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Soil moisture revamps the temperature extremes in a warming
climate over India
Naresh G. Ganeshi 1,2, Milind Mujumdar 1✉, Yuhei Takaya 3, Mangesh M. Goswami 1, Bhupendra Bahadur Singh 1,
R Krishnan1 and Toru Terao4

Soil moisture (SM) plays a crucial role in altering climate extremes through complex land-atmosphere feedback processes. In the
present study, we investigated the impact of SM perturbations on temperature extremes (ExT) over India for the historical period
(1951–2010) and future climate projection (2051–2100) under 4 K warming scenario. We note that more than 70% area of the
Indian landmass has experienced significant changes in characteristics of ExT due to SM perturbations. In particular, we see larger
impact of SM perturbations on ExT over the north-central India (NCI), which is a hotspot of strong SM-temperature coupling. Over
NCI, a 20% departure in SM significantly revamps frequency, duration and intensity of ExT by 2–5 events/year, 1-2 days/event and
0.5–2.1 °C, respectively, through modulating surface energy partitioning, evapotranspiration and SM memory. Importantly, the
impact of SM perturbations on frequency and duration of ExT events becomes less prominent with intensification of global
warming.
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INTRODUCTION
Major land regions of the world have been exhibiting severe rise
in temperature extremes (ExT) during the recent few decades1.
The Indian subcontinent has been highlighted as one of the
hotspots for increased characteristics of ExT2,3. Recent studies
have projected that outbreak of high-intensity ExT is likely to
become more common over India at the end of the 21st

century4–8. The Indian region generally experienced the extreme
heat conditions during the pre-monsoon months of April-May-
June9,10, which may elongate into the summer monsoon season as
well, due to prolonged deficiency of the monsoon rainfall11–13.
Furthermore, increase in ExT exerts serious impact on the
ecosystem, human health, agriculture and economy14,15.
Understanding long-term changes in ExT over India in past and

future climate has been an important topic of research12,14,15.
Observations indicate that occurrence of ExT over India is linked to
large-scale atmospheric circulation anomalies and regional-scale
land-atmosphere feedback processes arising from soil moisture
(SM) variations16–19. In particular, SM revamps the ExT by
modulating the surface energy partitioning and evapotranspira-
tion (ET)13,20,21. As a crucial component of land-atmosphere
coupling processes, SM also acts as temporal storage of atmo-
spheric anomalies22–25. Additionally, the long-term persisting
nature (memory) of SM has potential to induce a pronounce
impact on near-surface temperature and precipitation (PR)
variability13,26. Therefore, it is very important to understand the
regional-scale SM variability using observational datasets and
model simulations to get better insight into land-atmosphere
feedback processes associated with extreme temperature
conditions13,20,27,28.
The influence of SM on ExT can be determined using the

observational data products13,17,29 as well as state-of-the-art
climate model sensitivity experiments initialized by perturbing
SM30,31. In review of the SM sensitivity experiments over the
Indian landmass, researchers mostly explored SM-PR feedback

mechanism using the model simulations32–34. However, impact of
SM perturbations on ExT over India is still unclear. Therefore, this
study aims to investigate the impact of SM perturbations on ExT
by using the Meteorological Research Institute (MRI) high-
resolution (~60 km) atmospheric general circulation model (i.e.
MRI-AGCM3.235) simulations (refer to sub-section Model and
experimental setups for more details) for the historical period
(1951–2010) and future projection (2051–2100).

RESULTS
Model evaluation
In this section, we will first evaluate the simulation of some of the
key surface hydro-meteorological variables (PR, SM, ET, and
maximum temperature: Tmax) over the Indian region from the
historical (HIST) experiment with respect to observed datasets.
Time-mean (1951–2010) spatial maps of PR, Tmax, SM and ET are
shown in Fig. 1 from the HIST experiment (1st row) and
observational data products (2nd row). While the model simulation
broadly captures the spatial pattern of annual mean PR, SM and
ET, such as the relatively higher values over the west coast, north-
central and north-eastern parts of India and lower values over the
north-west India, there are also noteworthy differences between
the simulated and observed hydro-meteorological variables. For
example, it can be seen that the simulation indicates drier PR,
lower ET and drier SM over the Indo-Gangetic plains as compared
to observations. We also note that the simulated annual mean
Tmax is underestimated over much of the Indian region as
compared to the observed data.
Model biases at regional and sub-regional scales basically arise

due to differences in statistical properties of the simulated and
observed climatic variables (e.g., PR and Tmax), which need to be
taken into account for model evaluations (see Soriano et al.36).
Keeping this in view, we have applied the bias correction method
suggested by Soriano et al.36 to the simulated hydro-
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meteorological variables. Fig. 2 shows the Taylor diagram37 analysis
of PR, SM, Tmax and ET averaged over the Indian region based on
the bias-corrected model outputs (left panel), and raw (uncor-
rected) model simulations (right panel). The results of the Taylor
diagram analysis suggest that the bias-corrected PR, SM, Tmax and
ET over the Indian landmass simulated by the model compares
well with observations w.r.t correlation, standard deviation, and
root mean square error. It can be seen that the annual-mean bias-
corrected hydro-meteorological variables show high correlations in
the range of (0.75–0.91), standard deviations close to the
observations in the range of (0.94–1.1), and reduced root mean
square deviation in the range of (0.45–0.65). The improved Taylor
statistics of the hydrological variables provides motivation to
examine the role of SM on ExT over the Indian region.

Soil moisture-temperature (SM-T) coupling over the Indian
region
SM has a dominant influence on temperature variability and, as a
result, on ExT over the regions of strong land-atmosphere
coupling20. Here, we aim to understand the SM-T coupling for
historical period (1951–2010) and future projection (2051–2100)
using the linear regression method as suggested by Dirmeyer38

(see Methods). Additionally, diagnosis of coupling strength is
extended on the entire annual cycle to explore the role of SM on
annual extremes beyond pre-monsoon months. Fig. 3 indicates
spatial distribution of SM-T coupling strength (Ω) across the Indian
region. Result shows that hotspot of strong SM-T coupling is
located over the north-central India (NCI). Stronger coupling over
the NCI reveals significant control of SM on near-surface
temperature variations. Spatial pattern of SM-T coupling nearly
coincides with the coupling hotspot highlighted in recent study

by Ganeshi et al.13 over India. The coupling strength estimated
from Dirmeyer38 also cross validated using the method by Miralles
et al.27. It is noted from Supplementary Fig. 4, 5, and Fig. 3a that
spatial coupling patterns based on the metric π and Ω are
consistent with each other.
SM-T coupling over the land is mainly influenced by the

combined effect of water availability at the top surface and
radiational energy20. Weaker coupling over the wet and the dry
regions (Fig. 3) is due to the limited available radiational energy
and less evapotranspiration variability, respectively. On the
contrary, imposing dominant control on evapotranspiration,
moderate SM regimes of NCI indicate to have larger impact on
near-surface temperature variability13,20. Investigation of SM-T
coupling is further extended for the FUT experiment (4 K warming
scenario), which shows similar spatial distribution of SM-T
coupling strength over India as that of HIST experiment. From
Fig. 3b, it is to be noted that the area of strong SM-T coupling is
likely to expand under the FUT 4 K warming experiment. The
expansion or shrinking of strong SM-T coupling regions can be a
significant aspect of climate change7.

Long-term mean of temperature extremes
Fig. 4 shows spatial distribution of long-term mean extreme
temperature frequency (ExTF), duration (ExTD), and intensity (ExTI)
over the Indian region from the HIST and FUT experiments.
Estimates of ExTF, ExTD and ExTI are carried out using bias-
corrected Tmax simulations from MRI-AGCM3.2. Spatial maps of
these extremes for the HIST experiment indicate at least 4 events
per year over the Indian landmass with an average duration of ~5
to 6 days per event and maximum intensity of about 47 °C is seen
over the central India (Fig. 4). It is noted that the pattern correlation

Fig. 1 Climatological features of hydro-meteorological variables for period 1951–2010. Time-mean spatial maps of annual mean
precipitation (1st column), maximum temperature (2nd column), soil moisture (3rd column) and evapotranspiration (4th column) from the
model simulations (1st row) and other data products (2nd row) for the historical period (1951–2010).
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of extreme temperature characteristics (ExTF, ExTD and ExTI)
between HIST and IMD observations exceeds 0.4 (significant at
95% confidence) over the Indian region. Future changes in
extremes for the period 2051–2100 are also evaluated here under
the 4 K warming scenario. Future simulation suggests alarming
increase in extreme temperature characteristics almost over the
entire (covering ~100% area) Indian landmass (Fig. 4). On an
average, the FUT experiment suggests an increase of ~9 ExT events
per year with an average increase of ExTD about 5–6 ExT days per
event and ExTI about 3 °C ExTI w.r.t the HIST experiment. The
severity of ExT from the FUT experiment also indicates significant
impact of climate change on ExT under 4 K warming scenario.
We further carry out analysis of extremes over the strong SM-T

coupling region of the NCI. Area-averaged time series over the NCI
is used to evaluate long-term changes in ExTD, ExTF and ExTI for
the HIST and the FUT experiments. Over the NCI, the HIST
simulation indicates occurrence of 4–5 ExT events per year, with
an average intensity greater than 46 °C and duration of 5–6 days
per event (Supplementary Fig. 9). Furthermore, the FUT experi-
ment indicates severe rise in ExT characteristics over the hotspot
of strong SM-T coupling (NCI) under 4 K warming scenario. Our
findings show that high intensity (ExTI > 50 °C) ExT events are
likely to occur after every 25–30 days in future (4 K warming
scenario) over India, which can prevail at least for 10 to 12 days
(Supplementary Fig. 9).

Impact of soil moisture perturbations on temperature
extremes
In the present study, we have explored the impact of SM on ExT
for the historical period (1951–2010) and future projection

(2051–2100) using wet and dry SM sensitivity experiments (listed
in Supplementary Table 1). Columns second and third in Fig. 5
shows mean change in ExTF, ExTD and ExTI from the HIST-20
(decrease of SM by 20% w.r.t HIST) and HIST+ 20 (decrease of SM
by 20% w.r.t HIST) experiments w.r.t the HIST simulation,
respectively. On an average, drier SM conditions (HIST-20) increase
the ExTF by 4–5 events per year, ExTD by 1–2 days per event, and
long-term mean ExTI at least by 0.6 °C (Fig. 5). In contrast, wet SM
conditions (HIST+ 20) tend to reduce ExTF, ExTD and ExTI by 1–2
events per year, 2–3 days per event and ~0.5 °C (long-term mean),
respectively (Fig. 5). Future climate sensitivity experiments
demonstrate similar results to historical simulations, albeit with a
smaller impact of soil moisture over the Indian region. The FUT-20
simulation intensifies ExT by 1–2 events per year, 0–1 days per
event and long-term mean ExTI by ~1 °C than that of the FUT
experiment (Fig. 6). Whereas results from the FUT+ 20 experiment
indicate reduction of ExTF by 3–4 events per year, ExTD by
3–4 days per event, and long-term mean ExTI by ~2 °C (Fig. 6). A
comparison between the control (HIST and FUT) and the
sensitivity experiments (HIST-20, HIST+ 20, FUT-20 and FUT+ 20)
indicate that almost 70% or more area of the Indian region has
experienced significant change in the ExT characteristics.
The main aim of this study is to understand the role of SM on

ExT over the hotspot of strong SM-T coupling. We noted an
increase of ~5 ExT events per year over the NCI from the HIST-20
experiment, with average increase in ExTD of 1.8 days per event
and ExTI ~ 0.71 °C w.r.t the HIST experiment (Fig. 7 &
Supplementary Fig. 9). Whereas wet simulation (HIST+ 20)
reduces ExTF by ~3 events per year, ExTD by ~1 day per event,
and long-term mean ExTI ~1.88 °C w.r.t the HIST experiment. The
FUT-20 experiment shows an increase of ExTF by ~2.2 events per

Fig. 2 Comparison of corrected and uncorrected model outputs using Taylor statistics. Taylor diagram showing statistics of annual-mean
PR, Tmax, SM, and ET averaged over the Indian region based on the (a) corrected model outputs and (b) uncorrected model outputs. Taylor
statistics represented using the correlation coefficient (black line), standard deviation (blue line), and root mean square deviation (purple line)
with respect to observed data products.
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year, ExTD by ~1.55 days per event, and long-term mean intensity
~0.93 °C under dry SM conditions w.r.t the FUT experiment. While,
we noted significant decrease in ExT characteristics (decrease of
ExTF ~3.3 events per year, ExTD by 2 days per event and long-term
mean ExTI ~2.02 °C) over the NCI in the FUT+ 20 experiment w.r.t
the FUT experiment. The sensitivity experiments reveal the
significant impact of SM on ExT characteristics over the Indian
region. Moreover, the dominant influence of SM on ExT can be
found over the hotspot of strong SM-T coupling. Similar results are
also seen from the analysis of area-averaged time series of ExTF,
ExTD and ExTI over the NCI (Supplementary Fig. 9).
Analysis of ExT is also carried out using the Generalized Extreme

Value (GEV) theory and probability distribution approach over the
NCI. The yearly block maxima approach is applied to the non-
stationary GEV model fit of ExTI index, considering SM as a
covariate. Further, the influence of SM on extremes is quantified
using difference between 50-year return values of block maxima
as obtained from dry and wet SM sensitivity experiments. Fig. 8
shows the return level plot of yearly block maxima obtained from
non-stationary GEV model fit. We noted a higher return level
values of yearly Tmax from the dry SM perturbations (red colour
curve) than the wet SM perturbations (blue colour curve). For the
historical period (1951–2010), difference between 50-year return
values of dry and wet SM simulations is nearly ~1.25 °C. In other
words, a 20% decrease of SM over the NCI leads to increase the
yearly maximum temperature with absolute values reaching upto
48.75 °C once in 50 years. On the other hand, for wet simulation
(HIST+ 20), the yearly maximum temperature remains below
47.63 °C once in 50-year. Furthermore, the FUT-20 (FUT+ 20)

shows an intensification (reduction) of yearly maximum 50-year
return level of temperature upto (below) 53.52 °C (50.94 °C). To
strengthen the analysis of ExT, the influence of SM on extremes
over NCI is discussed (see supplementary material) here using the
PDFs of yearly block maxima (Tmax) (Fig. 9) for the control (HIST
and FUT) and the sensitivity experiments (HIST-20, HIST+ 20, FUT-
20 and FUT+ 20). It is to be noted that the results of the present
paper are based on a single model simulation, therefore the
impact of SM on ExT may vary in the other models depending on
the representation of land-atmosphere coupling strength. In
summary, analysis of sensitivity experiments reveal the crucial
role of SM on ExT over the region of strong SM-T coupling. The
processes illustrating the influence of SM on extremes through
land-atmosphere coupling are discussed in the following sub-
section using the sensitivity experiments.

Response of land-atmosphere interactions to SM
perturbations
In this section, we have investigated the impact of SM
perturbations on land-atmosphere feedback processes (i.e. sen-
sible heat flux: SHF, latent heat flux: LHF, ET, SM, Tmax, & soil
moisture memory: SMM) over the Indian region by using HIST,
HIST-20 and HIST+ 20 experiments. Columns first and second in
Fig. 10 shows mean change in SM, Tmax, SHF, LHF, ET, & SMM from
the HIST-20 and HIST+ 20 experiments w.r.t the HIST simulation,
respectively. ET is one of the important factors in land-atmosphere
coupling processes, which is mainly controlled by SM and energy
availability at land surface20. Fig. 10 indicate that the regions
where SM conditions are found to be wetter or drier have less

Fig. 3 Soil moisture-temperature coupling. Spatial maps of soil moisture-temperature coupling over the Indian region estimated using the
method by Dirmeyer38 for the (a) HIST and (b) FUT experiments. The area shown in the polygon over north-central India (NCI) is highlighted as
the region of strong soil moisture-temperature coupling over India (75°E-87°E, 16°N-26°N, land only).
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impact on ET variability. These regions are mainly located over the
north-west, north and north-east parts of India. On the other hand,
maximum sensitivity of ET can be observed over moderate SM
regimes, where enough SM and radiational energy is available.
Quantitatively, a 20% decrease of SM over the transitional climate
zone of NCI can lead to a decline in ET by 10%, and a 20% increase
of SM can enhance the ET by 15%.
Furthermore, by limiting the total available energy for the latent

heating process, SM dominantly controls the surface energy
partitioning at the land surface20. A 20% decrease of SM over the
NCI leads to contribute more radiational energy for sensible
heating process by limiting the energy used for LHF (Fig. 10). An

increase in long-term mean SHF over the strong SM-T coupling
region generally takes place due to more amount of energy
consumed for heating the atmosphere through enhanced dry and
warm land surface conditions13. Thus, drier SM conditions induce
warmer atmospheric conditions over the strong SM-T coupled
regions. Whereas, WET-SM experiment results indicate a relatively
colder near-surface atmosphere due to entertainment of less
amount of SHF through surface energy partitioning (Fig. 10). Wet
SM perturbations appear to favour cloudy conditions and
enhancement of atmospheric water content thereby limiting the
solar radiation reaching to the Earth surface32,33 (also see
Supplementary Figs. 1 & 2). As a consequence, the near-surface

Fig. 4 Temperature extremes over the Indian region. Time-mean spatial maps of extreme temperature frequency (ExTF: 1st row), duration
(ExTD: 2nd row) and intensity (ExTI: 3rd row) from the IMD observations (1st column), HIST experiment (2nd column), FUT experiment (3rd

column), and difference between the FUT and HIST experiment (4th column). The pattern correlation coefficient (r) between extreme
temperature indices from MRI outputs and IMD observations are given in Figures of 2nd column. Stippling in Figures indicate the regions
where difference between the FUT and HIST experiments is significant at 95% confidence level.
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Fig. 5 Impact of SM on ExT for the historical period (1951–2010). Time-mean spatial maps of ExTF (1st row), ExTD (2nd row) and ExTI (3rd

row) from the HIST experiment (1st column), difference between the HIST-20 and HIST experiments (2nd column), and difference between the
HIST+ 20 and HIST experiments (3rd column) during the historical period (1951–2010). Stippling in Figures indicate the regions where
difference between the HIST-20/HIST+ 20 and HIST experiment is significant at 95% confidence level.
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Fig. 6 Impact of SM on ExT for the future projection (2051–2100). Time-mean spatial maps of ExTF (1st row), ExTD (2nd row) and ExTI (3rd

row) from the FUT experiment (1st column), difference between the FUT-20 and FUT experiments (2nd column), and the difference between
FUT+ 20 and FUT experiment (3rd column) during the future climate (2051–2100). Stippling in Figures indicate the regions where difference
between the FUT-20/FUT+ 20 and FUT experiment is significant at 95% confidence level.
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temperature remains below the normal conditions, and extreme
temperature occurrence gradually subsides.
We further highlighted the sensitivity of SMM to the wet

(HIST+ 20) and dry (HIST-20) SM perturbations to understand the
processes involved in the SM-T interactions over the Indian region.
The model diagnosis suggests that the SMM time-scale over the
Indian region varies from one to eight weeks (Supplementary Fig.
7). The HIST experiment shows the lowest SMM time-scale
(<2 weeks) over drier regions of central as well as north-west
India, whereas highest SMM (>5 weeks) found over the north and
the north-east India. Furthermore, it is seen that SMM over the
hotspot of strong SM-T coupling (NCI) is about 3–4 weeks. A study
by Delworth and Manabe39 linked the SMM time-scale with the
persistence of atmospheric variability and, thus, consequently on
near-surface temperature. In comparison to the wet and dry SM
regions, moderate SM zones are expected to experience faster
evaporative damping of SM anomalies due to available radiational
energy and so have the potential to influence near-surface
temperature variability. We noted a decrease in SMM across the
Indian region in the HIST-20 experiment w.r.t the HIST experiment
(Fig. 10). It is seen that SMM over the weak coupling regions may
not be significantly modified by a 20% decrease in SM due to
lower sensitivity. On the other hand, SMM time-scale behaviour is
highly non-linear in the wet SM experiment over the Indian region
(Fig. 10). Over the NCI, a 20% decrease of SM (HIST-20) leads to
reduce SMM by 1 week, and a 20% increase of SM (HIST+ 20)
leads to intensify SMM by a few days (<1 week). Decrease in SMM
significantly favours enhancement of SHF and warming near to
the land surface, thereby reducing the ET across the hotspot of
strong SM-T coupling (NCI). It is to be noted that further
investigation needs to be carried out to understand the factors
responsible for non-linear behaviour between SMM and WET-SM
over the weak coupling zone.

DISCUSSION
The present study investigated the impact of soil moisture (SM)
perturbations on the characteristics of temperature extremes (ExT)
over India based on SM sensitivity experiments using the model
MRI-AGCM3.2 for the historical period (1951–2010, HIST) and
future (2051–2100, FUT) under the 4 K warming scenario. Our
findings show that more than 70% area of the Indian landmass
has experienced significant changes in the characteristics of ExT
due to SM perturbations. In particular, it is noted that SM
perturbations exert substantial control on the near-surface
temperature variability over north-central India (NCI), a hotspot
for soil moisture-temperature (SM-T) coupling, by altering the
surface energy partitioning between sensible and latent heat
fluxes, and soil moisture memory.
Our findings suggest that a 20% increase of SM perturbation

applied on the HIST and FUT experiments, tends to decrease the
frequency and duration of ExT events over NCI by nearly
60–70% and 20–30%, respectively. Conversely, a 20% decrease
of SM perturbation applied on the HIST and FUT experiments,
tends to increase the frequency and duration of ExT events over
NCI by nearly 60–100% and 15–40%, respectively. In other
words, it turns out that the impact of SM perturbations on the
frequency and duration of ExT events over NCI becomes less
prominent in the future (FUT) 4 K warming scenario as
compared to the historical (HIST) climate. We note that this
reduced impact of SM perturbations on ExT in FUT, as
compared to HIST, is related to the increase of PR and SM over
the Indian region which causes a decrease in the temperature
difference between the surface and near-surface atmosphere
(i.e. 2 m air temperature), decrease of Bowen ratio and decrease
of sensible heat flux from the surface to the atmosphere
(Supplementary Fig. 14).

Fig. 7 Impact of SM on ExT over the NCI. Histogram compares the mean of ExTF (white), ExTD (light grey) and ExTI (dark grey) for six
experiments i.e. HIST, HIST-20, HIST+ 20, FUT, FUT-20 and FUT+ 20, averaged over the NCI (75°E-87°E, 16°N-26°N, land only). Error bars in
Figures indicate the standard deviation value of ExTF, ExTD and ExTI.
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METHODS
Model and experimental setups
The revised version of the atmospheric general circulation model
by the Meteorological Research Institute (MRI-AGCM3.235) from its
predecessor, MRI-AGCM3.140, is used in the present diagnostic
study for analyzing ExT and land-atmosphere interactions over
India. Here, we use the ~60 km resolution version of the MRI-
AGCM3.2, having 64 vertical levels and 3 active soil layers. The
land component of MRI-AGCM3.2 is the Simple Biosphere model
(SiB)41. The model uses observed monthly sea-surface tempera-
ture and sea ice concentration from Centennial Observation-based
estimation (COBE-SST2)42. Whereas, climatological monthly sea ice
thickness is prescribed lower boundary conditions43. In addition,
the external forcing is configured with observed values of global
mean concentration of greenhouse gases, MRI Chemistry climate
model (MRI-CCM44) output for three-dimensional distribution of
ozone, and MRI Coupled Atmosphere-Ocean General Circulation
Model (MRI-CGCM345) output. A brief description of the MRI-
AGCM3.2 model is given in the Supplementary material.
In the present study, we have evaluated six long-term

simulations from high-resolution version of the MRI-AGCM3.235

(listed in Supplementary Table 1): (1) historical run (HIST:
1951–2010), (2) historical-20%SM (HIST-20: 1951–2010), (3) histor-
ical+20%SM (HIST+ 20: 1951–2100), (4) future 4 K projection
(FUT: 2051–2100), (5) future-20%SM (FUT-20: 2051–2100), and (6)
future+20%SM (FUT+ 20: 2051–2100). The experimental setup of
the HIST and FUT simulations is same as those of d4PDF5. The HIST
experiment use both natural (e.g. volcanoes and solar variability)

and anthropogenic forcing (e.g. greenhouse gases (GHG), aerosols
etc.), whereas in FUT experiment the global mean temperature
becomes 4 K warmer than the pre-industrial climate. The global
increase in temperature for the future 4 K simulations corresponds
to that around the end of the 21st century under Representative
Concentration Pathway 8.5 scenario of CMIP535.
In addition to the HIST and FUT simulations, we have performed

the wet and dry SM sensitivity experiments (HIST-20, HIST+ 20,
FUT-20 and FUT+ 20) for each of two long-term simulations (HIST
and FUT) to evaluate the role of SM on ExT over the Indian region.
The simulations are initialized on the 1st day of each month by
perturbing SM from the top three layers (upto 1–2m depth,
depending on the vegetation types41) with corresponding fields
from the HIST and FUT simulations. The dry SM simulations are
initialized by decreasing the SM by 20%, whereas, in the wet SM
experiment, SM is increased by 20%. After introducing the initial
SM perturbation, the model is subsequently integrated for one
month at a time so as to generate simulations of atmospheric and
land surface variables (including SM) on a month-by-month basis.
The dry and wet SM sensitivity experiments were initialized with
the same initial lateral boundary conditions as that of HIST and
FUT simulations except for the above-mentioned SM perturbation.
The control experiments (HIST and FUT) for MRI-AGCM3.2 are
available for download from d4PDF database (http://
search.diasjp.net/en/dataset/d4PDF_GCM). However, sensitivity
experiments have been conducted specifically for this study and
can be made available on request (to IITM and MRI). The impact of
SM on ExT is quantified by analyzing the wet and dry SM
experiments. Indeed, the impact of SM on ExT in wet and dry SM
simulations is mainly modulated by altering the water as well as
the energy cycle. The comparison results of SM perturbations with
the control simulations are indicating a favourable condition for
PR during the wet SM experiments as a consequence of an
increase in cloud cover and ET, in opposite to the dry SM
experiment (Supplementary Figs. 1 and 2). Furthermore, a detailed
mechanism of land-atmosphere coupling processes during all the
experiments is discussed in Results section.

Other data products
With a focus on understanding ExT and land-atmosphere
interaction processes, we have evaluated the model simulations
using observational and data assimilated products over the Indian
region. Observational data include mean temperature, maximum
temperature and precipitation data prepared by the India
Meteorological Department (https://www.imdpune.gov.in/
Clim_Pred_LRF_New/Grided_Data_Download.html)46,47. Two data
assimilated products are also used in the present study: (1) Global
Land Data Assimilation System (GLDAS), and (2) Land Data
Assimilation System (LDAS), to evaluate the model outputs. The
GLDAS data is used here to examine ET, and surface energy fluxes
(SHF and LHF) over the Indian region48. Previous research has
shown that GLDAS outputs are in good agreement with
observations over the Indian region13,28,49. Furthermore, the high
resolution (~4 km) data generated by using LDAS (version 3.4.1) is
explored here to validate and remove the bias in the SM over the
Indian region50. More details of the LDAS high-resolution SM data
product can be found in Nayak et al.50.

Soil moisture-temperature (SM-T) coupling
Determining the SM-T coupling is an important factor for
assessing the impact of SM on ExT31. Based on the model
experiments and analytical techniques, several methods have
been proposed earlier to evaluate the coupling strength between
SM and surface temperature27,51,52. In the present study,
quantification of surface temperature sensitivity to the SM change
(SM-T coupling strength) has been carried out using the method
suggested by Dirmeyer38. Here, we have used a similar method for

Fig. 8 Generalized extreme value (GEV) distribution. Return level
plot of ExTI for control run (black line), dry SM perturbation
experiments (red line) and wet SM perturbation experiments (blue
line) over the NCI estimated using the non-stationary GEV model fit
for (a) historical period (1951–2010) and (b) future projection
(2051–2100). The area between the upper and lower confidence
interval of return levels for control, dry SM and wet SM experiments
are filled with light grey, light red and light pink colours,
respectively.
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surface temperature sensitivity instead of using the surface energy
fluxes. The method described by Dirmeyer38 overcomes the
shortcomings in correlation method by considering the variance
of SM at each grid point. SM-T coupling metric used in this study is
given in Eq. 1. In this method, we first estimate the linear
regression slope (Rc) of temperature anomaly on the SM anomaly.
Furthermore, the coupling metric is determined by multiplying
the negative value of SM standard deviation (σSM) to regression
slope (Rc).

Coupling strength Ωð Þ ¼ �Rc � σSM (1)

Whereas, Rc denotes the slope of linear regression of temperature
anomaly on SM anomaly and σSM indicates the standard deviation
of SM at each grid point.

Extreme temperature indices
ExT conditions can be detected using various criteria depending
upon the different climate zones53. The most common definitions
of ExT mainly depend on the daily maximum temperature values.
The present study uses three different indices based on the daily
Tmax from the MRI-AGCM3.2 model for evaluating ExT character-
istics over India. The indices used here are similar to the standard
ExT indices as referred in ETCCDI54. Moreover, considering severity
of ExT beyond the pre-monsoon season, the present study
evaluates ExT characteristics on an annual scale13. For the
historical period, extreme temperature event is defined if the
daily Tmax value at each grid point is greater than 90th percentile

Tmax of the corresponding day and persists at least for three
consecutive days. For the FUT experiment, we use the same
definition for detecting ExT as discussed above, with 90th

percentile threshold from the HIST experiment. Furthermore, total
number of extreme temperature events per year is defined as
extreme temperature frequency (ExTF) index, and the total
number of days in each event is counted as extreme temperature
duration (ExTD) index. The third index, i.e. extreme temperature
intensity (ExTI), is the measure of maximum Tmax for each year at
each grid point.

Generalized extreme value (GEV) distribution
A quantitative description of the impact of SM on ExT is given here
based on the statistical approach of GEV theory29. Block maxima
perspective is used here to fit GEV to the model simulated yearly
maximum temperature (ExTI) at each grid point, with and without
considering SM as a covariate. The GEV fit performed in this study
is obtained from the extReme software package of
R-programming55,56. The GEV analysis is carried out in two
important steps. The first step consists of stationary GEV fit for
block maxima of each year without covariate (Eq. 2), whereas the
second step consists of a non-stationary GEV model fit to ExTI with
inclusion of SM as a covariate (Eq. 3). The GEV analysis is
dependent upon three important parameters: (1) scale parameter
(σ), (2) location parameter (μ), and (3) shape parameter (ξ). Scale
parameter (σ) explains the variability in the dataset, mean of the
fitted distribution is represented in terms of location parameter (μ)

Fig. 9 Probability density function with first four moments of dispersion. Probability density function of Tmax over the NCI for control (black
line), dry SM (red line) and wet SM (blue line) experiments during the (a) historical period (1951–2010) and (b) future projection (2051–2100).
The vertical dotted line in each PDF indicates corresponding mean value. The values of the first four moments of dispersion
(M mean, STD standard deviation, SK skewness, KT kurtosis) are given at the top left corners in Figure.
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and the shape of the fitted distribution is shape parameter (ξ) (i. e.
Gumbel:ξ= 0, Frechet:ξ > 0, Weibull:ξ < 0). The GEV analysis is
carried out on the area-averaged value of ExTI and SM over the

hotspot of strong land-atmosphere coupling (NCI).

G xð Þ ¼ exp � 1þ ξ x � μð Þ
σ

� �� �
(2)

μ yð Þ ¼ A0 þ A1y (3)

where y is the standardized annual mean SM and fitting constants
for location parameters are denoted as A0 and A1.
The negative value of the estimated shape parameter for the HIST,

HIST-20, HIST+ 20, FUT, FUT-20 and FUT+ 20 experiments indicates
that ExTI follows the Weibull distribution (Supplementary Tables 2 &
4). The significance for perfect stationary and non-stationary GEV fit
using the likelihood-ratio-test (LRT) shows a good fit for ExTI
distribution, and the inclusion of SM as covariate improves the
model fit (Supplementary Tables 2, 3, 4 & 5). In the GEV analysis,
impact of SM on extremes is demonstrated by analyzing the
differences between 50-year return levels of ExTI from dry and wet
SM sensitivity experiments for the historical and the future climate.

Soil moisture memory (SMM)
The property of the soil to remember wet or dry anomalies caused
by atmospheric forcing is generally termed as SMM22,25. The
present study measures the SMM in terms of time-scale lag at
which the autocorrelation drops to 1/e (e-folding time-scale) of its
value13. The method of e-folding time-scale is based on the 30-day
lag autocorrelation values of SM anomalies considering the
exponential decay of the SM autocorrelation function (Eq. 4).

r τð Þ ¼ e�τ=λ (4)

where r (τ) is the autocorrelation function, τ is the lag and λ is
called the decay time-scale. SMM analysis is also extended to the
wet SM and dry SM experiments to explore the impact of SMM
on ExT.
In this study, statistical significance of difference between two

different experiments is analyzed through the t-test57. In addition
to this, we have also estimated the trend and the Pearson
correlation coefficient57,58.

DATA AVAILABILITY
The control experiments (i.e. HIST and FUT simulations) from MRI-AGCM3.2 are free to
download from d4PDF database http://search.diasjp.net/en/dataset/d4PDF_GCM and
http://search.diasjp.net/en/dataset/d4PDF_RCM. Outputs of SM sensitivity experi-
ments can be made available on request (to MRI and IITM) for research purposes.
Temperature (minimum and maximum) and rainfall gridded data is available at IMD
database https://imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html.
Other datasets such as GLDAS is freely available to download from http://
disc.gsfc.nasa.gov/hydrology, whereas, LDAS can be obtained from IMD with
appropriate permissions.

CODE AVAILABILITY
Model runs and codes to produce the figures are available from the corresponding
author with proper request.
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Fig. 10 Response of land-atmosphere interactions to SM pertur-
bations. Time-mean spatial maps of difference between SM (1st row),
Tmax (2

nd row), SHF (3rd row), LHF (4th row), ET (5th row) and SMM (6th

row) from the HIST-20 and HIST experiments (1st column) as well as
the HIST+ 20 and HIST (2nd column) experiments. Stippling in Figures
indicate the regions where difference between the HIST-20/HIST+ 20
and HIST experiments is significant at 95% confidence level.
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