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Potential for surprising heat and drought events in
wheat-producing regions of USA and China
Erin Coughlan de Perez 1,2✉, Hamsa Ganapathi3, Gibbon I. T. Masukwedza 4,5, Timothy Griffin 3 and Timo Kelder 6

Previous analyses of the possibility of global breadbasket failures have extrapolated risks based on historical relationships between
climate and yields. However, climate change is causing unprecedented events globally, which could exceed critical thresholds and
reduce yields, even if there is no historical precedent. This means that we are likely underestimating climate risks to our food
system. In the case of wheat, parts of the USA and China show little historical relationship between yields and temperature, but
extreme temperatures are now possible that exceed critical physiological thresholds in wheat plants. UNprecedented Simulated
Extreme ENsemble (UNSEEN) approaches use large ensembles to generate plausible unprecedented events, which can inform our
assessment of the risk to crops. We use the UNSEEN approach with a large ensemble of archived seasonal forecasts to generate
thousands of plausible events over the last 40 years and compare the results with historically observed extreme temperature and
precipitation. In the US midwest, extreme temperatures that would have happened approximately 1-in-100-years in 1981 now have
a return period of 1-in-6 years, while in China, the current return period is on the order of 1-in-16 years. This means that in the US
midwest, extreme temperatures that used to have a 1% chance to occur in 1981 now have a 17% chance to occur in any given year,
while in China, the chance increased from 1% to 6%. Record-breaking years exceeding critical thresholds for enzymes in the wheat
plant are now more likely than in the past, and these record-breaking hot years are associated with extremely dry conditions in
both locations. Using geopotential height and wind anomalies from the UNSEEN ensemble, we demonstrate that strong winds over
land pull dry air towards the regions these during extremely hot and dry unseen events. We characterize plausible extremes from
the UNSEEN ensemble that can be used to help imagine otherwise unforeseen events, including a compound event in which high
impacts co-occur in both regions, informing adaptation planning in these regions. Recent temperature extremes, especially in the
US midwest, are unlikely to be a good proxy for what to expect in the next few years of today’s climate, and local stakeholders
might perceive their risk to be lower than it really is. We find that there is a high potential for surprise in these regions if people
base risk analyses solely on historical datasets.
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INTRODUCTION
Given the global interconnectedness of the world’s food system,
simultaneous shocks to major food grain production areas
(breadbaskets) can dramatically influence the price and availability
of staple foods. Several studies have attempted to quantify the risk
of multiple breadbasket failures due to climate shocks alone1–3.
These studies have primarily extrapolated from historical patterns,
quantifying the risk that climate shocks from the past could
happen simultaneously in the future. However, climate change
brings new and unprecedented events that can have conse-
quences different from those experienced in the past, and history-
based analyses might therefore under-estimate our current risk. In
this study we depart from a focus on historical events, instead
demonstrating how to visualize the risk of historically unprece-
dented events that might cross critical thresholds in major wheat-
producing regions of the USA and China.
Most studies quantifying the risk of crop failure use historical

relationships between climate and crop yields as the basis for
assessing how future or unprecedented climate states might
affect yields. For example2 use historical yields to define a
threshold for severe water stress in maize-growing regions of the
US and China, and then they examine the change in risk of this
threshold using large ensembles to simulate unprecedented

extremes. Estimates of the risk of multiple breadbasket failures
for different crops also take this approach, first estimating climate-
yield relationships from historical data, and then extrapolating
yield results based on changes to temperature and precipitation
variables that were historically related to yield4 In some regions,
more than 50% of historical yield variability can be attributed to
weather5.
However, in a changing climate, climate-yield relationships will

change. Never-before-experienced climate states and unprece-
dented events can have greater effects on crops than might be
expected from a simple extrapolation of historical association. In
particular for temperature, we might expect that never-before-
experienced high temperatures could cause crop loss, even if
there is no historical relationship between yield and temperature.
Non-linearities in the response of crops to heat stress can mean
the future looks distinctly different from the past. In addition,
climate stressors can combine with other pressures to threaten
agricultural productivity; these include conflict, pests, disease, soil
health, seed quality, and irrigation, for example.
Wheat (Triticum aestivum L.) yields in parts of the United States

and China do not show a strong relationship with temperature in
observed or simulated datasets for the past6, and therefore
extreme temperatures in these regions are not often included in
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models of potential breadbasket failure4. However, physiological
models demonstrate that wheat plants are sensitive to tempera-
ture in several critical growth phases7. Generally, prolonged
periods of extreme heat result in accelerated leaf senescence and
a reduction in leaf expansion and radiation use efficiency. Short
duration heat events are particularly harmful during sensitive
development phases such as stem elongation. Heat extremes
during grain filling can cause a reduction in the growth rate and
the grain number8,9, while heat stress during anthesis and may
result in partial or complete sterility of the florets10,11.
Simulations for the end of the century show that unprece-

dented temperatures are likely to affect yields as higher thresh-
olds are crossed12 In fact, process-based and statistical models
tend to agree that warming should negatively impact wheat
yields13,8, and a review of different model types found agreement
that global wheat yield is likely to be negatively impacted by
increasing temperatures with climate change14,15. One solution to
assess the impact of this nonlinearity is to use crop model
simulations that can incorporate critical thresholds16,17 However,
many of these crop models are developed based on historical
yields, and many of them focus on annual extremes and “likely”
ranges, rather than low-likelihood high-impact events.
New methods to simulate unprecedented extremes can expand

our understanding of what is possible, beyond historical events.
Large ensembles of physics-based climate models can provide a
larger sample of “alternative realities” to calculate extreme value
statistics18–20 One example is the UNprecedented Simulated
Extremes using ENsembles (UNSEEN) approach, using large
ensembles of archived forecasts to better understand extremes21.
To date, most studies of UNSEEN events or climate storylines

have departed from a historical extreme event that has already
happened, assessing plausible changes in frequency and magni-
tude (e.g. storm Desmond22). The approach has also been used to
derive future impact analogs of historical events, such as a
soybean (Glycine max (L.) Merr.) drought in the future17.
The UNSEEN approach can also be used to explore synthetic

events—events with no historical analog—if the models have
been properly assessed for their ability to produce realistic
events23. Climate storylines that illustrate how record-breaking
extremes might occur can expand our imagination to capture
events that are plausible, yet never before experienced. Given that
adaptation to climate change tends to be prompted by people’s
lived experience of extreme events24–27 visualizing such events
before they happen can support preparedness and climate
change adaptation.
In this study, we use the UNSEEN approach to examine

storylines of unprecedented heat in two wheat-producing regions
of the world’s breadbaskets, the USA and China. First, we assemble
a large ensemble of archived forecasts for each region for
temperature and precipitation, estimating the frequency of
temperatures above critical growing thresholds. We estimate
changes to the return periods of extreme temperatures with
climate change, and consider the probability of a compound
extreme of high temperatures and low rainfall in each region.
While many other studies have focused on climate change in the
far future, we explore the current-day climate, and how risks have
already changed from the recent past, complementing work1.

RESULTS
UNSEEN evaluation in Midwestern USA and Northeastern
China
In the US midwest, the UNSEEN ensemble shows a steady rise in
maximum temperatures that are possible over time; the
interquartile range of the ensemble results used to fall below
30 °C, and now the upper end of the interquartile range
approaches 35 °C (Fig. 1). Historically, the maximum temperatures

recorded for the past 40 years have been lower than the extremes
produced by the UNSEEN ensemble. The highest values in the
large ensemble for recent years reach 40 °C, while the highest
values in the observational dataset are around 37 °C.
The number of days that exceed critical heat thresholds have

also been increasing in both the observed and modeled datasets
for the US midwest. The UNSEEN ensemble contains discrete
events that are well beyond the observed record, including one
event with more than 20 days exceeding the “enzyme break-
down” threshold.
There is no clear trend in rainfall in the observed or simulated

datasets of March–May in the US midwest (Fig. 1d). The 2014
historical drought is close to the most extremely dry events
simulated in the UNSEEN dataset, although there are a few
UNSEEN events that are drier than this historical record. Such
events could negatively impact wheat yields, as happened in
2014. In Kansas in 2014, the wheat monitor reported that “wheat
condition declined all month and, by the end of May, 62% of the
crop was reported to be in very poor to poor condition, compared
to 47% at the beginning of the month and 45% last year”28 The
yield per harvested acre was the lowest since 199528 News reports
from local public radio explained that “persistent drought, harsh
winds and below normal winter temperatures, combined with
already low sub-soil moisture levels, have decimated the winter
wheat crop in Kansas, Oklahoma, and Texas. These States make up
the heart of the wheat belt—even with drought-affected low
yields last year, they still produced one-third of the national winter
wheat crop”29.
In China, results are similar (Fig. 2). Maximum temperatures in

March–May show an increase with time, and the large ensemble
includes many unprecedented events. This includes temperatures
in the high 30 s, while the historical record is closer to 35 °C. The
number of “stress” days and “enzyme breakdown” days are both
increasing, with UNSEEN possibilities of more than 10 days in
which the “enzyme breakdown” threshold is exceeded in one
season.
The UNSEEN ensemble also contains several record-breaking

drought events that have lower rainfall than ever observed in the
region. These are physically plausible events that are drier than
what has been historically observed. Hotter and drier summers
can improve sowing and harvesting conditions and reduce the risk
of waterlogging. However, should these periods coincide with
sensitive crop development phases e.g. flowering and grain filling,
this can result in relatively lower yield outcomes.

Increasing probability of extremes
Over time, the UNSEEN ensemble demonstrates a discernible
change in the likelihood of extremely hot temperatures in both
USA and China regions. Figure 3 plots the extreme value
distribution fitted to the observations and the UNSEEN ensemble
for maximum temperature in the March–May season. In both
cases, maximum temperatures are higher now than in the 1980s,
with a 1-in-100 year event in 1981 happening on average more
often than every 6 years in 2020 in the US midwest. The simulated
change is slightly less in northeast China, with a 1-in-100-year
event in 1981 happening on average approximately every 16
years in 2020 (Fig. 3a, d). This translates into a 1% chance of the
event happening in 1981, moving to a 17% (USA) and 6% (China)
chance of happening in the year 2020.
In both case study locations, however, the best-fitting extreme

value distribution for the observational dataset is a stationary GEV
fit. This is in contrast to a non-stationary fit for the UNSEEN
ensemble. If one were to simply extrapolate a nonstationary GEV
fit from observational data in the USA study region (Fig. 3a, dotted
line), for example, one would estimate lower values and much
larger uncertainties as compared to the dynamically consistent
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UNSEEN ensemble, thus representing the strength of this type of
analysis.
Assuming that the model is accurately representing the range

of today’s climate, this could indicate that both regions have been
“lucky” in recent years, and both regions have not experienced the
full range of high temperatures that are now possible in today’s
climate. In fact, these regions have been selected for wheat
production partially because of favorable climate conditions in the
past, and the critical thresholds were essentially boundaries. That
is no longer the case, and extreme temperatures are much more
likely. Recent memory of temperature extremes is on the lower
end of the distribution of plausible extremes for today’s climate,
especially in the US midwest where the difference between the
observed and UNSEEN trend is highest. According to the UNSEEN
ensemble, an event that would have been a 1-in-100 year
maximum temperature event for March–May in the US midwest in
1981 is now a 1-in-6 year event. Other studies have similarly
detected long term positive trends in temperature in both regions,
with some attribution to anthropogenic climate change30–34.
Whereas attribution studies compare the current climate with a
pre-industrial climate, here, we are able to discern trends in the
recent decades which might be of value in referencing people’s
recent lived experiences.

Record-breaking extreme heat and drought
As expected given the stochastic nature of weather, we find that
historical weather observations are limited in their range
compared to a large ensemble of plausible weather outcomes.

The UNSEEN ensemble contains a variety of heat and drought
events for each location that would break historical records.
Extreme heat and extreme dryness are not independent of each

other, often occurring simultaneously as a result of blocking
weather patterns. Therefore, we plot the relationship between
extreme heat and dryness in each location in Fig. 4. In both
regions, extreme heat is strongly associated with dryness, and very
wet events do not co-occur with extreme heat.
If there is a record-breaking hot season in which the number of

days above the enzyme breakdown threshold is higher than
experienced in the past (higher than the blue line in Fig. 4), it is
likely to also be a dry season. In the US midwest, the UNSEEN
ensemble produces 161 record-breaking seasons with high
temperatures, and while most of them are relatively dry, 14% of
them have extremely low rainfall that is less than the worst
drought on record, the drought of 2014. This also applies in the
other direction, of the 31 UNSEEN drought events that are worse
than the worst drought experienced in the last 40 years, 71% of
these events also have record-breaking heat.
In China, the results are similar; 63% of the UNSEEN record-

breaking drought events are also record-breaking heat events in
terms of the frequency of days above the enzyme breakdown
threshold. We can imagine event-based storylines of extreme heat
and extremely low rainfall that would cause unprecedented
impacts at the intersection of these two hazards. Higher
temperatures also produce higher evaporation rates, which can
further reduce water availability for agriculture, beyond the
record-breaking low precipitation.

Fig. 1 UNSEEN events in the US study region. Historical observations of temperature and precipitation in March–May in USA Midwest winter
wheat producing region (blue crosses), overlaid on gray boxplots of the UNSEEN large ensemble. Boxplots visualize the illustrated as the
median, interquartile range, 1.5x interquartile range and outliers. Plots are for the following variables: (a) Maximum temperature, (b) Number
of days above the “stress” threshold of 27.8 °C, c number of days above the “enzyme breakdown” threshold of 32.8 °C, and (d) Total
precipitation.
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Individual extreme events
One of the primary advantages of analyzing a large ensemble of
physically plausible events is that the ensemble allows users to
examine the drivers and physical contributing factors for specific
extremes that have never happened in the observed record. In Fig.
5, we plot composites of geopotential height (GPH) anomalies and
wind anomalies at the 500 mb pressure level, to analyze the most
extreme events from the larger ensemble.
In the USA region, the 10 driest March–May seasons in the

SEAS5 ensemble (Fig. 5bi) are dominated by northerly and
westerly wind anomalies. Such wind anomalies pull dry air from
the continental USA to the study region, limiting precipitation.
These are produced by positive seasonal anomalies of geopoten-
tial height to the west and south of the study region. In most of
these 10 UNSEEN events, the positive anomalies are concentrated
in the southwest of the USA, but there are individual events where
the positive anomalies extend more widely across the USA (see
Fig. SI11 for plots of anomalies associated with individual UNSEEN
events).
Wind anomaly patterns are similar for the hottest seasons (Fig.

5ci); seasons with the largest number of hot days above the
enzyme breakdown threshold are characterized by large regions
of high pressure over the study area and to the southwest (Fig.
5ci). There are likely land-atmosphere feedbacks that can
strengthen the heating effects during anomalously dry events35.
In contrast, the wettest events (Fig. 5ai) have seasonal wind
anomalies from the south and east, bringing moisture from the
Gulf of Mexico and Atlantic (Fig. SI11).

In the China study region, wind anomalies are also critical to
generating the extremely wet, dry, and hot events in Fig. 5, second
row. The driest seasons (Fig. 5bii) modeled in the SEAS5 ensemble
had wind anomalies from the north and west, bringing air over
land towards the study area. This was associated with a low-
pressure zone to the northeast of the study area. Hot seasons with
the highest number of days above the enzyme breakdown
threshold (Fig. 5cii) had similar wind anomalies as the low-
precipitation events, and they also show a low pressure region to
the northeast of the study area.
In eastern China, the 10 wettest seasons have wind anomalies

from the opposite direction, coming from the south and east,
bringing moisture to the study region (Fig. 5aii). These very wet
seasons are associated with strong high-pressure regions to the
northeast of the study area, generating clockwise winds that pull
moisture from over the oceans to the winter wheat region. In July
2021, there was an extreme rainfall event in Henan province, once
of the regions within our study area, and subsequent meteor-
ological analyses identified that this was indeed caused by winds
coming from the east, bringing moisture to the region36 similar to
the synthetic events pictured in Fig. 5a.
In both regions, wind anomalies coming from land are

associated with hot/dry seasons, and the opposite direction of
wind anomalies over water are associated with extremely wet
seasons, as might be expected. However, the patterns of
geopotential height anomalies that produce such wind anomalies
have some variety in their general shape, size, and location.
Atmospheric anomalies associated with individual UNSEEN events

Fig. 2 As in Fig. 1, for the China winter wheat region. Historical observations of temperature and precipitation in March–May (blue crosses),
overlaid on gray boxplots of the UNSEEN large ensemble. Boxplots visualize the illustrated as the median, interquartile range, 1.5x
interquartile range and outliers. Plots are for the following variables: (a) maximum temperature, (b) number of days above the “stress”
threshold of 27.8 °C, (c) number of days above the “enzyme breakdown” threshold of 32.8 °C, and (d) total precipitation. Note that plot (b) did
not pass the fidelity test and therefore should be interpreted with caution, as the kurtosis of the observed data is outside the 95th percentile
of the UNSEEN ensemble.
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are plotted in Supplementary Figs. 10–15. For example, while
northwesterly wind anomalies in the China winter wheat region
are associated with a low-pressure zone to the northeast, this zone
is larger in some realizations (e.g. Fig. SI 14B), and extends further
south in other realizations (e.g. Fig. SI 14A and SI 14F). Therefore,
meteorologists and climate scientists can be alert to several
different varieties of the same pattern, which can all produce the
wind anomalies that are associated with extremely hot/dry
conditions in the region that produces winter wheat.

Compound events
The UNSEEN approach can be used to detect whether the
likelihood of simultaneous extremes in both regions is higher than
would be expected from random chance. In the observational
datasets, there are no correlations between the two study regions
of USA and China for maximum temperatures or total precipita-
tion in the March–May season. In the UNSEEN ensemble, total
precipitation remains uncorrelated between the two regions, but
there is a small correlation for maximum daily temperature. The
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TXx correlation is 0.06 with 95% confidence intervals of 0.03-0.09.
This is likely due to the influence of climate change on extreme
temperatures globally, which affects both regions. See Supple-
mentary Fig. 9 for a scatterplot of the temperatures.
While there is not a strong relationship between the two

regions, there are individual UNSEEN events that do happen to
produce simultaneous extremes in both locations. We identified
the top 250 ensemble members for each study region that
produced the greatest numbers of enzyme breakdown days, and
there are 10 ensemble members that overlap in those two lists,
producing extreme heat simultaneously in both locations. Figure 6
illustrates a composite of the geopotential height and wind

anomalies associated with these 10 events, which are extreme in
both study regions. This represents a dynamically consistent
event-based storyline of a co-occuring event in both locations. The
composite seems to be associated with a zonal wavenumber-3
disturbance in the higher latitude circulation, creating high
pressure systems over both study areas. This compound event
simultaneously creates the conditions seen in Fig. 5ci (USA) and
5cii (China) (Table 1).
Plots of individual compound events are available in Supple-

mentary Fig. 16. The ensemble that generated the most extreme
compound event was an UNSEEN ensemble member in 2018 (Fig.
SI 16J), which shows similar atmospheric patterns to this

Fig. 5 Pressure and wind anomalies for UNSEEN events. Composites of geopotential height and wind anomalies at 500mb associated with
the most extreme events in the UNSEEN ensemble for the study region. Each plot is a composite of the 10 seasons of (a) highest precipitation,
(b) lowest precipitation, and (c) highest number of enzyme breakdown days in each study area. The first row depicts the USA study area, and
the second row the China study area, both delineated with a black box. Individual plots for each of the 10 events used to make these
composites are available in the Supplementary Information.

Fig. 6 Pressure and wind anomalies for compound events. Composites of geopotential height and wind anomalies at 500mb associated
with concurrent extreme events in the UNSEEN ensemble in both study regions. Each plot is a composite of the 10 seasons that produced an
extreme number of enzyme breakdown days in both study areas. The two study areas are delineated by gray boxes. Individual plots for each
of the 10 events used to make these composites are available in Supplementary Fig. 16.
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composite. It simulated an event that had an regional average of
12.9 enzyme breakdown days in the USA study region (the
observed record is 8.5), and in China, this event produced a
regional average of 5.2 enzyme-breakdown days (observed record
of 2.9).

DISCUSSION
Climate change presents a key risk to food systems globally, but
many risk analyses derive estimates based on past climate-yield
relationships, without accounting for the fact that we live in a
fundamentally changed climate. Nonlinearities in the response of
crops to our changing climate can present unexpected con-
sequences in terms of failed crops and reduced yields. Novel
techniques to create UNSEEN ensembles of plausible alternative
seasons can expand our imagination of what types of never-
before-experienced events are now possible, and this can enable
modeling and stimulate discussion of what kind of impacts these
could have on agriculture.
In the case of non-irrigated winter wheat in the USA and China,

we demonstrate that several regions might have been “lucky” in
terms of their recent experience of extreme events. Given the
stochastic nature of weather, recent temperature extremes in the US
midwest have happened to be cooler than the full range as
simulated by the UNSEEN climate ensemble. This means that recent
years are unlikely to be a good proxy for what to expect in the next
few years of today’s climate, and local stakeholders might perceive
their risk to be lower than it really is. Previous studies estimating the
vulnerability of global breadbaskets to climate extremes could
contribute to this lower perception of risk, because they failed to
take temperature into account due to historical (lower) temperatures
not affecting wheat yields in these regions.
In the large ensemble analyzed here, we find that extremely hot

and dry seasons are associated with large-scale circulation
anomalies, with winds bringing dry air over land to both wheat-
growing regions. While synoptic-scale heatwave events might be
associated with localized regions of high pressure, we find that the
most extreme seasons have large-scale circulation anomalies,
often forming gradients of pressure with strong wind anomalies.
These large scale circulation anomalies can be monitored to better
understand and forecast the conditions that are likely to cause
stress for wheat crops in each region.
An UNSEEN approach can allow us to imagine some of these

unprecedented climate events that can interact with other drivers
of crop supply globally, telling the story of what could happen in
two regions of the world’s breadbaskets that have so far been
“lucky”. The approach is constrained by the ability of models to
represent the full range of plausible outcomes in a location, and
while we included fidelity/stability/independence tests on the
data, our models might not be fully representing the spectrum of
risk23 New methodologies to perturb models and simulate
plausible extremes can support these explorations of climate
storylines and unprecedented events to enable adaptation20.
Given the substantial possibility of record-breaking heat, likely

in combination with drought, in both the winter wheat producing
regions of the USA and China, climate change adaptations for heat
and drought will be needed in many of the world’s breadbaskets.
Changes to agricultural management are widespread for most

staple grains, including wheat. Adaptations include research to
find genetic improvements to wheat varieties that preserve yields
in drier and hotter conditions37,38. Higher-yielding wheat varieties
have historically been more sensitive to hot temperatures above
34 degrees39, therefore further research into hybrid cultivars that
can withstand extreme heat will be important. Agriculturalists
have also experimented with changing planting dates and
changing maturity dates of crops40 and movement of agricultural
zones41. Strategies for managing drought risk include irrigation
opportunities and agricultural management to store additional
soil water that can be used by the crop.
Adaptation investments tend to be spurred by personal

experience of extreme events. Results from UNSEEN ensembles
such as this one can be used to generate storylines of record-
breaking climate events, which can help people visualize impacts
without needing to experience them directly. Further investment
in the UNSEEN and storyline approach has the potential to reveal
gaps in our perception of current risks to our breadbaskets and
food systems, encouraging adaptive action to prevent negative
impacts in the coming years.
Climate shocks do not act in isolation, and they interact with a

variety of other pressures on agricultural production. These include
domestic policies, pests and disease, global trade, planting areas,
irrigation, and others. For example, at the time of writing, the 2022
war in Ukraine has reduced the supply of wheat from the
breadbaskets in Russia and Ukraine42 Pressures have included
damage or blocks to export infrastructure, sanctions, and shifts in
regional control43 Of all these agricultural pressures, we understand
climate events well through physics-based models. Therefore, the
use of such models to encourage planning for extreme events can
help reduce climate pressures on agriculture in the future.

METHODS
Study design
We follow the protocol to apply and ensure credibility of
UNSEEN23 First, the domains, variables, and indices are defined
that are most relevant to wheat growth. We then select
appropriate datasets for the analysis, and statistically evaluate
the realism for the selected event definitions. When issues are
identified, these are mentioned and/or resolved through reducing
the sample size or correcting the data. Statistics of interest are
then obtained from the datasets that are deemed realistic.

Variables
In this study, we focus on winter wheat in the USA and China,
specifically each country’s main production region. In the US, this
is the midwest of the USA, including western Kansas (27% of
national production), eastern Colorado, and northwestern Okla-
homa (105–95.5 W, 35–40 N)44. The China region is northeastern
China, including Hebei, Shandong, Henan, Jiangsu, and Anhui
provinces (110–122.5E, 30.5–40 N), each of which account for 10%
or more of China’s winter wheat production45 In the USA, the
states of Kansas, Oklahoma, and Colorado collectively produced
15,229,953 metric tons in 2017, which was 43.5% of the country’s
winter wheat crop46 In total, China produced 134,334,000 metric
tons of wheat in 2017, including winter wheat and other varieties.
Total global wheat production in 2017 was 772 million metric
tonnes (FAO).
Winter wheat growth begins in autumn, followed by a

dormancy period through the winter47 Regrowth starts in early
spring, with full grain flowering and development occurring in the
early to late spring, making this period critical for yield growth
before harvest in June and July47. In previous studies, wheat yield
in each location was correlated with cumulative precipitation
during the growing season, with no or little relationship to
temperature3,6.

Table 1. 100-year return periods for the daily maximum temperature
in March–May, for 1981 and 2020 in both study regions, as simulated
by the UNSEEN ensemble.

Year USA China

1981 35.7 °C 34.7 °C

2020 38.7 °C 36.1 °C
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However, temperatures above 27.8 °C in May have been
associated with heat stress on winter wheat plants47 Prolonged
durations at or above this temperature are particularly detri-
mental. Additionally, above temperatures of 32.8 °C, wheat
enzymes start to break down, further damaging development of
the plant48 Other studies have used thresholds of 21 °C as optimal,
and 34 °C as damaging, to demonstrate some reduction in yield
due to extremely hot temperatures in parts of Kansas49,39. Given
that harvest happens in June and July, the stages of wheat that
are sensitive to heat stress (including anthesis and grain filling)
tend to happen between March and May. While there is some
irrigation in both regions, winter wheat relies on rainfall for much
of its water requirements, and therefore, total precipitation is
critical during March–May as well.
In this study, we selected three temperature values of interest: the

maximum daily temperature in the March–May season, as well as
the number of days with a maximum temperature above 27.8 °C
(stress threshold) and number of days above 32.8 °C (enzyme
breakdown threshold). We also analyze the total precipitation in
March–May as a critical influence on wheat outcomes. Each variable
is calculated at the native resolution of the dataset and then area-
averaged over land points in the selected region.

Datasets
For the large ensemble of “alternative realities” of the current
climate and recent past, we use archives of SEAS5, the long-range
forecasts from the European Centre for Medium Range Weather
Forecasting (ECMWF)50 These forecasts are initialized on the first of
every month and run a physics-based model for 7 months into the
future, generating daily weather data for a 7-month time period.
Forecasts that include the full March–May season are those that are
initialized in March (1 month of lead time), February (2 months of
lead time), January (3 months of lead time), December (4 months of
lead time), and November (5 months of lead time).
While SEAS5 is run as an operational forecast, the archived large

ensemble can be used to identify extreme events that have not
been experienced before, because the archived forecasts contain
plausible events that simply never happened. The model consists
of 25 ensemble members from 1981-2016, and from 2017 to the
present contains 51 ensemble members. Therefore, including each
of the 5 lead times, the large ensemble contains 125 alternative
realizations of each year until 2016, and 255 ensemble runs per
year from 2017 onwards.
To verify the SEAS5 ensemble, we compare results against

historical observations. In the USA, we use the DayMet dataset
version 4, a 1 km by 1 km daily surface weather dataset for North
America derived primarily from ground-based weather stations51

(In China, we use the ERA5 Land reanalysis of daily surface
weather, which is produced at 9 km resolution52. All datasets were
scaled to 1 degree resolution for the purpose of the analysis.

Evaluation of UNSEEN
For each of the four variables of interest, we evaluate the SEAS5
UNSEEN ensemble to determine which ensembles and lead times
could be used to characterize the full range of plausible events.
First, we evaluated the stability across lead times, to measure
whether there was any model drift in the longer lead-times. None
was found for any of the variables and locations in this study
(plots available in Supplementary Figs. 3, 4).
We then estimated the independence between ensemble

members. Because all ensemble members were initialized at the
same moment, there is often a lack of independence between
ensemble members at shorter lead-times. The first lead time (a
forecast initialized on March 1 for the March–May season) was
excluded for all variables due to assumed interdependence of
ensemble members. Beyond that first lead time, we eliminated
any lead-times for which pairwise rank correlations between

ensemble members had a median value greater than 0.25,
demonstrating a lack of independence53 This only occurred once,
for TXx in the USA region, for which lead 2 was removed (see Figs.
SI 1-2 for plots of the independence between lead times).
Lastly, we estimated the fidelity of the SEAS5 UNSEEN ensemble

in comparison to the historical observational dataset for TXx and
for Total Precipitation. We randomly subsample the larger UNSEEN
sample into 10,000 series of the same length as the observations,
to create “proxy observations” to compare with the observed data.
We compared the mean, standard deviation, skewness, and
kurtosis of the observed dataset against those values for each of
the simulated observations. In the case of Total Precipitation in the
China region for MAM, the mean of the historical observations fell
outside the 95th percentile range of the UNSEEN ensemble, and
we implemented an additive bias-correction. The UNSEEN total
precipitation in March–May was adjusted by subtracting 24mm to
match the mean of the observations. The other variables were not
adjusted (see Supplementary Figs. 5–8 for the fidelity plots for all
variables). However, in the case of TXx for the USA region, the
observed kurtosis was slightly below the 95th percentile of all
kurtosis results from the UNSEEN ensemble. Results for this
variable should therefore be interpreted with caution.
For the derived extremes variables of number of days above the

stress/enzyme breakdown thresholds, we carry out the same
fidelity tests. The standard deviation, skewness, and kurtosis of the
historical observations were within the 95th percentile range of
the UNSEEN results, with one exception. The observed number of
days above the “stress” threshold in the China region is below the
5th percentile of the UNSEEN ensemble, and therefore should also
be interpreted with caution.
While the UNSEEN approach might not capture the full range of

all plausible events, these fidelity checks allow us to proceed with
some confidence that the simulated extremes are worth exploring
to inform adaptation planning.

Statistical analyses
Using these validated datasets, we then obtained insights into low-
likelihood high-impact events using three approaches. First we
visually inspected the time series of observed and UNSEEN events.
Given that the UNSEEN dataset contains a large number of events
per year, this dataset is represented using boxplot statistics, showing
the median, interquartile range, 1.5 x interquartile range, and
members outside the 1.5 x interquartile range. Secondly, we count
the number of threshold exceedances. The probability of such
threshold exceedances can be expressed as the percentage of the
number of exceedances to the total number of events. As such, the
likelihood of compound events can also be estimated. Thirdly, we
applied extreme value statistics to March–May maximum tempera-
tures54 We fitted a Gumbel, Generalized Extreme Value (GEV), and
non-stationary GEV distribution to the historical results and the
UNSEEN ensemble. We fitted the location and scale parameters
linearly to time as a covariate19,23, as in Kelder et alWe test which
distribution best fits the data using a likelihood-ratio test and
estimate the parameters of the distributions using maximum
likelihood estimation (MLE). These distributions were used for the
calculation of the likelihood and magnitude of exceptionally
extreme temperatures in the historical and current climate. To
analyze circulation patterns related to the UNSEEN extreme events,
we plot the geopotential height (GPH) anomalies and wind
anomalies at the 500mb pressure level, to analyze specific extreme
events from the larger ensemble. Using leads 1–4 (due to availability
of monthly SEAS5 data), we plot the 10 driest, wettest, and hottest
seasons in the USA and China study regions.

DATA AVAILABILITY
All data used in this study is publicly available, and can be accessed as follows:
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SEAS5 Archives and ERA5 Land on the Copernicus Climate Data Store: https://
cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-single-levels?tab=form.
https://doi.org/10.24381/cds.181d637e. https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-land?tab=form. https://doi.org/10.24381/cds.e2161bac. Daymet
data on the ONRL DAAC website: https://daymet.ornl.gov/getdata. https://doi.org/
10.3334/ORNLDAAC/2129.

CODE AVAILABILITY
The UNSEEN methodology is documented here: https://unseen-open.readthedocs.io/
en/latest/. Any requests for code or data can be directed to the authors.
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