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Where to place methane monitoring sites in China to better
assist carbon management
Xiaorui Zhang1, Chenhong Zhou2, Yuzhong Zhang 3,4, Xiao Lu5, Xiang Xiao1, Fan Wang1, Jun Song 1, Yike Guo2,
Kenneth K. M. Leung6, Junji Cao7 and Meng Gao 1✉

Methane (CH4) is the second most potent greenhouse gas (GHG), and China emerges as the largest anthropogenic CH4 emitter by
country. Current limited CH4 monitoring systems in China are unfortunately inadequate to support carbon management. Here we
use the Weather Research and Forecasting model (WRF) coupled with a GHG module and satellite constrained emissions to
simulate the spatiotemporal distribution of CH4 over East Asia in 2017. Model evaluations using both satellite retrievals and ground-
based observations indicate reliable performance. We further inter-compare four proper orthogonal decomposition (POD)-based
sensor placement algorithms and find they are able to capture main spatial features of surface CH4 under an oversampled
condition. The QR pivot algorithm exhibits superiority in capturing high CH4, and it offers the best reconstruction with both high
efficiency and accuracy. Areas with high CH4 concentrations and intense anthropogenic activities remain underrepresented by
current CH4 sampling studies, leading to notable reconstruction error over central and eastern China. Optimal planning of
160 sensors guided by the QR pivot algorithm can yield reasonable reconstruction performance and costs of site construction. Our
results can provide valuable references for future planning of CH4 monitoring sites.
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INTRODUCTION
Atmospheric methane (CH4) is the second most potent green-
house gas (GHGs), trailing only carbon dioxide (CO2) and
responsible for more than one-quarter of the global radiative
forcing of GHGs since pre-industrial times1,2. Although atmo-
spheric residence time of CH4 is relatively short (8–12 years),
changes in CH4 could have profound impacts on future climate
and the oxidative capacity of the global atmosphere1–3. CH4

mainly originates from natural and anthropogenic sources,
including biomass burning, oil/gas industry, livestock, landfills,
waste management, wetlands and rice cultivation2,4,5. Surface
observations showed that atmospheric CH4 rapidly increased from
1580 ppb in 1980s to 1910 ppb in 20222,6. The specific reason for
such increase remains unclear, yet it is most likely associated with
increasing anthropogenic activities4,7, which could further offset
the climate benefits of carbon emission reductions significantly8.
In 1978, Blake, et al.9 began to measure tropospheric CH4

worldwide and revealed a global increasing trend. Over time,
several worldwide measurements of atmospheric CH4 concentra-
tions have been established (e.g., Global Atmosphere Watch
(GAW) programme)10–12, through ground-based instruments,
tower, shipboard, and aircraft sampling13,14. Current monitoring
networks are however unfortunately inadequate for sufficient
spatial coverage. Although satellites instruments, such as Atmo-
spheric Infrared Sounder (AIRS), Scanning Imaging Absorption
Spectrometer for Atmospheric Chartography (SCIAMACHY), Green-
house Gas Observation Satellite (GOSAT) and TROPOspheric
Monitoring Instrument (TROPOMI), offer better data coverage,
inconsistency is commonly found between satellite retrievals and
in-situ observations due to the differences in observational

density, accuracy and precision15–17. For example, the sensitivities
of thermal emission instruments in the thermal infrared (TIR) are
low at lower troposphere as they rely on thermal difference
between surface and atmosphere18,19. In addition, small errors of
satellite retrieval may also result in large errors in CH4 emission
estimation20. Lu, et al.16 combined in-situ observations and
satellite retrievals to quantify CH4 emission comprehensively
using an analytical inversion method. The surface observation can
provide not only strong constraints for the inversion but also
critical correlative components, such as methane isotopes and
ethane18. In-situ observations with higher accuracy can also
facilitate the evaluation of the ability of detecting CH4 anomalies
(e.g., large leaks from facilities) by satellites18,21. Therefore, it is of
great need to build a comprehensive atmospheric CH4 observing
system.
China is the world-largest producer and consumer of coal22,23,

now emerging as the world’s largest anthropogenic CH4 emitter
by country since the 2000s24. China also has the largest wetlands
(rice paddies and natural wetlands) area in Asia, which produce
additional amount of CH4

25–27. However, only three surface CH4

observation sites have been established in China under the GAW
of the World Meteorological Organization (WMO) since 1990s28.
Several short-term CH4 measurement campaigns were also
organized29,30, but measurements of CH4 are still largely limited
compared to ~1600 air quality monitoring sites across China. Air
quality monitoring stations are mainly distributed in urban areas31,
while GAW sites focus on regional and continental background
level of CH4 concentration. High CH4 from anthropogenic activities
remain underrepresented. Both sufficient number and optimal
locations32 of CH4 monitoring stations are essential for satellite
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data evaluation and assimilation, inversion of emission estimation
and reconstruction of CH4 concentration21. The optimal distribu-
tion of sensors refers to locations of limited sensors that could be
used to derive the most accurate spatiotemporal distribution of
ground-level CH4 concentrations. However, identifying optimal
locations by brute force search or exhaustive search is computa-
tionally expensive when the number of sensors and possible
locations is large. Previous studies have implemented
sparse reconstruction techniques to identify optimal locations of
sparse monitoring sites for better reconstruction of spatiotem-
poral distributions. For instance, different sensor placement
algorithms within the proper orthogonal decomposition (POD)
framework were applied in the reconstruction of unsteady flow33,
ocean surface temperatures34, and surface PM2.5

32.
Given the essential role of CH4 in carbon cycle and climate

change mitigation, the significance of CH4 monitoring has been
recognized by China’s government. To guide development of a
CH4 observing network in China, we infer spatiotemporal
variations of CH4 in China using the Weather Research and
Forecasting model (WRF) with an updated GHG module (WRF-
GHG)35 and satellite constrained emission estimation36. We further
investigate the reconstruction accuracy of four sensor placement
algorithms for optimal planning of monitoring sites to better
depict surface CH4 concentration in China. The results can provide
valuable references for future planning of CH4 monitoring sites.

RESULTS
Model evaluation
Daily surface CH4 from ground-based instruments and column
mixing ratios of CH4 from the GOSAT satellite were used to
evaluate the performance of WRF‐GHG in simulating CH4. As
shown in Fig. 1, high values of CH4 dry column mixing ratios are
found in Sichuan Basin (SCB), especially in summer (approximate
1930 ppb) due to emissions from paddy field, livestock and energy
activities37,38, and unfavorable dispersion conditions39. Relatively
large CH4 column can be seen over eastern China driven by coal
mining (northern part)22 and rice paddy fields (southern part)26,38,
reaching a maximum in summer (1910 ppb) and a minimum (1870
ppb) in winter. The WRF-GHG can reproduce the distribution

pattern of CH4 column, with the difference lower than 10 ppb
during autumn and winter (Fig. 1). Although the simulation may
overestimate CH4 column in spring and summer, locations of CH4

hot spots, such as eastern and southern China, are generally
consistent. The hydroxyl radical (OH) is the main CH4 sink in the
troposphere, reaching high value in India and western China40,
where simulated CH4 column is 10 to 30 ppb higher than
observations (Supplementary Fig. 1). As the CH4 is treated in a
passive way in WRF-GHG without chemical reactions, the over-
estimation of CH4 over western China might be mainly caused by
missing chemical loss of CH4. Compared with surface observa-
tions, the WRF-GHG model can capture the daily variation of CH4

with a correlation coefficient of 0.67 (Fig. 2). The simulated values
are generally higher than observation, especially during summer
and autumn, which are the two main periods of CH4 emissions
from livestock and vegetation in Qinghai province38. Considering
that the Mt. Waliguan (WLG) station is isolated from anthro-
pogenic activities, it provides background CH4 within the Eurasian
continent rather than local conditions41. The locations of current
sites are not in high CH4 centers either28. The performance of
model, as well as satellite retrievals, cannot be evaluated
comprehensively with limited monitoring sites in China, requiring
more CH4 observation stations to support relevant research
activities.

Reconstruction accuracy of four sensor placement algorithms
Four sensor placement algorithms were employed to estimate the
distribution of surface CH4 across China. The results generated by
different algorithms using 10 POD modes (n= 10) are shown in
Table 1. Under the condition that number of sensor quantity
equals to POD modes (P= n), reconstructed results generated by
matrix condition number (MCN) and Extrema exhibit relatively
poor performance with seriously high mean percentage error
(MPE) and root-mean-square error (RMSE) values. Their recon-
struction performances are improved significantly when sensor
quantity exceeds the number of modes (P= 1.5n and P= 2n).
Compared with other algorithms, Extrema exhibits the poorest
ability with correlation of determination (R2) of 0.34 and 0.44
under P= 1.5n and 2n conditions, respectively. The evaluation
metrics with DEIM and QR pivot under P= n condition are

Fig. 1 Model evaluation of CH4 distribution. Seasonal distributions of dry column mixing ratios of CH4 (Unit: ppb) from WRF-GHG (a–d) and
GOSAT (e–h) in 2017.
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substantially better than those with MCN and Extrema. Given that
the sensor quantity should equal to the dimension of POD basis42,
the DEIM algorithm only produces CH4 reconstruction under P= n
condition. QR pivot shows the best performance among four
algorithms with the largest R2 of 0.86.
Figure 3 shows the spatial distributions of surface CH4

concentrations over China from four algorithms and their
associated locations of sensors under an oversampled case
(P= 2n). The distributions of surface CH4 are closely related with
emission sources (Fig. 3a). The intense coal production activities in
Shanxi and Guizhou provinces account for 35% and 28% of
national coal mine CH4 emissions, respectively (Sheng et al., 2019),
resulting in surface CH4 as high as 2700 ppb. All four algorithms
can generally capture main spatial features of surface CH4.
Although the computational costs of Extrema algorithm are the
lowest34, the Extrema algorithm overestimates CH4 over eastern
China, with the largest MPE of 5.44%. Owing to proximity or
coincidence of the locations of Extrema POD modes43, their
sensors are mainly densely located (Fig. 3g). Unlike Extrema, MCN
algorithm evenly distributes sensor across China (Fig. 3f) and
shows a better performance with R2 of 0.75. The distributions of
sensors from QR pivot algorithm are mainly concentrated in high
CH4 regions, providing the best CH4 reconstruction with MPE and
RMSE as low as 3.46% and 90.14 ppb.
As noted in Luo, et al.31, the number of monitoring sites can

influence the assessments of distribution of air pollutants. As
shown in Fig. 4, reconstruction performance improves with
increasing sensor quantity except for DEIM method. The accuracy
of DEIM is limited by the condition that sensor quantity equals to
mode quantity. The reconstruction accuracy of Extrema increases
rapidly, reaching up to R2 of 0.72 with 300 sensors. The
reconstructed results using MCN are more consistent with
simulation in low CH4 regions due to evenly distributed sensors

(Fig. 3f). Thus, MCN has the smallest MPE among four algorithms
when the number of sensors is higher than 20, and MPE reaches
1.62% with 300 sensors. QR pivot in general offers the best
reconstruction, which is competitive in both efficiency and
accuracy. The RMSE and R2 of QR pivot with 100 sensors are
69.82 ppb and 0.86, approximately equal to those of MCN with
300 sensors. Therefore, the QR pivot algorithm is regarded as a
more reliable method.

Optimal planning of sensor locations
The locations of CH4 sampling sites documented in previous
observation studies are summarized in Table 2, which are
regarded as places of potential stations in this study. The
differences between simulated and reconstructed surface CH4

using these potential stations and QR pivot-guided stations are
shown in Fig. 5. In addition to GAW stations that focus on
background CH4 level, other field measurements were mainly
conducted in megacities with larger influences of anthropogenic
activities44–46, or in southern China to capture CH4 released from
rice fields29,37. Thus, high CH4 concentration over southern China
are well reconstructed by using the potential stations located in
urban and farmland areas. Performances of reconstruction using
locations of potential sites are even slightly better than MCN with
MPE of 3.14%, R2 of 0.69 and RMSE of 104.16 ppb (Supplementary
Table 1). However, potential stations are likely to miss sources of
coal mining, leading to notable discrepancies in central and
eastern China (Fig. 5a). MPE and RMSE values of reconstruction
based on potential sites are 0.32% and 14.01 ppb larger than
those of QR pivot.
Although QR pivot algorithm with 20 sensors can reproduce

surface CH4 reasonably, the results may be unacceptable with RMSE
up to 90 ppb. As shown in Fig. 4, the performances of reconstruction

Table 1. 10-fold cross validation of reconstruction accuracy of four sensor placement algorithms (n and P denote the number of POD modes and
sensors, unit of MPE: %, unit of RMSE: ppb).

n= 10 P= n P= 1.5n P= 2n

MPE R2 RMSE MPE R2 RMSE MPE R2 RMSE

MCN 23.43 0.27 752.89 4.69 0.56 156.55 3.61 0.67 119.16

Extrema 31.47 0.18 1010.64 7.65 0.34 266.25 5.44 0.44 188.41

DEIM 5.01 0.71 124.92

QR pivot 4.94 0.74 122.35 3.88 0.79 99.47 3.46 0.81 90.14

Fig. 2 Model evaluation of surface CH4. a Daily variations of surface CH4 (unit: ppb) from observation (green) and WRF-GHG (blue) in 2017.
b Scatter plot of simulated and observed surface CH4.
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using QR pivot are improved significantly when sensor quantity
increases from 20 to 160. To provide implications for optimal
planning of CH4 monitoring stations, the reconstruction perfor-
mances of QR pivot algorithm with 40, 100, 160, 200 and 300 sensors
under P= 2n condition are further investigated (Fig. 6). When sensor
quantity increases to 100, the reconstruction shows more reliable
performance with RMSE of 69.82 ppb but underestimates CH4

concentration by up to 60 ppb over southern China. Such
underestimation does not exist in the reconstruction with 160 sen-
sors. QR pivot with 160 sensors has exceptional reconstruction
performance with RMSE of 58.56 ppb, and notable bias cannot be
seen over western China. With further growth of sensor quantity,

slight improvements are found in reconstructions generated by 200
and 300 sensors with RMSE of 55.96 and 48.46 ppb. It indicates that
QR pivot with 160 sensors is suitable considering both reconstruc-
tion performance and costs of site construction.

DISCUSSION
Increasing atmospheric CH4 concentration is of global concern
with respect to climate change mitigation. China emerges as the
largest anthropogenic CH4 emission country and accounts for
larger than one-quarter of the increase in global anthropogenic
CH4 emissions. However, current CH4 monitoring networks are

Fig. 4 Reconstruction errors with different sensor quantity. (a) MPE, (b) RMSE and (c) R2 of MCN, Extrema and QR pivot with increasing
numbers of sensors under the condition of P= 2n and DEIM algorithm under the condition of P= n.

Fig. 3 Reconstructed surface CH4 concentrations and locations of sensors. Spatial distributions of mean surface CH4 concentrations across
China from (a) WRF-GHG and reconstructed results with (b) MCN, (c) Extrema and (e) QR pivot algorithms under the condition of 10 POD
modes and 20 sensors (P= 2n); (d) DEIM under P= n; associated locations of sensors (f–i).
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unfortunately inadequate to offer sufficient spatial coverage,
limiting the satellite evaluation, inversion of CH4 emission
estimation, data assimilation and reconstruction of CH4 concen-
tration. To build a comprehensive atmospheric CH4 observing
system, locations of monitoring sites should be considered. In this
study, we simulated the spatial distribution of CH4 over East Asia
in 2017 using the WRF-GHG model and identified optimal site
locations with four sensor placement algorithms. The influences of
sensor quantity and locations on reconstruction accuracy of
different algorithms were investigated systematically.
Model evaluations using satellite retrieval and surface observa-

tion indicated reliable performance of WRF‐GHG in simulating
spatial and temporal distributions of CH4 in 2017. High surface CH4

centers were mainly located over Shanxi and Guizhou province
driven by coal mine CH4 emissions, and eastern China due to
emissions from paddy field and energy activities. Four POD-based
sensor placement algorithms could capture main spatial distribu-
tion features under an oversampled condition. When sensor
quantity equals to POD modes, the reconstructed results from
DEIM and QR pivot were substantially better than those from MCN
and Extrema. Owing to evenly distributed sensors, the recon-
structed result from MCN was more consistent with simulation in
low CH4 regions with the smallest MPE when the number of
sensors is higher than 20. The QR pivot showed the best
performance in selecting optimal monitoring site locations with
both high efficiency and accuracy. Using the locations of CH4

sampling sites from previous observation studies as potential
stations, reconstruction performance using potential sites had
0.32% and 14.01 ppb larger MPE and RMSE values than those of
QR pivot. Notable errors were found over central and eastern
China. The reconstruction performance could be significantly
improved by increasing the number of sensors until the sensor
quantity reached 160. QR pivot with 160 sensors exhibited
exceptional reconstruction performance with RMSE of 58.56 ppb
and overestimation only over low CH4 concentration regions
(western China). Therefore, QR pivot with 160 sensors can provide

an optimal planning of CH4 monitoring sites in China considering
both reconstruction performance and costs of site construction.
Given that sensor placement algorithms are data-driven methods,
quality of input data has critical impacts on accuracy of
algorithms. The WRF-GHG overestimated the CH4 concentration
in western China, which can be partly attributed to no chemical
loss of CH4 in the model. Future work to advance modeling and
combine modeling and observations to derive better dynamical
evolution of CH4 would be helpful. Our results can provide
valuable references for future planning of CH4 monitoring sites.

METHODS
WRF-GHG model
WRF-Chem Version 3.9.147, enhanced with a GHG module48, was
used to simulate CH4 in China. WRF-Chem is a mesoscale coupled
meteorology-chemistry model, and WRF-GHG is now a module in
WRF-Chem for transport of CO2 and CH4 tracers47,49. CH4 in WRF-
GHG, treated in a passive way, was transported online without
atmospheric chemical reactions. The CH4 emission inventories were
taken from Zhang, et al.36 with a spatial resolution of 0.5° × 0.625°,
including emissions from biomass burning, coal, gas, landfills,
livestock, oil, rice, geological seeps, termites, wastewater and
wetlands.
The simulation domain covered the East Asia region with 115 × 164

grid points at a horizontal resolution of 36 km × 36 km. We used 29
vertical layers up to 50 hPa. The National Center for Environmental
Prediction Final Analysis (NCEP FNL) dataset at a 6 hourly temporal
interval and 1° × 1° horizontal resolution was used as meteorological
initial and boundary conditions. The initial and lateral boundary
conditions for CH4 were implemented using GEOS-Chem simulations
with 4° × 5° resolution from16.

Observations
Both surface and GOSAT satellite observations were used to
validate model performance. Daily surface CH4 concentrations at
the WLG station were provided by the World Data Centre for
Greenhouse Gases (https://gaw.kishou.go.jp/). The WLG baseline
observatory is located in western China (36.29°N, 100.90°E),
isolated from industrial and populated regions. Other sites located
in China, i.e., Shangdianzi and Lulin stations, were not used in this
study due to missing data for 2017 or low temporal resolution.
GOSAT, launched in 2009, measures column-averaged dry CH4

mixing ratios with high precision of 0.7% from a polar sun-
synchronous orbit at about 13:00 local time50. The University of
Leicester version 9.0 Proxy XCH4 retrieval was used in this study,
which has a global precision of 9 ppb51. It offers column-averaged
dry-air mole fraction of CH4 based on GOSAT Level 1B data51.

Sensor placement algorithms within the POD framework
POD is a commonly used dimensionality reduction technique,
which produces low-dimensional dynamical systems that could
accurately model spatiotemporal variations of dominant struc-
tures of data. The gappy POD is a modification of POD to handle
incomplete data, developed by Everson and Sirovich52. Gappy
POD can be used in reconstruction of data based on sparse sensor
networks33,34. Suppose a snapshot θðx; tÞ along the domain at
time step t, contains K elements. It can be expressed as linear
combination of K time-invariant patterns:

θðx; tÞ ¼ α1ðtÞϕ1ðxÞ þ α2ðtÞϕ2ðxÞ þ :::αKðtÞϕKðxÞ (1)

where fφiðxÞgKi¼1 are space-varying basis functions, which are
orthogonal to each other, and fαiðtÞgKi¼1 are corresponding time-
varying coefficients. Equation (1) can be also approximated as a
truncated expansion:

θðx; tÞ � α1ðtÞϕ1ðxÞ þ α2ðtÞϕ2ðxÞ þ :::αnðtÞϕnðxÞ (2)

Table 2. The locations of sampling sites from previous CH4

observation studies.

Observation site Province Location Reference

Mt. Waliguan Qinghai 36.29°N, 100.90°E Fang et al.28

Longfengshan Heilongjiang 44.73°N, 127.6°E

Lin’an Zhejiang 30.18°N, 119.44°E

Shangdianzi Beijing 36.29°N, 100.92°E Fang et al.45

Xinglong station Heibei 40.4°N, 117.5°E Wang et al.44

Shanghai Shanghai 31.24°N, 121.49°E Wei and
Wang46

Jingdezhen Jiangxi 29.37°N, 117.22°E Xia et al.30

Nanchang Jiangxi 28.68°N, 115.85°E

Ganzhou Jiangxi 25.83°N, 114.93°E

Guangzhou Guangdong 23.25°N, 113.1°E Cai et al.29

Yingtan Jiangxi 28.3°N, 117.1°E

Changsha Hunan 28.15°N, 113.1°E

Southwest University Chongqing 29.8°N, 106.3°E

Nanjing Jiangsu 31.97°N, 118.8°E

Jurong Jiangsu 31.8°N, 119.15°E

Suzhou Jiangsu 31.3°N, 121.2°E

Fengqiu Henan 35.4°N, 114.4°E

Beibei district Chongqing 30.43°N, 106.43°E Hao et al.37

Dunhuang Gansu 40.08° N, 94.40° E Wei et al.53

Hefei Anhui 31.9°N, 117.17°E Wang et al.54
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where n denotes the number of POD modes, which is fewer than
K in Eq. (1). The gappy POD further defines a mask vector m(x,t) to
describe where data are missing (m(x,t)=0) or available (m(x,t)=1).
Pointwise multiplication is defined as Θðx; tÞ ¼ mðx; tÞ � θðx; tÞ.
Assuming a “repaired” vector θR from the incomplete θ, it can be
represented as follows:

θRðx; tÞ � β1ðtÞϕ1ðxÞ þ β2ðtÞϕ2ðxÞ þ :::βnðtÞϕnðxÞ (3)

where coefficient β is computed by minimizing the difference
between θR and Θ. It can be differentiated with respect to β(t) and
yielded the linear equation system: Mβ= f32,52, where Mij ¼
ðϕi ;ϕjÞn and f ¼ ðΘ;ϕiÞn.
To identify the optimal sensor locations, several sensor

placement algorithms within the POD framework were proposed.
Willcox33 developed a minimization of the MCN algorithm. The
condition number of M is used to evaluate the reconstruction

Fig. 5 Difference in reconstruction ability using potential sites and QR pivot algorithm. Differences between simulated and reconstructed
surface CH4 concentration using (a) potential sites and (b) QR pivot algorithm under the condition of P= 2n (n= 10); associated locations of
sensors (c, d).

Fig. 6 Reconstruction ability of QR pivot with increasing sensor quantity. Differences between simulated and reconstructed surface CH4
concentration using QR pivot with (a) 40, (b) 100, (c) 160, (d) 200 and (e) 300 sensors under the condition of P= 2n, and associated locations of
sensors (f–j).
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performance, which becomes larger than 1 for gappy data
because the orthogonality of M is lost. The sensors are placed at
the grids that minimizes the condition number to reserve
orthogonality. Yildirim, et al.34 proposed a method to select
extrema of the POD modes (Extrema algorithm), which would
maximally capture the variance. The sensors are selected at the
location that are the maximum and minimum of each the POD
modes. To improve the dimension reduction efficiency, Chatur-
antabut and Sorensen42 proposed the simplified discrete empirical
interpolation method (DEIM) to approximate the nonlinearity by
discretely sampling and evaluating the nonlinearity. DEIM
recursively learns the interpolation points (sensor locations)
according to the maximum linear dependence error. A column
permutation matrix D is introduced by the QR with column
pivoting. It contains ones and zeros to make the diagonal values
of A in a decreasing order: AD=QR, to maximize the absolute
value of M. The sensor locations can be obtained from D.
Four sensor placement algorithms mentioned above were

applied to identify locations of sensors and reconstruct the
simulated surface CH4. Therefore, the data matrix provided by
WRF-GHG is composed of 365 snapshots. Each snapshot has 115 ×
164 pixels. 10-fold cross validation was used to ensure the
reliability of our results. Three evaluation metrics were used to
assess the reconstruction ability of POD-based sensor placement
algorithms, including MPE, R2, and RMSE, as follows:

MPE ¼ 100%
N

XN

i¼1

Cons;i � Cone;i
�� ��

Cons;i
(4)

R2 ¼
PN

i¼1 Cons;i � Cons
� �2

Cone;i � Cone
� �2

PN
i¼1 Cons;i � Cons

� �2PN
i¼1 Cone;i � Cone

� �2 (5)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 Cons;i � Cone;i
� �2

N

s
(6)

where Cons and Cone represent simulated and estimated surface
CH4 concentrations, respectively. Cons and Cone are the mean
value of Cons and Cone. N stands for the total number of grids
within China. To better compare the capabilities of different
algorithms, we initially used only 10 POD modes, and further
explored the influences of the number of POD modes and sensors
on reconstruction accuracy, with sensor quantity ranging from 20
to 300.
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