJO) and boreal summer intraseasonal
oscillation (BSISO)), anomalous signals from land (soil moisture
and soil temperature), snow cover, sea ice, the stratosphere, and
the ocean (e.g., the El Niño–Southern Oscillation (ENSO), local sea
surface temperature, and mesoscale sea surface temperature
variability), which have all been reviewed comprehensively in the
National Academies of Sciences report1 and Merryfield et al.4.
Skillful subseasonal prediction is particularly important over East

Asia (EA), which is one of the most densely populated regions
globally, accounting for 22% of the world’s population5. Sub-
seasonal prediction in boreal summer over EA is challenging
owing to complex interactions between tropical monsoon
variability and mid–high-latitude circulation systems6,7. Previous
studies demonstrated that subseasonal prediction sources over EA
include preferable phases of the MJO8 and BSISO9, the ENSO
state10, snowpack11,12, land surface conditions13–15 and strato-
spheric signals16. Conventional perspective considers the extra-
tropical atmospheric perturbation as noise for prediction17,18.
However, along the subtropical westerly jet (SJ), remarkable
periodic atmospheric intraseasonal signals, such as a quasi-
biweekly oscillation, have been proven to have significant
influence on the weather and climate of EA19–21 and even to
trigger extreme events22–24. Meanwhile, a number of recent
studies have found that subseasonal prediction biases over EA are
affected substantially by extratropical intraseasonal oscillations
along the SJ (EISO-SJ)25–27. Therefore, it is worth investigating

whether the atmospheric EISO-SJ, similar to the MJO/BSISO, is one
of the subseasonal prediction sources over EA.
Considering the atmospheric EISO-SJ features remarkable year-

to-year variation in boreal summer (Supplementary Fig. 1 presents
a simple example examining the year-to-year variation of the
intraseasonal SJ index, calculated in accordance with the
definition of Yang and Zhang28), the objective of this study was
to investigate whether there exists remarkable dependence of EA
subseasonal prediction on the atmospheric EISO-SJ from the
perspective of comparing summers with strong and weak EISO-SJ
intensity, primarily based on the subseasonal-to-seasonal (S2S)
hindcast dataset. The results presented in this paper are analyzed
in an attempt to identify another important window of
opportunity for EA subseasonal prediction.

RESULTS
Remarkable year-to-year variation in EISO-SJ intensity
Similar to some previous studies on the year-to-year variation of
intraseasonal oscillation29–31, EISO-SJ intensity is measured by the
standard deviation of boreal summer quasi-biweekly 200 hPa
meridional wind (V200) averaged over the SJ core region
(35°–43°N, 83°–98°E; shown by the black rectangle in Fig. 1b), i.e.,
the maximum center of both quasi-biweekly V200 variance and
fractional variance (nearly 45% of the total variance) (Fig. 1a, b). In
this study, V200 was chosen as the typical variable for representing
the EISO-SJ because it features more prominent intraseasonal
signals than other circulation fields (e.g., 200 hPa geopotential
height (GHT200) and zonal wind (U200)) along the SJ (Supple-
mentary Fig. 2a–f). The quasi-biweekly component was extracted
to represent intraseasonal V200 because it is the most dominant
intraseasonal periodicity according to the power spectra of the
circulation fields along the SJ (Supplementary Fig. 2g).
Figure 1c displays the year-to-year variation of EISO-SJ intensity.

To examine the contribution of this year-to-year variation, the
original SJ intensity is calculated, which is measured by the
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standard deviation of boreal summer raw V200 averaged over the
same SJ core region. It’s found that the difference between the
maximum and minimum value is 3.18 for the EISO-SJ intensity,
which represents 72.5% of the difference for the original SJ
intensity (4.39). Moreover, EISO-SJ intensity has a significant
relationship with the year-to-year change in the original SJ
intensity, for which the correlation coefficient is up to 0.51, far
exceeding the 99% significance level. Meanwhile, the year-to-year
fractional variance of EISO-SJ intensity (variance: 0.56 m2 s−2)
against the original SJ intensity (variance: 0.87 m2 s−2) is 64.0%.
The above results show that EISO-SJ intensity has large year-to-
year variation that is highly consistent with the year-to-year
variation of original SJ intensity.
To probe the dependence of EA subseasonal prediction on the

atmospheric EISO-SJ, two contrasting groups of summers were
evaluated for each specific S2S model: strong EISO-SJ summers

(EISO-SJ-S) and weak EISO-SJ summers (EISO-SJ-W). Taking the
ECMWF as an example, because the reforecast period is
1996–2015 and the frequency of initialization is twice a week,
the five strongest EISO-SJ intensity summers (2004, 2007, 2009,
2011, and 2013) in terms of the observations were chosen for the
EISO-SJ-S group, and the five weakest EISO-SJ intensity summers
(1998, 2003, 2008, 2010, and 2012) in terms of the observations
were taken as the EISO-SJ-W group. The sample size of each group
was 175 (5 years × 35 times year−1), and the TCC, RMSE and ROC
are respectively calculated for ensemble-mean weekly SAT/
precipitation anomaly in each group. Analysis for the other
models followed similar methods and detailed descriptions can be
found in Supplementary Table 1. To ensure distinct differences
between the two groups and to maintain adequate sample sizes,
the selected EISO-SJ-S and EISO-SJ-W summers exceeded a
threshold of at least 0.7 times the standard deviation. To exclude

Fig. 1 Intraseasonal activity along the SJ and the year-to-year variation of EISO-SJ intensity. a Variance (shading; unit: m2 s−2) of quasi-
biweekly V200 in boreal summer during 1982–2018. Green lines are the summer–mean U200 contours of 18, 23 and 28m s−1, which broadly
denote the SJ’s location. b Fractional variance (shading; unit: %) of quasi-biweekly V200 against total V200 variance in boreal summer. Green
lines are the summer–mean U200 contours of 18, 23 and 28m s−1, which broadly denote the SJ’s location. The black rectangle is the SJ core
region (35°–43°N, 83°–98°E), which is the maximum center of both quasi-biweekly V200 variance and fractional variance. The blue rectangles
are the typical EA regions (eastern Tibetan Plateau (ETP): 29°–37°N, 89°–104°E, Southwest Basin (SWB): 24°–29°N, 101°–109°E, and North China
(NC): 38°–44°N, 109°–119°E). c Time series (unit: m s−1) of EISO-SJ intensity measured by the standard deviation of boreal summer quasi-
biweekly V200 averaged over the SJ core region. Values greater (less) than 0.7 times the standard deviation are shaded yellow (green).
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the influence of transient intraseasonal oscillations from the
tropical region, we purposely examined the difference in the
intensity of the intraseasonal signials (quasi-biweekly and 30–60-
day oscillation) between EISO-SJ-S and EISO-SJ-W summers
(Supplementary Fig. 3) and found no any significant signals in
the tropics.

Dependence of EA subseasonal prediction on the EISO-SJ
Previous observational studies reported that atmospheric EISO-SJ
is crucial for subseasonal variation in EA SAT32–34. Therefore, in this
section, we first focus on exploring the differences in the
subseasonal prediction skill for EA SAT between the EISO-SJ-S
and EISO-SJ-W summers. Comparison is made for both determi-
nistic (TCC and RMSE) and probabilistic prediction (ROC) to verify
the results. Two- and three-week lead predictions are the focuses
of this study because the skill beyond four weeks is poor for both
groups of summers. Three typical regions are chosen (eastern
Tibetan Plateau (ETP): 29°–37°N, 89°–104°E, Southwest Basin
(SWB): 24°–29°N, 101°–109°E, and North China (NC): 38°–44°N,
109°–119°E; blue rectangles in Fig. 1b) because the raw SAT
anomaly over these regions exhibits significant correlation with
the domain-averaged quasi-biweekly V200 over the SJ core
(Supplementary Fig. 4).
The TCC and RMSE were calculated to measure the similarity

and magnitude of the error between the predicted and observed
weekly SAT anomaly35. Figure 2a–c shows the TCCs between the
observed weekly SAT anomaly and the predicted ensemble-mean

anomalies with two- and three-week lead times from the six S2S
models over the ETP, SWB, and NC in EISO-SJ-S and EISO-SJ-W
summers. The TCCs for all six S2S models are larger for EISO-SJ-S
group than for EISO-SJ-W group in all three regions. Specifically,
for a three-week lead prediction over the ETP, the averaged
improvement of these models in TCC is from 0.11 for EISO-SJ-W
group to 0.28 for EISO-SJ-S group, in which the Meteo-France
shows the largest increment (from 0.13 to 0.44) while the CMA has
the lowest improvement (from 0.08 to 0.15) (green bars in Fig. 2a).
Similarly, the averaged TCC increases from 0.05 for EISO-SJ-W
group to 0.28 for EISO-SJ-S group over the SWB, in which the
ECMWF/NCEP has the largest/lowest improvement (from 0.01 to
0.50 for ECMWF and from 0.17 to 0.20 for NCEP) (green bars in
Fig. 2b). Also, the averaged increment is from 0.13 for EISO-SJ-W
group to 0.23 for EISO-SJ-S group over NC, in which the NCEP
(from 0.12 to 0.27) and CMA (from 0.09 to 0.12) correspond to the
maximum and minimum improvements, respectively (green bars
in Fig. 2c). Similar differences can be seen clearly in the two-week
lead predictions, although the differences between EISO-SJ-S and
EISO-SJ-W groups are not as obvious as those in three-week lead
predictions (see red bars in Fig. 2a–c).
The RMSEs for all six S2S models are smaller for EISO-SJ-S group

than for EISO-SJ-W group. Quantitatively, for a three-week lead
prediction over the ETP, the averaged RMSE is reduced from 1.10
for EISO-SJ-W group to 1.05 for EISO-SJ-S group, and the Meteo-
France (from 1.03 to 0.92) and ISAC-CNR (from 1.16 to 1.15) have
the maximum and minimum reductions, respectively (blue bars in

Fig. 2 Subseasonal deterministic prediction over individual typical EA regions: temporal correlation coefficient (TCC). TCC between the
observed weekly SAT anomaly and the predicted ensemble-mean weekly SAT anomaly over the (a) ETP, (b) SWB, and (c) NC with two- and
three-week lead times. The red (green) bars show the TCC for EISO-SJ-S (EISO-SJ-W) group.
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Fig. 3a). Over the SWB, the averaged decrease in RMSE from EISO-
SJ-W group to EISO-SJ-S group is from 1.28 to 1.17, in which the
reduction of ISAC-CNR is the largest (from 1.41 to 1.15) and CMA is
the smallest (from 1.35 to 1.34) (blue bars in Fig. 3b). Over NC, the
averaged RMSE is decreased from 1.51 for EISO-SJ-W group to 1.39
for EISO-SJ-S group, in which the ECMWF/ISAC-CNR shows the
largest/smallest reduction (from 1.36 to 1.23 for ECMWF and from
1.30 to 1.21 for ISAC-CNR) (blue bars in Fig. 3c). Similarly, two-week
lead predictions show similar contrasting features (yellow bars in
Fig. 3). The unified differences over the three regions for all six S2S
models, based on both TCCs and RMSEs, demonstrate that the
deterministic prediction skills for the weekly SAT anomaly over EA
are significantly better in summers with strong EISO-SJ intensity
than in summers with weak EISO-SJ intensity.
The ROC curve is used to comprehensively evaluate model

performance in simulating the probability of occurrence of above-
normal SAT events. Here, an above-normal SAT event is defined as
a weekly SAT warm anomaly of >1 °C (Wu et al. 36). The ROC curves
for the six S2S models for predicted above-normal SAT events over
the ETP, SWB, and NC are shown in Fig. 4, respectively, for EISO-SJ-
S and EISO-SJ-W groups. Obviously, the six S2S models have larger
ROCAs for EISO-SJ-S group than for EISO-SJ-W group over each of
the three regions. In terms of the three-week lead prediction over
the ETP, the averaged ROCA is 0.57 for EISO-SJ-W group but 0.62
for EISO-SJ-S group, in which the Meteo-France shows the largest
increment (from 0.57 to 0.65) while the ECMWF has the lowest
improvement (from 0.61 to 0.62) (green solid and dotted lines in

Fig. 4a). Over the SWB, the averaged ROCA increases from 0.52
(EISO-SJ-W group) to 0.61 (EISO-SJ-S group), in which the ECCC
(from 0.45 to 0.66) and ISAC-CNR (from 0.55 to 0.56) show the
largest and lowest improvements, respectively (green solid and
dotted lines in Fig. 4b). Over NC, the averaged ROCA increases
from 0.53 for EISO-SJ-W group to 0.62 for EISO-SJ-S group, and the
ECMWF/CMA shows the largest/smallest increments (from 0.53 to
0.74 for ECMWF and from 0.53 to 0.54 for CMA) (green solid and
dotted lines in Fig. 4c). The two-week lead ROCAs show similar
differences between EISO-SJ-S and EISO-SJ-W groups (red solid
and dotted lines in Fig. 4). We also performed similar analysis for
below-normal and normal SAT events, and the results revealed
similar differences (Supplementary Fig. 5). The results from the
evaluation of probabilistic prediction also clearly exhibited that
the prediction skills with two- and three-week lead times are
evidently improved when EISO-SJ intensity is enhanced in
summer.
Considering that ENSO37 is the most important mode of

interannual variability, which may influence the dependence of
subseasonal prediction for EA SAT on the EISO-SJ. Therefore, we
reexamined the robustness of the above results after removing
ENSO-related summers (Supplementary Table 1 lists the new
sample sizes of each model after the elimination of ENSO-related
summers). Excluding the impact from ENSO, the subseasonal
prediction for SAT even exhibits better skill for EISO-SJ-S group
than for EISO-SJ-W group (Supplementary Figs. 6–8). Since the
numbers of hindcast year from most S2S models are not large so

Fig. 3 Subseasonal deterministic prediction over individual typical EA regions: Root Mean Square Error (RMSE). RMSE between the
observed weekly SAT anomaly and the predicted ensemble-mean weekly SAT anomaly over the (a) ETP, (b) SWB, and (c) NC with two- and
three-week lead times. The yellow (blue) bars show the RMSE for EISO-SJ-S (EISO-SJ-W) group.
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Fig. 4 Subseasonal probabilistic prediction over individual typical EA regions: Relative operating characteristics (ROC). ROC curve for
predicting above-normal SAT events over the (a) ETP, (b) SWB, and (c) NC from the six S2S models with two- and three-week lead times for
EISO-SJ-S (EISO-SJ-W) group. Here the above-normal SAT events are defined as the weekly SAT anomaly of >1 °C.
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that the remained sample sizes are small after removing ENSO
related interannual variability. Therefore, another way was applied
to directly check if the EISO-SJ skill can be obtained from
correlations with ENSO. That is, we examined the differences of
the subseasonal prediction for SAT over these three regions,
respectively, in El Niño- and La Niña-related summers (Supple-
mentary Fig. 9). As a result, their prediction skills do not show any
statistically significant differences between the El Niño- and La
Niña-related summers in six models. Therefore, from the above
two perspectives, the current results indicate that the strong
dependence of subseasonal prediction for EA SAT on the EISO-SJ,
identified as a new finding in this study, is independent of ENSO.
As a summary, the high agreement among the six S2S models

and three target regions, with respect to better prediction skill in
summers with strong EISO-SJ intensity in comparison with that in
summers with weak EISO-SJ intensity, strongly suggests that the
mean state with the amplified quasi-biweekly periodic signals
along the SJ evidently increase the regional subseasonal predict-
ability over EA.

DISCUSSION
Previous studies reported that the EISO-SJ mainly features a zonal
quasi-biweekly Rossby wave in boreal summer20,23,34,38. We
therefore considered the empirical orthogonal function for the
quasi-biweekly V200 over the SJ region in EISO-SJ-S and EISO-SJ-W
summers, and regressed the corresponding quasi-biweekly V200
and 200 hPa wave activity flux on the first principal component, as
shown in Fig. 5a and b, respectively. There are clear Rossby waves
in both EISO-SJ-S and EISO-SJ-W summers along the SJ, but the
more wave activity fluxes propagate eastward along the SJ toward
EA, significantly enhancing the quasi-biweekly signals in that
regions in EISO-SJ-S summers in comparison with those in EISO-SJ-W

summers. Furthermore, the variances of quasi-biweekly SAT are
larger over the ETP, SWB, and NC in EISO-SJ-S summers than in EISO-
SJ-W summers (Fig. 5c). The results suggest that the quasi-biweekly
Rossby wave and the associated energy transport along the SJ are
enhanced (reduced) over EA in EISO-SJ-S (EISO-SJ-W) summers,
causing stronger (weaker) quasi-biweekly periodic variations in the
target regional SAT. This can explain why the two- and three-week
lead predictions in the S2S hindcast are improved remarkably in
EISO-SJ-S summers.
We also performed similar analysis for precipitation, but failed

to find significant dependence on EISO-SJ (not shown). We
investigated the reason why subseasonal prediction of EA
precipitation might be insensitive to EISO-SJ intensity. Table 1
lists the fractional variances of quasi-biweekly and synoptic (i.e.,
below-8-day) components for SAT and precipitation over the ETP,
SWB, and NC. Interestingly, for SAT, the fractional variance of the
quasi-biweekly component is much larger than that of the
synoptic component (e.g., the three region-averaged quasi-
biweekly fractional variance is 39.1%, which is twice that of the
synoptic component). For precipitation, however, the fractional
variance of the quasi-biweekly component is smaller than that of

Fig. 5 Quasi-biweekly Rossby wave along the SJ influence on quasi-biweekly EA SAT. Regression maps of boreal summer quasi-biweekly
V200 (shading; unit: m s−1) and 200 hPa wave activity flux (WAF; vectors; unit: m2 s−2) on the first principal component in (a) EISO-SJ-S and (b)
EISO-SJ-W summers. Only values passing the 95% confidence level are plotted. c Variance of quasi-biweekly SAT over the ETP, SWB, and NC in
EISO-SJ-S (blue bars; unit: °C2) and EISO-SJ-W summers (orange bars; unit: °C2).

Table 1. Fractional variance of quasi-biweekly and synoptic SAT and
precipitation over the three EA regions.

SAT Precipitation

Quasi-biweekly Synoptic Quasi-biweekly Synoptic

ETP 36.0% 13.0% 35.2% 33.3%

SWB 45.3% 19.9% 33.3% 41.1%

NC 36.1% 23.2% 27.2% 43.1%
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the synoptic component (31.9% versus 39.2% on average). The
above results indicate that the footprint of the atmospheric EISO-
SJ on the subseasonal variation of precipitation is not as
significant as that on the SAT over EA, which also suggests that
subseasonal prediction for EA precipitation is more difficult than
that for EA SAT.

METHODS
Observation and reanalysis datasets
Daily atmospheric circulation fields were retrieved from the ERA-
Interim dataset provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF)39. The horizontal resolution of
the gridded data was 1.5° × 1.5° and the historical record covered
1982–2018. Daily surface air temperature (SAT) and precipitation
data (1982–2018) recorded at 2479 observing stations in China
were obtained from the China Meteorological Administration
(http://data.cma.cn/en/?r=site/index). Here, boreal summer is
defined as May 1 to August 31.

S2S model datasets
For the S2S reforecast data, the hindcast from the database of the
S2S prediction project was used3, in which six models were
analyzed: the China Meteorological Administration (CMA), the
European Center for Medium-Range Forecast (ECMWF), the
Environment and Climate Change Canada (ECCC), the Institute
of Atmospheric Sciences and Climate of the National Research
Council (ISAC-CNR), the Meteo-France/Centre National de
Recherche Meteorologiques (Meteo-France), and the National
Centers for Environmental Prediction (NCEP). A detailed descrip-
tion of each of the six models is presented in Supplementary Table
2. Note that the purpose of this study was not to compare model
prediction skill, but to understand the dependence of EA
subseasonal prediction on the atmospheric EISO-SJ. Therefore,
there was no requirement for the reforecast period, frequency of
initialization, and ensemble size of the models to be uniform. Also
note that the prediction skills for weekly SAT and precipitation
were our targets, for which the weekly hindcast data could be
obtained from the 7-day mean of the raw prediction data. For
example, a two-week (three-week) prediction corresponds to the
average of the forecast 11–17 (18–24) days.

Methods
The intraseasonal component of a particular variable can be
obtained by the following two steps: (I) removing the slow annual
cycle by subtracting the climatological mean and the first three
harmonics, and (II) removing the synoptic fluctuations by taking a
5-day running mean. The quasi-biweekly (8–25 days in this study)
component can be retrieved easily using the Butterworth
bandpass filter. The statistical methods used in this study included
empirical orthogonal function analysis and power spectrum
analysis. A two-tailed Student’s t test was used to assess statistical
significance. Evaluation methods included the temporal correla-
tion skill (TCC), root mean square error (RMSE), and relative
operating characteristics (ROC) curve, which are the primary and
most commonly used methods for evaluating the prediction skill
of S2S models36,40,41. A larger (smaller) TCC (RMSE) value
represents better deterministic prediction skill, and a larger value
of the area under the ROC curve (named ROCA), denotes better
probabilistic prediction skill. Full details of the calculation methods
can be found in Supplementary Table 3 and Supplementary Eq. (1)
and Supplementary Eq. (2). Two-dimensional wave activity flux,
which is used to represent the energy dispersion of a Rossby
wave, was calculated with reference to Takaya and Nakamura42.

DATA AVAILABILITY
The ERA-Interim reanalysis data can be freely accessed via http://apps.ecmwf.int/
datasets/data/interim‐full‐daily/levtype=sfc/. The S2S hindcast data are available
from https://apps.ecmwf.int/datasets/data/s2s/levtype=sfc/type=cf/. And the SAT
and precipitation data recorded at 2479 observing stations are from http://
data.cma.cn/en/?r=site/index (only available by the registered members), and are
also obtained from the backup address (IP: 172.16.212.233:~/mnt/2479_station).

CODE AVAILABILITY
All codes for the analysis of this paper are available from the corresponding author
upon reasonable request.
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