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Soil moisture-constrained East Asian Monsoon meridional
patterns over China from observations
Waheed Ullah 1, Chenxia Zhu1, Guojie Wang 1✉, Daniel Fiifi Tawia Hagan1, Dan Lou1, Jiangfeng Wei2, Aisha Karim1, Shijie Li1,
Buda Su1 and Tong Jiang1

As an internal forcing of the earth climate system, soil moisture (SM) significantly influences the water and energy cycle by
controlling evapotranspiration and terrestrial solar energy. The current study used observed precipitation, remotely sensed SM, and
reanalysis of atmosphere and land parameters to assess the East Asian Monsoon (EAM) precipitation variability due to meridional
SM oscillations across China. A generalized linear method, namely coupled manifold technique (CMT) for assessing the reciprocal
forcing between two climate fields and numerical simulations are applied to SM and EAM precipitation. We find that the EAM
precipitation interannual variability between north and south China significantly correlates with SM meridional oscillation. The CMT
results further showed that SM forcing has a significant (99% confidence) influence on the EAM precipitation explaining about 0.40
of the variance ratio in north and south China. The EAM and SM composite analysis show that the wetter (drier) north (south)
oscillates the EAM precipitation over the north (south) of China and vice versa due to SM thermal controls. We then used control
and sensitivity simulations with SM observations to further validate the findings implying that SM can potentially improve the
interannual EAM forecast skills. The model results show that a wetter (drier) north (south) results in negative (positive) sensible heat
(latent heat) anomalies that impact the boundary layer and propagate to change the meridional atmospheric heating profile. When
positive (negative) SM anomalies exist over northern (southern) China, the zonal easterlies and extratropical westerlies move to
north China causing above-normal precipitation that descends into southern China, suppressing subtropical westerlies and
precipitation in southern China. On the contrary, a dry (wet) north (south) favors intensified subtropical westerlies and precipitation
in southern China. The findings have dire implications for the water and energy cycle of the region in the projected wetting and
drying patterns of the north (south).
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INTRODUCTION
The complex structure of the East Asian Monsoon (EAM) precipitation
extremes poses direct threats to China’s regional economy and Gross
Domestic Product (GDP). The EAM complexity lies within its drivers,
which consist of internal feedback between different components of
the earth’s climate system, including land1–3, atmosphere4,5, Ocean6,
and cryosphere7,8. The interannual variability of the EAM could be
understood as a direct space-time precipitation variation between
(within) the northern and southern major river basins of China forced
by these factors. The anomalous modes of these driving factors
influence the precipitation extremes that produce floods, droughts,
and heatwaves with profound socioeconomic impacts9. The severity,
frequency, and intensity of floods and droughts may amplify the
regional losses to $60 billion in capital and many folds attributed to
drought under 1.5 and 2 °C warmings6,10,11. The historical EAM
precipitation-induced flooding during 1984–2018 cost $19.2 billion,
accounting for 0.5% of the national GDP and 54% of total weather-
related losses, with an exponential increase from 2006-onward,
accounting for $25.3 billion10. In >1.5 °C warming of the climate, the
EAM may intensify primarily due to enhanced land-sea thermal
contrast favoring increased continental precipitation12,13. The pro-
jected increase in the mean and frequency of the precipitation
extremes makes the EAM domain one of the extreme flood-prone
regions later in the twenty-first century10,14.

The coherent monsoon variability and its quantitative
response to the earth system’s internal and external feedback
have been an ongoing research topic in recent decades15,16. The
global monsoon system functions as a three-dimensional
planetary-scale circulation primarily driven by solar insolation
as an external forcing oscillating precipitation band across
hemispheres17. The internal forcing and feedback within the
earth spheres further drive the monsoon’s spatial distribution
and shape, including the ocean’s coupled processes, overlying
atmosphere, and land-sea distribution18,19. These forcing alto-
gether result in coupled processes and modes influencing
monsoon characteristics from synoptic to mesoscale, including
the onset, advance, and retreat20,21. Past efforts have highlighted
multiple dimensions of EAM, including its onset22, meridional
oscillations23,24, and regional flooding/droughts6 due to interac-
tions (modes) of the land-atmosphere and ocean nexus
(processes). The EAM characteristics described above are shaped
by these coupled modes within the earth system, benefiting the
forecast and prediction skills. Zhou et al. (2021) reported the
mediating role of SST in offsetting the spring SM influence of
summer EAM precipitation with decreased precipitation under
positive SST background and vice versa for negative SST, further
reducing the spatial spread of precipitation anomalies1. Lv et al.
(2019) reported an increase in the maximum daily precipitation
during the Eastern Pacific El Niño and Central Pacific El Niño
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decaying years and La Niña developing years25. The under-
standing of the oceanic forcing mechanism impact on the EAM
for flood hazard assessment is still limited and subject to
uncertainties6,9. These skills could be further improved consider-
ing the impacts of SM space-time variability as an additional
slowly evolving/decaying mode of earth’s climate system
affecting the water and energy cycle even in the absence of
the oceanic forcing2,26.
The intrinsic memory of SM over days to weeks and months27

can be an added skill if considered in the forecast and
predictability with probabilistic outcomes of its relationship with
the climate field2,28–30. In regions where oceanic modes are the
precursors of climate variability, SM variability exhibits positive
feedback loops influencing energy and water cycle. In the absence
of such oceanic modes;31,32 SM becomes the second essential
climate variable after SST30,33,34. Through physical processes, a
dry(wet) SM impacts the immediate surface warming(cooling)
through sensible (latent) heat fluxes27,29,30, impacting the diabatic
heating and divergent circulations28,29. Studies have further
suggested that SM anomalies may trigger certain circulation
patterns (stationary and quasi-resonant waves) with geographi-
cally varied impacts, including heatwaves35,36 due to SM-
temperature coupling adding more SH to the boundary layer
amplifying the heatwave intensity and duration. Through interac-
tion with the overlying atmospheric circulation, SM anomalies can
drive the Rossby wave train influencing the remote climate field
and inducing floods37–39.
Over the EAM domain, Shi et al. (2021) reported significant

sensitivity of the atmospheric circulations and precipitation to SM
in a weakly coupled model posing a dipole with wetter north and
drier south2. Gao et al. (2019), from a suite of model simulations
and observations, showed that the spring SM interacts with EAM
precipitation involving SM coupling with atmospheric circula-
tions23. Dong et al. (2022) found a negative relationship between
July SM and August precipitation over EAM, highlighting SM
controls over atmospheric condensation and heating40. Bao et al.
(2010) showed that the inclusion of remotely sensed SM in an
atmospheric model could improve the monsoon onset mainly due
to its ability of a realistic representation of land-ocean thermal
contrast41. Meng et al. (2018) showed significant control of SM
over precipitation over the Tibetan Plateau and concluded that a
wetting trend of the plateau would increase precipitation42. Wei
et al. (2019; 2012) showed that the northern EAM precipitation is
sensitive to local ET due to strong land-atmosphere interac-
tions43,44. These studies show that SM, after SST, is a key
component in the EAM precipitation variability due to its
constraints on evapotranspiration, surface energy fluxes, and
diabatic heating maintains a land-ocean thermal gradient that
affects the EAM precipitation. However, the role of SM is generally
described as a probabilistic, process-oriented indicator lacking
quantification and the physical mechanism of its regional space-
time variability and its control over the local and remote climate.
The availability and application of observations are rather limited
and commonly replaced by reanalysis data34,45. The quality and
inconsistent model structure are other constraints that often
undermine the land surface and energy balance approximation
when coupled with the atmosphere7,34,46,47. The key question for
further understanding thus is: how can SM meridional oscillation
between the north and south China key climate regions40,48 be
used to predict the interannual EAM precipitation variability.
Conversely, what is the variance ratio of the EAM precipitation
sensitive to the meridional SM oscillation, and what are the
underlying mechanisms connecting SM anomalies with large-
scale circulation and moisture flux source changes? To answer
these questions, in this study, we first derived the relationship
between SM meridional variability and its effect on the EAM
precipitation oscillation between the north and south China river
basins. Then a potential mechanism from the effect of SM

anomalies on the surface energy fluxes, diabatic heating, and
circulations is investigated as a consequence of SM meridional
oscillation affecting the EAM precipitation. Our approach is based
on a robust generalized linear statistical tool32,49 that quantifies
the JJA precipitation spatiotemporal variability due to SM. We
then used a coupled regional climate model with a physically
based configuration constrained with the same observed SM to
preserve and replicate its effect on the water and energy cycle.
Such an approach identifies the possible mechanisms that drive
the EAM precipitation sensitivity to JJA SM meridional oscillation.

Study area description
The geographical distribution of the Asian monsoon domain over
East Asia (China) can be classified into three sub-systems: the
WNP-monsoon in southeast China, EAM in north China, and the
South Asian monsoon in southwest China. The EAM domain
(Supplementary Fig. 2a, b) hydrometeorological cycle is primarily
due to maximum precipitation from June to August, termed the
monsoon season (Supplementary Fig. 1c). The EAM precipitation
band oscillations across China indicate a wet north and south dry
and vice versa reflected in the diverse climate classes (Supple-
mentary Fig. 1)50. The interannual variability of the EAM onset and
precipitation variability is subjected to changes in multiple
atmospheric, oceanic, and land surface processes extensively
studied in previous studies3,17,51–53. The broad-scale EAM onset
includes a regional connection of the tropical and subtropical
westerlies into the South China Sea (SCS) to the north of the
subtropical high, replacing the Western pacific subtropical ridge54.
During this process, the westerlies establishment over SCS initiates
monsoon onset followed by the Mei-Yu/Baiu rainband initiation
results in EAM regional monsoon onset from late April to early
May21,54. Global warming is expected to enhance the land-ocean
thermal contrast intensifying the earlier Asian monsoon onset and
changes in the sub-seasonal and spatial precipitation pattern that
need in-depth exploration10,11,55,56.

RESULTS
Soil moisture relationship with precipitation from
observations
The empirical orthogonal function (EOF) analysis of EAM
precipitation shows a meridional oscillation of precipitation,
characterizing 48% of the total variance (Fig. 1a, b). The meridional
precipitation band oscillation results from the complex interplay of
oceanic and land surface processes6,17,57 developed from their
modes of behaviors resulting from their memory shaped by
anomalous energy fluxes. The leading EOF mode eigenvectors and
principal component (PC1) show spatiotemporal precipitation
variability across East China’s south and northern river basins
(Supplementary Fig. 1).
There is a lack of consensus on the definitive physical process’s

relative role in shaping and maintaining the precipitation
meridional dipole pattern concerning the ocean and SM as
mediators of land surface processes. Here we attempted to use SM
as an additional factor for assessing the meridional EAM
precipitation variability changes. We used the Pearson correlation
technique to correlate the PC1 (Fig. 1b) with the SM interannual
variability during the monsoon season. The results (Fig. 1c) show a
significant (95% confidence) correlation between the PC1 and SM
over the EAM domain. The correlation strength exhibited a similar
meridional dipole with precipitation EOF showing negative
coefficients (<−0.60) in the north, including the northern Yangtze
River basin, the Yellow River basin, the Haihe River, and northeast
China. The regions in south China, including the southern Yangtze
River basin, Pearl River basin, and adjacent southern regions, show
positive correlation coefficients between the PC1 and SM (>0.65).
The space and time variability of EOF and correlation coefficients
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infer that the EAM precipitation meridional oscillation is strongly
linked to SM anomalies. The results imply that relatively higher SM
in the northern transitional parts of China will result in relatively
higher precipitation in the northern Yangtze River basin, Haihe
and Huaihe River basins, and vice versa in southern China. The
influence of SM on the EAM meridional precipitation oscillation is
further quantified using a robust Coupled Manifold Technique
(CMT) that separates the variance ratio of precipitation connected
to SM32,49. Figure 2 shows the fraction of EAM JJA precipitation
(Fig. 2a) that is forced by JJA SM interannual variability, leading
mode of the forced precipitation (Fig. 2b), and standardized PC1
of the forced precipitation leading mode and SMI (Fig. 2c). To
ensure that the SM forced precipitation is not by chance, we
performed an additional significance test using Monter Carlo
simulations of 1000 repetitions with a significance of 1% for the
shaded regions.
The results (Fig. 2a) show that SM interannual variability forces a

significant (99% confidence bound) fraction of EAM JJA precipita-
tion. The variance ratio is relatively higher in northern China,
including the Huaihe, Haihe River basin (0.38), southern Yangtze
River basin (0.37), and Tibetan plateau (0.32). The EOF (Fig. 2b) of
the forced precipitation leading mode shows 63% of the total
variance attributed to SM variability with an obvious dipole
pattern. The SM forcing is relatively higher in those EAM regions
where the EOF inferred a strong spatiotemporal variability (Fig. 1),
implying that SM is an evident component forcing the EAM
precipitation interannual variability between the north and

southern China river basin2. To isolate the SM control, we
calculated a soil moisture index (SMI) using the northern regional
area-averaged (35°−44°N, 99°−120°E) SM and subtracted the
southern region (22°−31°N, 99°−120°E) area-averaged SM from it.
Positive (negative) SMI implies wetter (drier) conditions over the
north and vice versa for the south. The PC1 and SMI (Fig. 2c) show
phase-opposite dynamics with a significant negative correlation
(−0.62) inferred from interannual variability. This implies that a
positive SMI would drive the EAM precipitation band to the
northern river basins and vice versa for the negative SMI evident
from the PC1 and eigenvectors of the forced precipitation. An
evident anomalous PC1 and SMI interannual variability further
support that the strength of the SMI directly correlates with the
EAM meridional intensity during the study period, which agrees
with (Liu et al. 2017)58 stating that spring precipitation-induced
summer SM memory can affect the strength of EAM.
Altogether, the eigenvectors spatial pattern, PC1, and SMI

suggest an intrinsic relationship between SM and precipitation
during the study period. Spatially, the SM magnitude in time has
shown changes followed by precipitation band oscillations and
variability between north and south China. We based the SM
coupling with EAM precipitation on a composite analysis to link
SM variability and its impact on the boundary layer processes
and atmospheric circulations. For this purpose, six years with
positive standard deviations (1988, 1990, 1996, 2003, 2004, and
2011) and seven years with negative standard deviations (1982,
1997, 1999, 2001, 2002, 2015, and 2017) of the SM forced
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The dotted regions have passed the significance test with a 95% confidence bound.

W. Ullah et al.

3

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2023)     4 



precipitation PC1, and SMI (Fig. 2c) is selected. These composites
are selected where their standardized values exceed ±1,
providing the confidence to explain the associated surface and
atmospheric circulation anomalies.
Figure 3 shows the composite anomalies of the SM and

precipitation during the positive (SMIwet hereon) and negative
(SMIdry hereon) composite years. During the SMIwet composite
(Fig. 3a), significant positive SM anomalies (0.02 m3 m−3) are
evident north of the Yangtze River basin, stretching to the Yellow
and Huaihe River basins. At the same time, the southern Yangtze
River basin to the Pearl River basin show negative SM anomalies
(−0.03 m3 m−3). During the SMIdry composite (Fig. 3b), the
SM dipole has spatially reversed with negative anomalies
(−0.02 m3 m−3) in the northern River basins and Yangtze River
basin. The southern Yangtze River and Pearl River basins have also
exhibited positive SM anomalies (0.03 m3 m−3). The precipitation
anomalies during the SMIwet composite (Fig. 3c) have exhibited
positive anomalies (40 mm) in the northern Yangtze River basin,
Yellow River basin, and Huaihe River basin. The southern Yangtze
River basin and the rest of southern China show negative
precipitation anomalies (−40mm). During the SMIdry composite
(Fig. 3d), significant precipitation anomalies are evident in a

relatively larger spatial domain with negative anomalies (−45mm)
in the north and positive anomalies in the south (50 mm).
Positive(negative) SM anomalies in the north(south) result in

more(less) precipitation in the northern(southern) River basins
of China and vice versa. The spatial patterns of the SM and
precipitation anomalies geographically have significant differences
where SM anomalies are located farther north than corresponding
precipitation anomalies. The strength of the SM anomalies is rather
stronger in the dry-arid northern regions and wet-to-humid
southern regions; the precipitation anomalies in response oscillate
between the northern transitional and southern humid zone. The
SM meridional anomalous pattern impacts the surface energy
fluxes with SH(LH) negative(positive) anomalies (Supplementary
Fig. 4), impacting the boundary layer thickness (Supplementary
Fig. 5a) and vertical diabatic heating through condensation from
the latent heating (Supplementary Fig. 5b). Such SM-thermal
controls intensify the nature of the land-atmosphere interactions
more vigorously in the monsoon regions2, substantially controlling
the tropical to extratropical Pacific zonal easterlies and midlatitude
westerlies circulations anomalies, modifying the moisture trans-
port that can meridionally oscillate the precipitation (Supplemen-
tary Fig. 5c, d). SM mediation in land-atmosphere coupling is
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portrayed to perturb the atmospheric circulations through its
thermodynamic propagation of surface energy fluxes that partly
contribute to 65% of the global continental precipitation
recycling2,59. Over the EAM domain, efforts have been made to
assess the land-atmosphere coupling as a function of SM
sensitivity using observations and regional climate and forecast
model experiments2,40,60. Here we conducted a control and
sensitivity experiment with observed soil moisture from remotely
sensed sources to identify the potential mechanisms leading to
the relationship between SM and EAM precipitation meridional
oscillations above.

Observations constrained model simulations
Figure 4 shows the daily SM standard deviation differences
between (Fig. 4a) SMECV and SMCLIM for 2000–2018. Geographi-
cally, the standard deviation between the two simulations is larger
(>75 kgm−2) in northern and southern China. Higher standard

deviations in the SMECV run indicate regions where we expect
stronger SM sensitivity and control over the coupled land-
atmosphere processes. Figure 4a shows that the impact of SM
over EAM is dominant over East China, where the observations
also show significant dry and wet precipitation meridional
patterns. From a climate perspective, the dry, arid, and transitional
regions in the north and northern Yangtze River basin and
southern China (Supplementary Fig. 1) differ in daily soil moisture
variation. The results indicate that the SM initializations scheme
used here can characterize both the model seasonal and
interannual variations with distinctly larger variability (sensitivity)
in SMECV. The SM (both SMECV and SMCLIM) simulations over a small
region from the Yangtze River basin show an obvious difference at
seasonal and interannual scale for total (Fig. 4b, d) and surface
(Fig. 4c) SM. The SM climatologies (Fig. 4c, d) are consistent, but
the strength of variability between SMECV and SMCLIM is used to
assess their difference in interacting with the atmosphere61. The
model surface and atmospheric variables (Supplementary Fig. 5)
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Fig. 3 The SM and precipitation composite anomalies. The a, b SM (unit: (m3 m−3)*102) and c, d precipitation (unit: mm) anomalies for the
a, c SMIwet and b, d SMIdry composite. The stippling indicates significant (95% confidence) composite differences from the mean interannual
field during 1981–2018.
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difference between the SMECV and SMCLM results in drier
conditions over Northeast China and wetter conditions over
South-east China, implying underestimations over the Northeast
China and overestimations over the Yangtze River basin and
southeastern China. Such biases are previously reported over the
study region due to the model and boundary layer uncertainties,
including the topographic effects7,40.
Figure 5 shows SMIwet (2003, 2004, 2011) and SMIdry (2001,

2002, 2015, 2017) composite difference of SMECV and SMCLIM

based on model simulation during 2000 to 2018. The difference
between the two simulations is calculated by subtracting the
mean precipitation of SMCLIM from SMECV. The SH differences for
SMIwet (Fig. 5a) show a decreased sensible heat (SH) (−10W m−2)
in the northern parts of China, followed by an increase (12Wm−2)
in the south. The latent heat (LH) (Fig. 5c) magnitude during
SMIwet is higher (12 Wm−2) in the north and vice versa in the
south. The SH is weaker in northern China during the SMIdry
composite (Fig. 5b), and moderate negative values (−6W m−2) are
obvious in southern China. The LH (Fig. 5d) during SMIdry shows a
moderate increase in the north, and its mean magnitude in the
south has shown an obvious increase. The SMI composite
difference of the north and south fluctuated the near-surface
energy balance, with an above-normal SM profile and positive LH
due to changes in SM. From the meridional oscillation of the SMI
between the north and southern parts of China, the typical land-
atmosphere hot-spots regions may also shift towards the north,
driven by SM in the transition and arid dry north.

During the SMIwet composite (Fig. 5e), relatively higher
precipitation in northern China (110 mm) and decreased pre-
cipitation in southern China (−80mm) is evident. During the
SMIdry composite (Fig. 5f), the precipitation differences between
north and southern China have shown a shift contrary to the
SMIwet composite. Regional biases in the spatial pattern are
evident due to the model uncertainties, topography, and regional
sensitivity to oceanic forcing in the south1,7. The precipitation
difference between SMECV and SMCLIM validates the diagnostic
results in Fig. 3, inferring that the SM meridional dipole impacts
the precipitation oscillation between north and south China. The
associated mechanism from the large-scale circulations is further
shown to imply the role of SM in modifying the atmospheric
circulation pattern and precipitation magnitude. During the SMIwet
composite (Fig. 5g), the difference between wind components
(vectors) and vertical velocity (shaded) shows intensified wester-
lies merging into the cyclonic pattern over the east coast of China.
The moderate extra tropical westerlies and midlatitudes north
westerlies are ascending towards northern China, resulting in
above-normal precipitation as shown in the diagnostics. The
Pacific zonal easterlies from the subtropical region descend into
southern China with a stratified atmosphere suppressing the
precipitation. During the SMIdry composite (Fig. 5h), the cyclone
pattern during SMIwet has moved towards the southeast, with its
leading ridge descending into northern China, suppressing the
precipitation. The moderate subtropical westerlies are now
evident in the Bay of Bengal, moving towards the Yangtze River
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basin and south China. The descending ridge of the cyclone from
the north and the subtropical westerlies resulted in enhanced
precipitation over southern China and suppressed precipitation in
northern China.

DISCUSSION
The East Asian monsoon (EAM) precipitation space-time changes
are partly driven by the feedback and teleconnections of the
atmosphere with the ocean and land. Studies have investigated
that the SM local and remote control23,40, and the ocean-induced
tropospheric circulations, synoptic evolution, and teleconnec-
tion6,17,24 are the major drivers of the EAM precipitation space-
time variability. Our statistical assessment and model simulations
show that SM meridional oscillations affect the EAM precipitation
band oscillation over China. Conversely, positive (negative) SM
anomalies over northern (southern) China river basins (Supple-
mentary Fig. 1) are related to more (less) precipitation in the
north(south) of China. The composite analysis shows that SM
meridional variability impacts the near-surface energy fluxes and
PBL dynamics (Supplementary Figs. 4, 5), intensifying the nature of
the land-atmosphere interactions more vigorously in the monsoon
regions2 and affecting the vertical thermal column of the
atmosphere28,29. The results imply that positive SM anomalies in
northern river basins would impact atmospheric diabatic
heating through the latent heating of condensation. Due to the

energy-limited regime of the southern river basins, atmospheric
diabatic heating may have less sensitivity to the SM anomalies, as
explored globally28,29,62. The SM-thermal controls during SMIwet
intensify the extratropical Pacific easterlies and midlatitude
westerlies over northern river basins as the primary moisture flux
source (Supplementary Fig. 5); BOB is the primary moisture source
of precipitation over southern China during the SMIdry composite.
The numerical simulation further validated the proposed mechan-
ism implying that the meridional SM pattern impacts the
precipitation band accordingly, with a wetter north resulting in
more EAM precipitation than the south and vice versa. When SM
anomalies are stronger in the dry northern and wet to humid
southern parts, the precipitation anomalies have shown wide-
spread meridional oscillation between the northern transitional
and southern humid zones2,63–65. Our findings are consistent with
Shi et al. (2021), that SM potentially influences the EAM
precipitation2, and Dong et al. (2022), who further reported that
a negative SM anomaly in southern China results in positive
precipitation anomalies in Huang–Huai–River basin involving the
remote SM effect40. Another study by Liu et al. (2017) proposed
that more (less) spring precipitation over eastern (southern) China
results in more(less) summer precipitation over north(south) China
due to SM memory that can affect the strength of the EAM58.
Similar attempts have further shown that EAM precipitation is
dominantly controlled by SM at multiple timescales, surpassing
the strength of oceanic forcing1 and that the SM variability
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influences the EAM strength63. Our study further concludes that
the SM meridional oscillation can drive the EAM precipitation
band across the major river basins of eastern China due to
changes in circulation patterns and associated moisture flux
sources affecting the strength of EAM. The SM thermal controls
modulate the boundary layer processes affecting the circulation
patterns in the tropical Pacific, BOB, and mid-latitudes. The
findings have practical implications for skillful interannual predic-
tions of EAM precipitation for drought and floodings in the
northern and southern major river basins under climate change.
Similarly, north and southern China’s historical drying and
projected wetting would have contrasting consequences for the
regional-scale hydrological cycle, cropping pattern, land use,
flood, and drought11,66–68. The drying of the northern river
basins69 would suffer from drought and temperature extremes
due to SM-Temperature coupling;70,71 the SM meridional
oscillation-induced flood risk could increase in the wetter south
due to enhanced moisture flux transport as identified by Xia et al.
(2022)72. The limiting factors of the current study could range from
boundary layer and topography-induced biases, and numerical
model-induced uncertainties. The complex relationship between
the SM meridional oscillation and its effect on EAM needs to be
studied jointly with the oceanic forcing to counter floods,
droughts, and extreme climate hazards6,73.

METHODS
Datasets
The datasets used in this study include soil moisture from the
European Space Agency-Essential Climate Variable (ESA-ECV SM),
precipitation data from the China Meteorological Administration
(CMA), and European Medium-Range Weather Forecasts (ECMWF)
ReAnalysis 5th generation ERA5 reanalysis. The study’s time scale
is from 1981 to 2018 based on precipitation and SM data
availability, whereas the numerical simulation is from 2000 to 2018
when ESA-ECV SM benefits from maximum satellite retrieval
inputs74. The CMA precipitation is produced from 2474 meteor-
ological stations across China, with maximum station density in
eastern China75,76. The data is produced using a thin-plate spline
technique involving the elevation-based uncertainty adjustment
using the Global 30-Arc Second Digital Elevation Model (GTOPO30
DEM). The dataset is gridded at 0.5° × 0.5° resolution and has been
widely used in multiple studies to assess changes and variability in
water cycles and other meteorological fields75. The ESA-ECV SM
data developed under their Climate Change Initiative is developed
using the dual-channel VU University Amsterdam-National Aero-
nautics and Space Administration (VU-NASA) Land Parameter
Retrieval Model (LPRM) that converts the brightness temperature
of multiple sensors into surface SM77. The current study used
volumetric soil moisture contents (m3 m−3) at a resampled spatial
resolution of 50 km for June, July, and August during 1981–2018,
which was interpolated using a three-dimensional gap-filling
approach78. The ERA5 from ECMWF is used for the surface and
atmospheric variables79. ERA5 provides hourly estimates of the
land surface and atmospheric variables at a relatively higher
horizontal resolution of 31 km and 137 vertical levels. The
improvements and advances in ERA5 include improved tropo-
spheric circulations, observations from newer satellites, and
more80. The ERA5 SM was used as a reference to rescale the
ECV SM based on CDF matching because of the reported good
skill of ERA5 in capturing SM dynamics81 and confining it within
the water and energy balances of the later model simulation.

Coupled Manifold Technique
The Couple Manifold Technique (CMT)49 explains the connected
variability between two climatic fields, considering their spatial
and temporal variability. It decomposes a climate field into two

portions of variability; the first portion denotes the variability
forced in a statistical sense by the other field, and the second is
free from the other field. Assuming two climate fields, Z and S,
each field can be decomposed into two separate sub-fields
(Eqs. 1, 2) called free and forced manifolds, respectively. In Eqs. 3
and 4, A and B express the linear relationship between the Z and S
fields. A expresses the effect of S on Z, and B expresses the effect
of Z on S. The subscripts ‘free’ and ‘for’ denote the components of
Z and S fields free from or forced by the other field, which is
derived using Procrustes minimization problem82 respectively.

Z ¼ Zfor þ Zfree ¼ ASþ Zfree (1)

S ¼ Sfor þ Sfree ¼ BZþ Sfree (2)

The fraction of the Z field’s variance forced by the S field is then
derived using Eq. 3, whereas, for the S field, the variance forced by
the Z field is derived from Eq. 5, respectively83.

Zfor ¼ AS (3)

Zfree ¼ Z� AS (4)

Sfor ¼ BZ (5)

Sfree ¼ S� BZ (6)

Following Catalano et al. (2016)84 the Z and S forced fields were
further decomposed into fully coupled manifolds by substituting
Eqs. 3–6 into Eqs. 1, 2 as below,

Z ¼ A BZþ Sfreeð Þ þ Zfree ¼ ABZþ ASfree þ Zfree (7)

S ¼ B ASþ Zfreeð Þ þ Sfree ¼ BASþ BZfree þ Sfree (8)

In Eqs. 7 and 8, the ABZ and BAS are fully coupled manifolds of Z
and S fields. These fully coupled manifolds’ underlying mechanism
could either be external forcing affecting both S and Z fields or
mutual interactions between S and Z fields. The fully coupled
manifolds ratio is further tested for significance using Monte Carlo
simulations83 of 1000 repetitions with a significance bound of
99%, assuring confidence in the variance retrieved.

Ẑ ¼ ðZZ0Þ�1=2 (9)

Ŝ ¼ ðSS0Þ�1=2 (10)

We first calculated the principal components (EOF) of the
respective climate fields (Z and S) that have retained 99% of
each input field’s total variance. The EOF technique85,86 decom-
poses a climate parameter into an independent, uncorrelated set
of orthogonal eigenvectors; principally, the leading mode
explains most of the variance, followed by the second mode.
The EOF methods presume that a homogenously dimensioned
data matrix (X) has many dominant modes of variability in
Euclidian space87. Thus, the eigenvectors ej of the covariance
matrix of data X, (XTX) produce an orthogonal basis for dataset X,
as shown in Eq. 11.

X m; nð Þð Þ ¼
Xy
j¼1

aj mð Þej nð Þ (11)

where aj denotes the principal component, which can be termed
the temporal weight of ej (ej) represents the eigenvector of the
covariance matrix in the spatial domain. The principal components
obtained are uncorrelated to each other, and their variance is
equal to that of ej. The variance’s significance is tested using a
student t-test28 with a confidence bound of 99 %. The Canonical
Correlation Analysis (CCA)49 is applied to scale principal compo-
nents of the two climate fields before Procrustes minimization, as
shown in Eqs. 7 and 8. The Ž and Š fields in the given equations
are CCA-scaled principal components used in CMT calculation.
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Previously studies have used this approach to coupled land-
atmosphere and ocean studies28,32,49.

Divergent wind
The divergent wind contributes >30% to the total wind field in the
deep tropics and subtropical climate88. It significantly impacts the
vertical motion, diabatic heating, precipitation, and atmospheric
energetics in tropical and subtropical climates88–90. Using Helmholtz
theorem, the horizontal wind field v= (u, v) can be decomposed
into stream function (vψ) and velocity potential (vX) as,

v ¼ k ´∇Ψ þ ∇Xð Þ � vΨ þ vX (12)

In Eq. 12, k denotes the unit vector in the vertical direction and
∇ is the gradient operator in a two-dimensional space (x, y).

Vertically Integrated Moisture Flux
In the atmospheric water balance, MFC is an essential component
and can be expressed in Eqs. 13 and 14 as,

dQ=dt ¼ E � P þMFC (13)

MFC ¼ � 1
g
∇:

ZPs

0

q ~Vdp (14)

In the above equations91, Q is the atmospheric column of
water, t is time, E is evapotranspiration, P is precipitation and
MFC is vertically integrated moisture flux, g is the gravitational
acceleration, Ps is surface pressure, q is specific humidity, ~V is
wind components (both u & v), and p is the upper limit of the
atmospheric pressure field.

Regional climate model and experiments
We used the ICTP regional climate model RegCM (RegCM4,
version 4.7.0) coupled with the Biosphere-Atmosphere Transfer
Scheme (BATS) land surface model, which comes with three soil
moisture layers of varying depth from the land surface to 3m
deep92,93. The soil moisture quantity of each layer (surface to
0.1 m, surface to 1m, and surface to 3m) is represented by soil
water contents (kg m−2) of each layer. Here, we rely on the
Emanuel cumulus convection scheme94 over land and a sub-grid
cloud and precipitation scheme (SUBEX), which accounts for large-
scale rainfall95 in the parameterization physics of the model. ERA-
interim datasets were used to provide both lateral boundary
conditions (6-hourly) and sea surface temperature (SST) forcings
(weekly) for the experiments. Over land, BATS, which has been
used in both offline and coupled (to other atmospheric models)
modes to represent land surface contributions to the region-
specific-scale energy and water budgets96,97, is also chosen here
because of its coherence to the classic hydrological framework30.
Since ECV SM only represents the surface estimates, profiles for
the three layers of BATS were obtained following (Bisselink et al.
2011)98. We also note here that since we used the same SST
forcings for both experiments, their difference can be reliably
associated with changes in soil moisture61,99. The SM of the first
time-step of each day is replaced with ECV SM anomalies
(climatology), hereafter SMECV (SMCLIM), complementing the
hydrological, physical process-based framework30,100. We stress
that our approach is process-oriented: we use these targeted,
idealized model experiments (Supplementary Fig. 3a) to probe the
role of SM variability and advance our understanding of monsoon
precipitation sensitivity to SM across China. Our goal here is not to
evaluate which simulation is more realistic in the context of
absolute precipitation variability. In the real physical world, the
dynamic sensitivity of SM impacts the overlying atmosphere
through energy fluxes; thus, in the current simulation, SMECV

should be considered more realistic. The control and sensitivity
experiment covered the 2000–2018 period when the ECV SM
benefited from a maximum number of input data products74.
Therefore, to ensure that the best quality of SM is being used to
drive the model, we choose 2000–2018 as the control and
sensitivity experiment duration, whereas 1998–1999 are used as
spinup years for the model. The precipitation and atmospheric
variables from 2000 to 2018 are compared with the Chinese
Meteorological Administration (CMA) precipitation and ERA5
reanalysis product. The pattern-based statistics of the SMECV

simulations are shown (Supplementary Fig. 3b) using the Taylor
diagram101, including the precipitation, PBL, 2-m temperature, LH,
and SH of the EAM domain (Supplementary Fig. 3a) and 500 hPa
vertical velocity, and wind components of the model domain.
Both land surface and atmospheric variables interannual variability
in SMECV run is reasonably produced with correlation >55%,
relatively smaller amplitude deviation (STD: <1.30), and unbiased
differences (ubRMSD: <0.80).

DATA AVAILABILITY
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cdsapp#!/dataset/satellite-soil-moisture?tab=overview. The ERA5-Reanalysis data can be
downloaded from the website: https://cds.climate.copernicus.eu/cdsapp#!/search?
type=dataset.
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