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Physics informed deep neural network embedded in a chemical
transport model for the Amazon rainforest
Himanshu Sharma1, Manish Shrivastava 1✉ and Balwinder Singh1

Secondary organic aerosols (SOA) are fine particles in the atmosphere, which interact with clouds, radiation and affect the Earth’s
energy budget. SOA formation involves chemistry in gas phase, aqueous aerosols, and clouds. Simulating these chemical processes
involve solving a stiff set of differential equations, which are computationally expensive steps for three-dimensional chemical
transport models. Deep neural networks (DNNs) are universal function approximators that could be used to represent the complex
nonlinear changes in aerosol physical and chemical processes; however, key challenges such as generalizability to extended time
periods, preservation of mass balance, simulating sparse model outputs, and maintaining physical constraints have limited their use
in atmospheric chemistry. Here, we develop an approach of using a physics-informed DNN that overcomes previous such
challenges and demonstrates its applicability for the chemical formation processes of isoprene epoxydiol SOA (IEPOX-SOA) over the
Amazon rainforest. The DNN is trained with data generated by simulating IEPOX-SOA over the entire atmospheric column, using the
Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem). The trained DNN is then embedded within WRF-
Chem to replace the computationally expensive default solver of IEPOX-SOA formation. The trained DNN predictions generalizes
well with the default model simulation of the IEPOX-SOA mass concentrations and its size distribution (20 size bins) over several
days of simulations in both dry and wet seasons. The embedded DNN reduces the computational expense of WRF-Chem by a factor
of 2. Our approach shows promise in terms of application to other computationally expensive chemistry solvers in climate models.
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INTRODUCTION
Understanding impacts of secondary organic aerosol (SOA) on the
Earth’s energy budget1,2, human health3,4 and air quality5 has
been an active area of research for the last few decades. Isoprene
oxidation products contribute significantly to SOA formation
mainly through the reactive chemical uptake of isoprene
epoxydiols (IEPOX) in acidic aqueous aerosols4. Isoprene is the
most abundant non-methane hydrocarbon emitted by vegetation
with a global emissions rate of 500 Tg/y6. IEPOX-SOA formation
involves the processes of gas-phase diffusion, particle-phase
diffusion that is kinetically limited by the viscosity of organic
aerosol coatings, and chemical reactions of IEPOX with an
aqueous inorganic aerosol core. Particle–phase diffusion within
the SOA shell varies in the atmosphere with temperature, relative
humidity and composition of the SOA coatings, and chemical
reactions within the inorganic core depend on its composition
involving sulfate, acidity, and aerosol water content7–10. The
complex reacto-diffusive processes of IEPOX-SOA formation could
be simulated by a coupled set of differential equations11,12.
However, these processes are computationally expensive, espe-
cially when applied to predict IEPOX-SOA formation and the
resulting changes in the particle-size distribution over several size
sections. In our recent work, the WRF-Chem model was used to
simulate particles and IEPOX-SOA formation in 20 size sections
ranging from 1 nm to 10 µm11. The explicit IEPOX-SOA solver
needs to take small sub-timesteps (1–5 s) to accurately simulate
IEPOX-SOA. Here, we develop and test an emulator of the complex
recto-diffusive processes causing IEPOX-SOA formation using
machine learning.
Recently, atmospheric chemistry has seen increasing interest in

using machine-learning approaches to develop surrogates for

atmospheric phenomena13,14. The work of ref. 14 trained a neural
network model to emulate the Carbon Bond Mechanism (CBM-Z)
gas-phase chemical mechanism. The neural network aimed to
predict change in concentrations of reacting gas-phase chemical
species an hour in future. Although the neural network was an order
of magnitude faster than the reference model in ref. 15, its errors
accumulated in the longer term, leading to predictions of
nonphysical concentrations. Keller et al.13 developed a random
forest-based emulator for an air quality model (AQM). The model
was tested for a short simulation horizon on pre-trained conditions
only. However, the simulations of the ML embedded model were
slower than those of the reference model, when used under long
range and different conditions.
More recently, Kelp et al.14 used the recurrent encoder-decoder

architecture to train a model to represent chemical reactions on
multiple timescales. The work used a CBM-Z gas-phase chemistry
mechanism combined with the Model for Simulating Aerosol
Interactions and Chemistry (MOSAIC) model15,16 as a ground-truth
reference model that did not include emission, deposition,
advection, or any atmospheric processes other than chemistry
and microphysics. Training data was generated by running the
ground-truth model to generate the required input and target
features. The study aimed to address the challenges of developing
a machine-learning model that is stable and general so that the
emulator can be used for atmospheric modeling. The recurrent
encoder-decoder architecture showed a high speedup in compar-
ison to the traditional reference solver without a significant
decrease in the prediction accuracy, but was tested for a short
simulation window. Further, the model developed in the study
was not coupled within a three-dimensional regional chemical
transport models, therefore, it is not clear if the machine-learning
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model will provide similar performance and accuracy as observed
in uncoupled mode.
Here, we develop a physics-informed Deep Neural Network

(DNN) emulator that (a) has been embedded and coupled within
the three-dimensional regional model WRF-Chem, (b) can make
accurate predictions over longer time periods in a coupled mode
once trained with a relatively short high-fidelity simulation data,
and (c) does not experience exponential error propagation while
running for much longer timescales beginning from different
initial conditions.
Our aim with this work is to demonstrate the applicability of a

trained DNN (AI-SOA) to represent the WRF-Chem simulations of
diffuso-reactive processes of IEPOX-SOA formation. Training
features input to the DNN are informed by the known physics
and chemistry of IEPOX-SOA formation and their size distribution.
The training data are generated by running three-dimensional
simulations using the WRF-Chem model. The trained emulator is
then used to replace the WRF-Chem computationally expensive
IEPOX-SOA solver, and is run in-line within WRF-Chem. Since we
developed and trained the emulator using a reference simulation
from WRF-Chem, we call this step the offline step. Once the
emulator is trained, we embed the DNN emulator in WRF-Chem to
interact with the WRF modules at every simulation timestep.
Figure 1 schematically illustrates the aforementioned steps.
Due to three-dimensional variations in concentrations of gas-

phase IEPOX and particle-phase sulfate, acidity, and aerosol water
content that are key variables affecting multiphase chemistry of

IEPOX-SOA, the IEPOX-SOA concentrations in the computational
domain are localized in specific regions, resulting in a highly
skewed data distribution, which is challenging for training a DNN
model. In this work, we address this challenge by a transformation
of the training data to ensure that the developed emulator is
robust for predicting the skewed target distributions accurately.
An additional challenge with AI emulator predictions is the
inability to obey physical conservation laws, leading to research in
the area of “physics-informed” machine learning17. For our current
work, we ensure that the predictions of the DNN model are
bounded by using the flux data-based training approach
presented in ref. 18. Our results show that the embedded WRF-
DNN model accurately simulates IEPOX-SOA components (2-
methyltetrols and organosulfates) within each of the 20 size bins,
and maintains mass balance between gas and particle phases.
Using the flux-based information additionally helps in general-

izing the embedded model. In our experiments, we run 6-day
simulations, although the model was only trained on 7 h WRF-
Chem data. Our results demonstrate that the DNN emulators
embedded in WRF-chem solutions agree with the WRF-Chem
default solver with marginal errors. We show that the DNN
emulator model embedded in WRF-Chem is generalizable to
longer timescale simulation periods, since it predictions agree
with the reference model predictions unseen by the DNN model
during training. Furthermore, we found that the embedded DNN
models result in a ∼2X speedup in the computational time.

Fig. 1 Schematic illustrating the simulation of IEPOX-SOA using the WRF-Chem Default model and the WRF-Chem DNN model. The
default WRF-Chem model is used to generate training data over a 7 h timescale, which is used to train the DNN to output IEPOX-SOA fluxes
over each of the WRF-Chem chemistry timesteps (5 min). The trained DNN is then embedded in WRF-Chem to replace the default IEPOX-SOA
solver and used to simulate IEPOX-SOA over 6 days.
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RESULTS
DNN model performance
We evaluate our model before using it as an emulator in the WRF-
Chem. The trained DNN model is evaluated to predict the unseen
10% of test data kept aside during training. Note, that in the DNN
architecture (Supplementary Fig. 3) each size-bin model takes size-
bin-specific inputs to predict the corresponding size-bin-specific
flux targets i.e., fluxes for the 2 IEPOX-SOA components:
organosulfates (iepoxos) and 2-methyltetrols (tetrols).
In Fig. 2, we plot the test target data distribution overlayed on

the predictions of the DNN emulator model for a few selected size
bins. The target fluxes representing the rate of change of IEPOX-
SOA particulate components (IEPOXOS and Tetrol) due to reactive
uptake of IEPOX are shown in Fig. 2 since the flux distribution is
highly skewed with many values close to zero, we only plot values
with magnitudes greater than 0.2 for improving the clarity of the
figure. But our spatial contour plots in (Figs. 3 and 4) show that the
model performs the challenging task of predicting zeroes as well
as significant flux magnitudes in the right locations, which
provides additional confidence in our results. All size-bin plots
are shown in Supplementary Figs. 4 and 5. It can be seen that the
model prediction accurately captures the target data distribution.
This shows the qualitative performance of the standalone model
prediction on the test data. To quantitatively evaluate and
compare target and DNN model predictions we calculate the
coefficient of determination (R2) which are tabulated in Supple-
mentary Table 1 for all the size-bin models. Our trained model
showed high R2 scores close to 0.9, indicating a successful
parameterization and training of the models. The a priori analysis
of the model provides additional confidence in its optimal
performance when embedded in the WRF-Chem simulation.

DNN-embedded WRF-simulation experiment
To test our DNN model emulator in an embedded setting, we
simulated a six-day duration from 2014-09-23 00:00 UTC to 2014-
09-29 00:00 UTC. Typically, WRF-Chem is mostly run for 1–2 weeks
due to its computational expense19 when it has many details of
SOA processes included like in this work. But similar SOA

formation processes are expected to apply over the entire season.
Our objective is to show that compared to a short training
timescale of 7 h of data that we used for training the DNN, the
model test performance was good for a much longer testing time
of 6 days. Thus, the ratio of testing to training timescale was 20:1,
providing a strong evidence of the generalizability of the model to
long timescales. This long simulation timescale is chosen so that
the WRF-Chem DNN performance can be validated with respect to
the following criteria:a) the WRF-Chem DNN output should
generalize well when it is applied to predict unseen input data,
i.e., input data not used for training; (b) for long-timescale
simulations, the error between WRF-Chem DNN and WRF-Chem
default models should not accumulate and become very large at
the end. (c) The WRF-Chem DNN model should provide reason-
able accuracies regardless of any arbitrary non-zero initial
conditions of inputs and outputs.
Figure 3 compares the spatial distribution of the total IEPOX-

SOA concentrations simulated by the WRF-Chem Default and
WRF-Chem-DNN models summed across the 20 size bins as a
6-day average at two different altitudes (Fig. 3a, b 0.7 km, and
Fig. 3c, d 15 km altitudes). During the 6 days, the WRF-Chem DNN
model predicted IEPOX-SOA within each of the 20 size sections for
a range of weather conditions over the Amazon for each of the
24 h period i.e., both daytime and nighttime and all the way from
the surface to the upper troposphere i.e., upto 14-km altitudes.
Note that meteorological conditions (temperature, RH, pressure,
winds) experienced by the WRF-Chem DNN-embedded model
during the 6-day testing period include distributions unseen by
the model during training and cover a wide range e.g., RH ranging
0–100%, temperatures ranging 200–320 K, winds ranging 0–20m/
s and pressure levels spanning the altitudes from surface to 14 km
as shown in Supplementary Fig. 6. Similarly, the target chemical
fluxes of IEPOX-SOA components tetrols and iepoxos span a wide
range including zeroes and finite values that vary across the
20 size sections. It can be seen that the WRF-Chem-DNN model
shows excellent agreement with the default WRF-Chem model
and predicts spatial variations accurately. We calculated the root
mean square error (RMSE) of IEPOX-SOA between the WRF-Chem
Default and WRF-Chem DNN. At altitudes of 0.7 km and 15.0 km,

Fig. 2 Rate of change (flux) of IEPOX-SOA components due to aqueous chemistry from the test target data and those predicted by the
uncoupled DNN model. (a-c) IEPOXOS particle fluxes in size bins 2, 8, 14 and (d–f) Tetrol particle fluxes in size bins 8, 10, 15.
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the RMSE was low, i.e., 0.00388 µgm−3 and 0.000549 µgm−3,
respectively. Low RMSE quantitatively validates that the trained
WRF-Chem DNN model captured the IEPOX-SOA simulated by
WRF-Chem Default over much longer timescales (days) compared
to the training data (hours) near the surface and upper
troposphere. As discussed in our previous study11, IEPOX-SOA
formation is greatest near the surface due to the emissions of SOA
precursors by the forest, while deep convection transports IEPOX-
SOA to the upper troposphere (>10 km), resulting in almost
negligible SOA in the middle troposphere. The mean absolute
percent error (MAPE) in IEOPOX-SOA computation between two
simulations for 0.7 km and 15 km altitude is 5.07% and 4.07%,
respectively. The low MAPE value establishes that model
performance did not decline even when the emulator was used
on simulation days that were not part of the training set. In
addition, the error accumulation is low throughout the simulation

period, demonstrating the solver convergence. We further assess
the generality of our DNN model, by performing new simulations
with WRF-Chem DNN during another season, the wet rainy season,
i.e., during March 2014. The wet season is characterized by more
frequent rains, cloudy conditions and higher RH distributions
compared to the dry season. For the wet season, we performed
simulations for March 9–16, 2014, and compared the IEPOX-SOA
predictions from WRF-Chem default and WRF-Chem DNN-
embedded simulation. Note that we did not retrain the DNN
model with wet season data. Thus, we challenged the DNN model
to predict spatial distributions of IEPOX-SOA in different meteor-
ological conditions, characterized by higher RH and more frequent
rains, compared to the dry season where it was trained.
Supplementary Fig. 7 compares the spatial distribution of the
total IEPOX-SOA simulated by the WRF-Chem Default and WRF-
Chem-DNN models summed across the 20 size bins as a 5-day

Fig. 3 Comparison of WRF-Chem default and WRF-Chem DNN model simulations at two different altitudes. Simulated time-averaged
IEPOX-SOA concentrations over horizontal cross sections at (a, b) 0.7 km altitude. (c, d) 15.0 km altitude.

Fig. 4 WRF-Chem default and WRF-Chem DNN predictions of zonal and time-averaged IEPOX-SOA concentrations. Total IEPOX-SOA
(summed across all size bins) and averaged across six days, including Sep 23–28 2014 over the Amazon (a) WRF-Chem Default and (b) WRF-
Chem DNN. WRF-Chem DNN shows excellent agreement with WRF-Chem Default near surface and in the upper troposphere where IEPOX-
SOA concentrations are significant.
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average at two different altitudes (Supplementary Fig. 7a, b)
0.7 km, and Supplementary Fig. 7c, d 15-km altitudes). Although at
both lower and higher altitude, the DNN model moderately over-
predicts the IEPOX-SOA concentrations (within a factor of 2)
compared to the WRF-Chem default, the DNN model captures the
spatial distribution of IEPOX-SOA throughout the domain. These
results are very encouraging since they indicate the DNN model
trained with just 7 h of data during a completely different time
and season, predicts the spatial distributions of IEPOX-SOA in
different meteorological conditions i.e., during the wet season.
Most of the IEPOX-SOA formation due to multiphase chemistry

occurs near the surface where concentrations of IEPOX gases,
aerosols, sulfate, and their water content are greater compared to
higher altitudes. As a result of warm temperatures and high RH
near the surface, organic aerosols that coat the aqueous inorganic
core are liquid-like; hence, diffusion limitations in the particle
phase are small and do not affect IEPOX-SOA formation
significantly. However, at high altitudes (10–15 km altitude) where
temperatures are −50 C and RH is low, aerosols lack liquid water
and organic coatings are solid imposing strong diffusion limita-
tions for the formation of IEPOX-SOA11. While we included the
emissions of biogenic volatile organic compounds (VOCs including
isoprene, terpenes), and anthropogenic and biomass-burning
emissions of trace gases and particles in the current study as
documented in ref. 11, we did not include our newly discovered
process of direct emissions of gas-phase 2-methyltetrols that were
shown to explain IEPOX-SOA at high altitudes in our previous
study11. Our focus in this study was to simulate the aqueous
chemistry of IEPOX-SOA using the WRF-Chem-DNN model without
any direct emissions of IEPOX-SOA components. But this direct
emissions source is outside the aqueous chemistry module in WRF-
Chem, therefore, it could easily be incorporated in future studies.
WRF-Chem simulated IEPOX-SOA at high altitudes is mostly
transported due to deep convection from the surface. IEPOX-SOA
concentrations are mostly negligible in the middle troposphere
(2–12 km altitude) since the WRF-Chem convective parameteriza-
tion predicts a mixture of cloud tops at low levels (1.5–2.0 km) and
deep convection that extends to the upper troposphere (greater
than 12 km) during the period of interest, with lesser amounts of
clouds at intervening levels. Figure 4 compares the zonal average
distributions of the total IEPOX-SOA (summed over all sizes) as a
6-day average between WRF-Chem Default and WRF-Chem DNN
models. WRF-Chem DNN simulations perfectly capture the

variations in IEPOX-SOA with altitude similar to the WRF-Chem
Default model. The bimodal peaks in the simulated IEPOX-SOA
(which occur mainly below 2.5 km altitude and between 12 and
15 km) with concentrations approaching zero in the middle
troposhere are well captured by the WRF-Chem DNN model. The
MAPE between the two simulations for the zonal average plots
(Fig. 6) is 3.88%. The small error establishes that the altitude
variations of IEPOX-SOA is also well captured by the DNN model
emulator embedded in WRF-Chem. Simulating both zeros and
significantly higher concentrations at the two altitude regions is
difficult for DNN models due to the large sparsity in training data.
However, our approaches of normalizing the training data and
predicting molar fluxes instead of concentrations as outputs are
able to overcome these challenges and show great promise for
future applications of DNN models to other similarly skewed
training datasets.
In Fig. 5a, we compare the prediction accuracy of WRF-Chem

and the WRF-Chem DNN model in the 3D computational domain.
We compare the distributions of all the IEPOX-SOA simulated data
in 3D for all six days for both the simulations WRF-Chem Default
(blue) and WRF-Chem DNN (black). Figure 5a shows that the WRF-
Chem DNN model successfully captures the highly skewed IEPOX-
SOA distribution with even small steps in the tail of the
distribution, accurately. For a duration of 6 days in the 3D
domain, the IEPOX-SOA RMSE is 0.021 µgm−3. Figure 5b shows the
calculated RMSE in IEPOX-SOA for each day of the 6-day
simulation period. The accumulation of RMSE between the WRF-
Chem default and the WRF-Chem DNN remains small and does
not increase significantly over time, indicating that the embedded
WRF-Chem DNN emulator is generalizable over longer-time
simulations with only small accumulation of errors.
Although we have demonstrated the success of the WRF-Chem

DNN model in emulating the 3D distributions of total IEPOX- SOA
predicted by the WRF-Chem Default model over long timescales, it
is also important to simulate the size distribution of IEPOX-SOA
accurately, since particle size governs its interactions with clouds
and radiation. In Figure 6, we compare the predictions from WRF-
Chem Default and WRF-Chem DNN models for a few representa-
tive individual size bins (size bins 6, 8, 12, 16, 18, 20) of particulate
Tetrols, which constitute more than 90% of total simulated IEPOX-
SOA concentrations. We compare the distributions for the full 3D
WRF-Chem data over the six-day period of simulations. Simulated
tetrol sizes have a large number of zeroes in the spatial 3D

Fig. 5 Target and predicted IEPOX-SOA distributions and RMSE over time. a IEPOX-SOA distribution in the computational domain for a
6-day simulation for WRF-Chem Default (target) and the WRF-Chem DNN (predicted) run. b The RMSE between WRF-Chem Default and WRF-
Chem DNN computation of IEPOX-SOA at 00:00 UTC of every day for the 6-day simulation.
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domain, leading to skewed distribution. For visual clarity, in Fig. 6,
we only plot the distributions of target tetrol concentrations with
magnitudes greater than 3e-3 µgm−3, but we have shown that the
WRF-Chem DNN predictions capture well both zero and non-zero
target concentrations simulated by the Default WRF-Chem model
(Figs. 3 and 4). These results indicate that the WRF-Chem DNN
captures the size distribution of IEPOX-SOA concentrations. This
result is important given that simulating size distributions over
several sections (20 bins in our study) is challenging. Most regional
and global models only discretize the particle distributions using a
few size sections or modes (3–7), whereas our simulations
discretize them over much more size bins (20 size sections) to
capture details of particle formation and growth. In our simula-
tions, particle concentrations over individual size bins are much
sparser (i.e., contain more values approaching zero), compared to
previous models that use fewer size sections to represent particle-
size distributions. Therefore simulating the size distribution of
IEPOX-SOA over so many size sections was a difficult task for our
WRF-Chem DNN model.

Computational performance of WRF-Chem DNN simulations
In addition to accurately simulating the 3D size distributions of
IEPOX-SOA, the WRF-Chem DNN model is significantly faster and
displays a computational gain of a factor of 2 compared to the
WRF-Chem Default model. We compared different simulations
with WRF-Chem DNN and WRF-Chem Default models varying the
simulated periods and initial conditions and recorded their
computational times as documented in Supplementary Table 2.
In all simulations, WRF-Chem DNN is two times faster than the
WRF-Chem Default simulations. Note that the actual WRF-Chem
simulation time is significantly higher than the cost of training a
DNN model (7 h on 8 GPU’s, as described in “Methods”). Therefore,
relative to the runtime of WRF-Chem model, the computational
cost of training a DNN model is almost negligible. For all
simulations with WRF-Chem Default and WRF-Chem DNN models,
we use the high-performance computing (HPC) cluster 2 nodes

with 36 Intel© Xeon™ Gold CPU on each node to run the parallel
simulation.

DISCUSSION
In this work, we trained 20 different DNN models with different
weights and biases to represent the formation of IEPOX-SOA
within each of the 20 particle-size sections in WRF-Chem. The
computational speed of running 20 embedded models in WRF-
Chem was similar to running a single embedded DNN model. We
found that training a single DNN model to represent IEPOX-SOA
formation over all the 20 size bins concurrently was challenging
due to the high dimensionality of input and output data
corresponding the WRF-Chem Default model predictions. Such a
high-dimensional dataset with many features requires a more
complex DNN architecture than that used in this study. The
training time for such a complex DNN architecture and
hyperparameter tuning is large. We found that a better approach
is to train different DNN models for different size bins, thus
reducing both: (1) the complexity of the DNN architecture and (2)
the dimensionality of the training data. Our tests showed that
computational costs of embedding a single DNN in WRF-Chem
was similar to embedding 20 DNNs, but the benefits of this
approach are manifested by simpler DNN architecture for each of
the 20 DNNs, reduced training time and high accuracy over all the
size sections. The DNN can successfully simulate the complex
functional dependence of the formation of IEPOX-SOA on the
composition of the inorganic aerosol (sulfate, ammonium, nitrate),
acidity, particle water, and diffusion limitations in the organic shell.
These parameters vary spatially and temporally as a function of
meteorology (temperature, relative humidity) and chemistry. By
training the DNN to predict fluxes of IEPOX-SOA to particles rather
than concentrations, the model could maintain the mass balance
that has been a challenge in simulating concentrations of
chemical species. A unique feature of our work is the ability to
simulate IEPOX-SOA formation in each of the 20 size bins of
particles. To the best of our knowledge, our study represents the

Fig. 6 WRF-Chem default (target) and WRF-Chem DNN (predicted) particle-phase tetrol distributions. a–f Selected Tetrol size bins 6, 8, 12,
16, 18, and 20 correspond to particles with diameter ranges of 9.8–15.5 nm, 24.6–39.1 nm, 156.2–248.0 nm, 1.0–1.6 µm, 2.5–4.0 µm, and
6.3–10.0 µm, respectively. Here the distribution is for the full 3D WRF-Chem domain during the 6-day simulation period.
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first application of a DNN to simulate IEPOX-SOA in many size bins,
since most previous models have worked with simpler aerosol size
distribution treatments (often with less than eight modes or
size sections). We overcame another obstacle related to training
the DNN with very skewed and sparse input and output
distributions in the training data. The delta distributions were
difficult to simulate with a DNN, and we discovered that applying
an inverse hyperbolic sine transform to data distributions worked
best. Our work provides several methodological advances in
training the next generation of DNN models to simulate
challenging atmospheric aerosol chemistry and size distribution
datasets. We have demonstrated that our trained WRF-Chem DNN
model is generalizable to a wide range of weather and chemical
regimes, including distributions that were not seen by the model
during training and over a much longer time period of 6 days
compared to the 7-h training time over the Amazon, and also over
several days during the wet season of the Amazon. Our results
highlight that the model temporal accuracy did not deteriorate
significantly with longer temporal extrapolation. We provide a
clear proof of concept for successful implementations of machine-
learning algorithms that speed up complex physics and chemistry
calculations over sparse output distributions while maintaining
mass balance between gas and particle phases within a 3D
regional chemical transport model. Applicability of this approach
to other regions and chemical and meteorological regimes that
are largely out of distributions (OOD) compared to the Amazon is
plausible, especially by leveraging the advancements like transfer
learning in the area of machine learning20,21.

METHODS
In this section, we describe the development of our data-driven
deep-learning model. In subsequent sections, we describe the
WRF-Chem Default modeling approach that simulates the target
IEPOX-SOA data, and the details of our deep-learning model
architecture and its training procedure. We also describe the
integration and embedding of our trained DNN model within
WRF-Chem to replace the default IEPOX-SOA solver.

WRF-Chem and DNN model training data
We use the regional Weather Research and Forecasting Model
coupled to chemistry (WRF-Chem v 4.2) model22 at moderately
high resolution with 10 km grid spacing to simulate atmospheric
chemistry and SOA formation over the Amazon. The modeling
domain encompasses a region of 1500 × 1000 km around the city
of Manaus in Brazil. Details of model configuration, emissions, and
chemistry are presented in ref. 11. Aerosols are simulated with
20 size sections ranging from 1 nm to 10 µm, as described in ref. 23

within the Model for Simulating Aerosol Interactions and
Chemistry (MOSAIC)16. Aerosols are assumed to be mixed
internally, and both particle number and mass are simulated in
each bin. Aerosol species in MOSAIC include sulfate, nitrate,
ammonium, sodium, chloride, calcium, carbonate, other inorgan-
ics (OIN), elemental carbon (EC), organic matter, and aerosol water.
Each chemical component of the particle phase is represented by
20 size sections as both interstitial and cloud-borne aerosols. The
model advects a large number of species, greatly increasing the
computational cost compared to chemistry packages without
SOA. Trace gases, aerosols, and clouds are simulated simulta-
neously with meteorology, therefore the model is computationally
expensive. SOA includes several components, including biogenic
SOA from isoprene, monoterpenes, and sesquiterpenes, and
anthropogenic and biomass-burning SOA. Pure gas-phase chem-
istry of SOA is represented by the volatility basis set (VBS)
approach, while multiphase chemistry of IEPOX-SOA is simulated
explicitly. In this study, we focus on the submodule in WRF-Chem
related to IEPOX-SOA formation in aqueous aerosols. Particle

sulfate is one of the key nucleophiles that is needed for IEPOX-
SOA formation. In addition, total organic aerosol (OA) modulates
IEPOX-SOA since it forms a viscous shell around the inorganic
core limiting IEPOX-SOA formation. Both sulfate and total
organic aerosols predicted by our WRF-Chem model were also
evaluated with aircraft measurements in our previous WRF-
Chem study11. Based on known chemistry of IEPOX-SOA from
previous studies, we ensure that we have evaluated all key
intermediate variables (like sulfate, total organic aerosol, RH,
temperature, isoprene) to IEPOX-SOA formation that were
measured by the aircraft.
To generate WRF-Chem training data, we ran the WRF-Chem

simulation for 7 h from 2014-09-28 12:00 UTC to 2014-09-28 20:00
UTC and wrote 3D WRF-Chem inputs and outputs to the IEPOX-
SOA solver within the aqueous chemistry module every 5 min
(equal to the WRF-Chem chemistry timestep of 5 min). The choice
of days Sep 21–28, 2014 were motivated by our recent study over
the Amazon11 when aircraft-based field measurements were
available for model evaluation of IEPOX-SOA. During this time,
the model has been extensively evaluated with aircraft-based field
measurements over the Amazon. The model was initialized with a
previous 12-day WRF-Chem simulation11 (Sep 18–Oct 1 2014) on
2014-09-28 12:00 UTC. The physical and chemical processes in
surface and upper air are indeed different and therefore for this
study, we rely on the training data produced from the WRF-Chem
high-fidelity simulations. To develop the model for predicting
IEPOX-SOA we train our model using the full WRF-Chem 3D
Spatio-temporal data to ensure that the model generalizes to
physical processes in different environment. This is a unique
strength of our proposed model that it is trained to predict the
IEPOX-SOA accurately irrespective of the altitude in the environ-
ment. The various input and output features at the beginning and
the end of the IEPOX-SOA submodule are explicitly written on the
WRF-Chem outputs. Instead of writing concentrations of simulated
IEPOX-SOA components in each of the 20 size bins, we write out
their fluxes, i.e., changes in their concentrations calculated as a
difference between their concentrations at the beginning and end
of the aqueous chemistry submodule within WRF-Chem per unit
time. The DNN model is tasked with predicting these change in
concentrations in each size bin. When the 20 trained DNN models
(one for each size bin) are used to make predictions by
embedding them in WRF-Chem (replacing the aqueous chemistry
submodule), we add the DNN output fluxes of IEPOX-SOA
components to the incoming IEPOX-SOA concentrations to derive
the output concentrations of 2-methyltetrols (tetrols) and IEPOX
organosulfates (IEPOXOS). Predicting fluxes instead of absolute
concentrations ensures the preservation of mass balance between
gas- and particle phases of IEPOX-SOA and prevents the model
from deviating far from the outputs over longer time periods.
Consistently, Strum et al.18 showed that by training the emulator
to predict the flux information, nonphysical predictions by the
emulators can be avoided.
In addition to the flux data we also output additional variables

necessary for calculating the IEPOX-SOA concentration at the
beginning of the IEPOX-SOA solver (aqsoagamma). The variables
are used as input for model training, and described in Table 1.
Both input and target variables have a large variability in the 3D
domain; hence, before using them for training a DNN model,
normalization is important. In addition, the data distribution of the
output fluxes is sparse and almost close to a delta-distribution
with many values approaching zero. Learning a delta-distribution
as a regression task is challenging for machine-learning models.
Performing transformations of such sparse datasets before
feeding them for training can significantly improve model
learning. Therefore, in this work the full 3D WRF-Chem simulated
dataset for 7 h duration is first transformed using the Inverse
Hyperbolic Sine (IHS) transform and then normalized using min-
max normalization. The IHS transform is described in Eq. (1), and
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the transformation works with data defined on the entire real
number line, including zero and negative. The IHS transform
behaves similar to a log transform when y values are large. Here,
θ > 0 and for any value of θ zero maps to zero.

f y; θð Þ ¼ sinh�1 θyð Þ=θ (1)

In Fig. 7, we compare the actual data distribution and IHS-
transformed normalized distribution for a target flux of tetrol
particles (DELTATETROL) in 2 selected size bins. The transformed
distributions show significant change, with a more visible tail. The
value of θ was set to 100. Other transformed and normalized
distributions are shown in Supplementary Figs. 1 and 2. During
our model training experiments, we saw a significant improve-
ment in model performance with respect to predicting output
fluxes for the IHS-transformed outputs compared to the untrans-
formed outputs. For each size bin, first we split the data into train
(75%), validation (15%), and test (10%) sets. We then transformed

and normalized the training set and used the same normalization
scale to transform validation and test sets to avoid data leakage
during model training. We prepared individual size-bin data using
the above procedure. Next, we describe the DNN architecture for
each model and additional model training details.

Deep neural network architecture and training details
We chose a DNN model over conventional machine-learning
approaches such as ridge regression, gradient boosting trees etc.
The choice of the DNN emulator over other approaches was due
to the big high-dimensional training data (165 input features, 40
output features in three dimensions spatially and over multi-day
timescales) generated by WRF-Chem. In the machine-learning
literature, it has been shown that conventional approaches scale
poorly in large data with high dimensions24. Also, our training data
are highly nonlinear and represent complex physics and
chemistry. DNNs are artificial neural networks and are widely

Fig. 7 Training data transformation using IHS. The inverse hyperbolic sine (IHS) transform with the min-max normalization of the output
IEPOX-SOA fluxes greatly decreases the number of zeroes in the training dataset, changes the target distribution, and makes the training of
DNN model feasible. a Original distribution of Tetrol flux of bin 8. b IHS-transformed distributions of Tetrol flux bin 8. c Original distribution of
Tetrol flux Bin 16. d IHS-transformed Tetrol flux Bin 16 distribution.

Table 1. Input and output variables used for training the 20 DNNs corresponding to each of the 20 particulate size bins.

Full name Acronym

13 Inputs Temperature (K) tk

Relative humidity (%) rh

Ambient pressure (atm) p

Isoprene epoxydiol gas concentration (nmol/m3) iepoxgas

Organic aerosol concentration [Bin:1-20] TOTOA

Particle water (kg/m3-air) water [Bin:1-20]

Particle sulfate (nmol/m3) so4 [Bin:1-20]

Particle nitrate (nmol/m3) no3 [Bin:1-20]

Particle ammonium (nmol/m3) nh4 [Bin:1-20]

Diffusion Coefficient (cm2/s) DORGCOAT [Bin:1-20]

H+ ion concentration (mol/kg-water) PHW_BIN [Bin:1-20]

Total particle radius (cm) RTOTAL [Bin:1-20]

Radius of the aqueous core (cm) RAQ [Bin:1-20]

2 Outputs (nmol/m3s−1) particle Iepox organosulfate Flux [Bin:1-20] iepoxosFluxes

particle Tetrol Flux [Bin:1-20] tetrolFluxes

The variables without “BIN” appended are common variables for each model.
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used in the scientific community in several disciplines, including
chemistry, material science, climate science, physical science
applications, astronomy, etc.25–27. Details on DNN are documented
in ref. 28. Recently, the Earth system sciences community has also
leveraged DNNs to address a variety of challenging
problems17,27,29–31.
For the dataset described in section-emulating aqueous aerosol

chemistry involves many input variables. In our first attempt to
develop an emulator for the two IEPOX-SOA components (IEPOX
organosulfate: Iepoxos and 2-methyltetrols: Tetrol), we developed
a fully connected deep neural network of six layers with a batch
normalization layer model to take 165 inputs (size-bin dependent
variables (8 × 20)= 160, exogenous variable= 5) and predict 40
outputs (two outputs per size bin (2 × 20)= 40). We encountered
two major limitations with this approach. First, due to the high
input dimensions (165 input variables) and the output dimensions
(40 output), the simplified network architecture did not show
good accuracy with the test data. A search of more complex
architectures could have addressed this limitation, but embedding
the complex architecture in the WRF-Chem is challenging. The
second limitation was that even with the best possible simplified
network trained in a high-dimensional setting; when embedded
with WRF-Chem as an emulator for the aqueous aerosol module,
the emulator faced significant challenges in ensuring the mass
balance to provide a converged solution. Note that in this first
attempt, we use the actual concentrations of IEPOXOS and Tetrol
as our prediction targets for each bin.
To address the challenges encountered with our first approach,

we trained 20 individual DNN models for each of the 20 individual
size-bin IEPOX-SOA dataset. This addressed the dimensional
explosion problem, since each of the 20 DNN models requires a
smaller number of input (13) and output (2) features correspond-
ing to a bin size, compared to a single DNN model that is tasked
with predicting IEPOX-SOA in all the 20 size bins concurrently. To
address the challenges associated with mass conservation, we
trained our model to predict the fluxes (i.e., the change in the
concentrations of target variables per unit time) of Iepoxos and
Tertrol rather than actual concentration. The work of ref. 18 showed
that emulating fluxes rather than absolute concentrations obeys
mass conservation much better than emulating the concentrations.
A schematic of the emulator architecture used in this study for the
WRF-Chem DNN-embedded model is shown in Supplementary Fig.
3. Each DNN model is presented with the individual bin input and
target data, listed in Table 1. Once the models were trained on
their respective training data, we embedded all 20 models (one for
each bin) in WRF-Chem to replace the aqueous SOA calculation
routine.
We use the TensorFlow-Keras Python library to implement and

train the DNN model used in this work32,33. All DNNs used feed-
forward neural networks, with each densely connected layer and
batch normalization layers. The DNN model in a supervised
learning setup is used to describe the relationship between input
and output variables. We construct our DNN models for all the
bins with 3 hidden layers, 64 neurons in each layer with the
rectified linear (relu) activation. In our training procedure for all
the model we use the SGD optimizer34,35 with a learning rate of
0.0058, momentum of 0.9 and batch size of 256. We use the mean
square error (mse) as a choice of loss function for training all the
DNN models. To avoid over-fitting and other DNN training issues
we chose our DNN hyper-parameters, including the number of
neurons, activation function, learning rate, and batch size, using
the ray-tune36 hyperparameter optimization python library. We
trained all the size-bin DNN models concurrently using 8 NVIDIA
A100 GPUs using the ray library37. It took 6.8 h for training all the
size-bin models each of which were trained for 30 epochs.

Integrating machine learning with WRF-Chem
The ultimate objective in this work is to develop a surrogate
model for SOA (iepoxos, tetrol) predictions to bypass the
computationally expensive aqsoagamma solver in WRF-Chem
Default. As described in the previous sections, we generated the
training data using WRF-Chem predictions. Once the model is
trained and evaluated offline, we integrated the DNN model into
the WRF-Chem code. WRF-Chem is mostly written using
FORTRAN90 but machine-learning models are developed using
Python, therefore, we translated the deep-learning models into an
ascii text format which is then read into the WRF-Chem FORTRAN
code easily. This translation and embedding is done using the
FotranToKeras bridge38 library. We integrate the DNN models into
the WRF-Chem module module_mosaic_therm.F as aqsoa_gam-
ma_DNN subroutine.
At runtime of the WRF-Chem DNN the module_mosaic_therm.F

module is called at every grid cell and timestep to invoke the DNN-
based subroutine, similar to the reference aqsoagamma solver within
the WRF-Chem Default model. The subroutine creates the desired
input vectors shape and normalizes them before feeding them as
inputs to the embedded deep-learning model. To ensure the stability
of the coupled run, the inputs are normalized and bound between 0
and 1. The subroutine then receives the predictions for the flux of
Iepoxos and Tetrol by invoking the trained DNN. These outputs are
then denormalized to obtain predictions for the Iepoxos and Tetrol
fluxes in the computational domain. The subroutine also integrates
these fluxes across the chemistry timestep and adds them as
tendencies to the incoming concentrations of the IEPOX-SOA
components (IEPOXOS and Tetrols) in each of the 20 size bins.
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