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Inter-seasonal connection of typical European heatwave
patterns to soil moisture
Elizaveta Felsche1,2,3✉, Andrea Böhnisch 2 and Ralf Ludwig 2

Although prolonged heat periods have become a recurring feature of European climate, little knowledge is available on dominant
spatial patterns of heatwaves and their influence on moisture-related processes. Increased knowledge will help to improve
heatwave and drought prediction and mitigation. This study uses hierarchical agglomerative clustering to derive nine dominating
spatial heatwave patterns from a 50-member regional climate model (Canadian Regional Climate Model version 5, CRCM5-LE). The
heatwave patterns correspond well with clusters derived from an observational data set (E-OBS) and with extreme historical
heatwave events. Moreover, we analyse the occurrence of heatwaves in the identified spatial patterns regarding a soil moisture
deficit present before and after the event. We show that negative soil moisture anomalies in the preceding winter/spring (JFMA)
can serve as a predictor for heatwaves in South Europe. For North Europe, we find a negative correlation between the number of
heatwave days in summer and autumn (OND) soil moisture content.

npj Climate and Atmospheric Science             (2023) 6:1 ; https://doi.org/10.1038/s41612-023-00330-5

INTRODUCTION
Heatwaves and droughts substantially impact human mortality,
economic well-being, infrastructure, and natural ecosystems1–3.
For example, the 2003 heatwave in Europe is estimated to have
caused more than 70,000 deaths4. Globally, 2% of working hours
are lost due to too-hot conditions5. Droughts that often
accompany a heatwave have been estimated to cause losses of
USD 621 Million on average per event between 1950 and 2014 in
Europe6. The 2010 heatwave in Russia caused USD 15 Billion (1%
gross domestic product) in total economic losses7. Since 1950,
most regions worldwide have observed a significant increase in
the number of heatwave days, maximum duration, and cumula-
tive heat8. Climate model projections estimate that the described
trends will continue throughout the 21st century9,10. There is a
high need for operational seasonal forecasts of heatwaves and
droughts to mitigate their impacts, e.g., to introduce measures for
water saving or prepare navigation infrastructure for low
flows11,12. Current forecasts offer limited predictive capabilities,
underlining the importance of future studies to increase under-
standing of mechanisms causing the events13–15. Identifying
heatwave patterns allows a meaningful way of dimensionality
reduction, which is important for further research on driving
physical mechanisms for heatwave occurrence.
Current research highlights that heatwaves and droughts are

highly interrelated and caused by similar persistent large-scale
atmospheric circulation patterns16–18. Moreover, the self-
intensifying nature of extreme droughts and heatwaves has been
suggested as central to their evolution19–21. There is a two-fold
relationship. On the one hand, soil and vegetation dry with the
occurrence of a heatwave, leading to reduced evaporation.
Therefore, the likelihood of rainfall decreases, favouring the
formation of drought20,22. On the other hand, evaporation
decreases with the onset of drought. The reduced cloud cover
leads to a larger fraction of solar radiation reaching the land
surface, increasing the likelihood of heatwave formation20,22.
Global-warming-induced changes in thermodynamic conditions

account for 57.3% of Europe’s increase in extreme heat
occurrence23.
The influence of precipitation and soil moisture anomalies on

heatwave formation has been studied in different European
regions. A rainfall deficit in the Mediterranean in spring is found to
favour the formation of heatwaves in Northern Europe as the
rainfall deficit propagates northward throughout the summer16,24.
A recent study17 confirmed that dry conditions in winter/spring
seasons prevail prior to hot summers over Southern Europe. Other
studies confirm that anomalously dry Western and Northern
European summers significantly correlate with the occurrence of
heatwaves in those regions25. Soil moisture and other
precipitation-related indices correlate with the temperature
extremes in South-Eastern Europe26,27. For the European heatwave
of July 2019, land-atmosphere feedback and influences of
northward propagation of dryness contributed to the exceptional
intensity of the event28.
Most research on heatwaves investigates historical events

based on observational data17,24,26,29, which rarely happen by
definition. Moreover, only few studies have analysed generalised
patterns of heatwaves to derive scientific findings applicable to
coherent regions24,29 instead of focusing on the causes of single
events30,31. By ’coherent regions’, we here and thereafter mean
regions connected to similar atmospheric circulation patterns,
such that the heatwaves occur simultaneously and over the same
geographical region. Large climate model ensembles have proven
their usefulness for the investigation of extreme events both in
terms of extreme cold and wet, as well as in terms of hot and dry
events32–36. They allow the assessment of the natural variability of
extreme weather events and therefore facilitate to derive of
statistically reliable findings. Moreover, regional climate models
offer a finer spatial resolution, which allows for the resolution of
finer spatiotemporal processes and therefore obtains spatial
patterns on a regional and subregional level when compared to
Global Climate Models37,38.
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In this study, we want to take a regional approach to the
investigation of heatwaves, as those usually cover a fraction of the
continent. Therefore, we aim to find stable spatial patterns of
heatwaves using the 50 members of a Single Model Initial-
condition Large Ensemble (SMILE) CRCM5-LE over Europe.
Canadian Earth System Model 2-Large Ensemble (CanESM2-LE)
during the period 1950-2099 is used to derive the boundary
conditions for the Canadian Regional Climate Model version
5-Large Ensemble (CRCM5-LE)39. CRCM5-LE obtains more realistic
representations of climate over complex topologies, as in the
southwest part of Scandinavia, the Iberian Peninsula, the Alps and
the Pyrenees39. A study by Trentini et al.40 confirms the
applicability of the chosen model for heatwave research in the
European domain. It investigates the interannual variability of
three different large ensembles, with CRCM5-LE being one of
them, and compares it to E-OBS data. The study shows that
CRCM5-LE has a good representation of JJA temperature and the
number of heatwave days per year. Another study41 compares
CRCM5-LE with the EURO-CORDEX ensemble and confirms the
added value of the ensemble for the European domain. Moreover,
CRCM5-LE was already used in a multitude of studies on European
extreme events32,42,43.
We use 1500 model years that correspond to the years 1981-

2010 historical climate. A ‘heatwave day’ occurs when the local
daily maximum temperature exceeds the 95th JJA percentile of
the whole period. We use the three-day-running mean in order to
obtain robust signals. In total, we obtain more than 50,000
heatwave days. For an exact definition of a heatwave day, see the
section ‘Methods’. Following previous studies on heatwave
classification24,29, in the first step, we apply hierarchical agglom-
erative clustering on the heatwave days in order to identify
predominant heatwave patterns. The clustering algorithm starts
by assigning each data point to its own cluster (agglomeration).
Then it merges all the clusters using a defined similarity measure
and builds a hierarchy between clusters, which is based on how
similar they are to one another44. We use cosine similarity as our
similarity measure. The optimal number of clusters is determined
using the elbow method. It picks the number where the added
information by creating one more cluster sharply drops45. This
point is determined by calculating the knee of the curve. For a
detailed description, see ‘Methods’. Subsequently, the obtained
spatial patterns of heatwaves are analysed in terms of the
influence of soil moisture and precipitation conditions in spring
and summer on heatwave formation and the influence of
heatwave occurrences on dry conditions in the following fall/
winter.

RESULTS
Typical European heatwave patterns
We focus our investigations on the European domain of the
CRCM5-LE39, as we are interested in regional heatwaves. We
obtain a total of nine significant spatial patterns from CRCM5-LE
for the years 1981–2010. Figure 1 shows the identified spatial
patterns, which we order from West to East: Iberian Peninsula (IP),
Western Europe 2 (WE2), Western Europe 1 (WE1), Britain and
Ireland (BI), South-Eastern Europe (SEE), Greece and South Italy
(GSI), Scandinavia (SCA), Central-Eastern Europe (CEE) and North-
Eastern Europe (NEE).
The pattern significance is assessed via bootstrapping, which

we apply according to the existing literature on heatwave
clustering24,29. For bootstrapping, we divide the data set into a
validation and training set 100 times so that one-hundredth of the
data is assigned to the validation set and the rest to the training
data set. We perform clustering using the training data set and
then assign clustering classes to the validation data according to
the nearest distance to data points within the training data set.

The obtained labels are compared to the ones originating from
clustering the whole data set. A stability score is calculated for
each cluster. It corresponds to the number of correctly assigned
events vs the total number of validation events per spatial pattern.
The stability scores are compared to the ones from a Monte-Carlo
pseudo-experiments, where we assign the validation data points
1000 times to one of the clusters in a random way. This allows us
to estimate the probability density function of the null hypothesis
that the clustering does not entail information. In Fig. 2, the mean
stability scores per cluster derived from bootstrapping are
compared with the ones from the Monte-Carlo pseudo experi-
ments. The nine patterns are significant on the 99 % level
according to a two-sided t-test; the least stable spatial patterns
with a stability score below 0.9 are WE1, SEE and CEE.
The visual inspection of the spatial patterns confirms their

meaningfulness since natural geographical boundaries like
mountains serve as delimiting boundaries, as is the case for IP,
WE2 and SEE. In order to characterise the heatwave patterns, we
examine the mean maximum temperature and the mean calendar
day of the first heatwave occurrence (see Fig. 1). We find three
spatially related groups when looking at the mean first calendar
day of the heatwave in a year. The earliest events happen in the BI
pattern with the mean first calendar day of the event of 25th June,
followed by Northern patterns of SCA, CEE, and NEE at the
beginning of July. The mean first calendar day of heatwave is the
latest in the Southern and Central European patterns of IP, WE2,
WE1, SEE, and GSI, where the mean first calendar day of heatwave
occurs in the second half of July. The mean maximum
temperature is higher for the patterns with fewer events - e.g.,
WE2 and WE1. From that, we can derive that events that belong to
those patterns have their hot spots over the same area, while, e.g.,
in the case of GSI, the maxima of the respective events match to a
lesser percentage.
Next, we visually compare the patterns to observed historical

heatwaves in Europe. We find that many patterns obtained from
the analysis on CRCM5-LE reproduce historical events, even
though those have not been part of the analysis. For example,
the WE1 is similar to the French heatwave in the summer of 20031.
The record-breaking heatwave in the summer of 1976 in Britain
can be matched with the BI pattern1. CEE pattern reproduces the
heatwave of 1994 in Eastern Germany and Poland1. Finally, the
events of 2007 in the Balkans and Greece and 2010 in Russia can
be matched to SEE and NEE, respectively1.
Additional validation is performed by comparing the spatial

patterns from CRCM5-LE to the ones derived from the clustering
of heatwaves derived from the observational data set E-OBS. The
E-OBS’ spatial patterns can be found in Fig. 3. To compare both
clustering results, we calculate the cosine similarity between the
spatial patterns obtained from CRCM5-LE and those from E-OBS
and match them by the maximum value. The measure is chosen to
stay consistent with the distance measure used for clustering.
Cosine similarity corresponds to one when the input vectors are
identical and to zero if they are orthogonal. The results are shown
in Table 1. The patterns IP, BI, SCA and CEE, are in excellent
correspondence, as can be seen visually and from the pattern
cosine similarity. Furthermore, WE1 and WE2 combine to one
common pattern in E-OBS - the WE, as indicated by the high
similarity value. Therefore, we calculate the sum of the patterns by
adding the values pixelwise. Similar behaviour can be seen in SEE
and GSI, which divide into a Southern and a Northern part. In
contrast, the patterns originating from E-OBS divide into West
(Italy) and East (Balkans and Greece). Finally, the two North-
Eastern patterns in E-OBS combine into the NEE pattern of CRCM5-
LE. Supplementary Table 1 shows the pattern similarity values
derived from the ERA-Interim-driven model run of CRCM5
(CRCM5/ERA) and CRCM5-LE. The patterns can be found in
Supplementary Figure 1. The results are comparable to those for
E-OBS. They confirm that the dominating spatial heatwave
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patterns from CRCM5-LE are similar in the area they cover with
those found when clustering observational data or the reanalysis-
driven run of CRCM5. Given the difference in the number of
events used as input for the analysis (1059 events from E-OBS vs
51.044 events from the 50 members of CRCM5-LE), we argue that
the patterns originating from CRCM5-LE allow reliable statistical
interpretability and robustness and are therefore used for further
analysis.

Additionally, we test the robustness of our results in terms of
domain choice. As we cannot pick a larger domain, we compare
the resulting patterns for a smaller domain. We cut off ten
boundary pixels on each side, thereby reducing the 280 × 280 grid
to 260 × 260. The resulting heatwave patterns are similar in form
and shape, as in Fig. 1, but without the grid cells at the domain’s
border. Therefore, we conclude that the resulting heatwave
patterns do not depend on the domain choice. Moreover, we

Fig. 1 Nine typical heatwave patterns over Europe derived from CRCM5-LE. Patterns obtained by hierarchical clustering of 1981-2010
Canadian Regional Climate Model 5 Large Ensemble (CRCM5-LE). In the title from left to right: pattern abbreviation, number of events
belonging to the pattern (ev), mean maximum temperature in K, mean calendar day of the first heatwave occurrence. From left to right, from
top to bottom: IP: Iberian Peninsula, WE2: Western Europe 2, WE1: Western Europe 1, BI: Britain and Ireland, SEE: South-Eastern Europe, GSI:
Greece/Southern Italy, SCA: Scandinavia, CEE: Central/Eastern Europe, NEE: North-Eastern Europe.
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compare the patterns when including sea grid cells. We calculate
the spatial patterns with sea grid cells for the ERA-Interim driven
run of CRCM5. The results are shown in Supplementary Fig. 3. We
see that new patterns emerge over the sea areas that are not
impacting land clusters. In 7 out of 9 cases, land patterns stay very
similar—they cover the same area and, in some cases, add the sea
areas along the coast (e.g., WE and BI). The CEE pattern is no
longer present; however, it is constituted only out of 24 events
without the sea grid cells and is, therefore, unstable. Moreover, IP
splits up into IP1 and IP2. Therefore, we conclude that heatwave
patterns over land are mainly unrelated to sea heatwaves, and we
omit sea grid cells in further analysis.

Seasonal connection to soil moisture and precipitation
Heatwaves and droughts are related phenomena that influence
the formation of one another, as the hydrological cycle is
inseparably connected to the heat-related processes in the
atmosphere. Therefore, we inspect soil moisture anomalies and
anomalies in seasonal precipitation before the heatwave occur-
rence (JFMA), after the heatwave (OND) and during the heatwave
(MJJAS) in dependence on the number of heatwave days in every
spatial pattern per summer.
The quantile regression method is applied to investigate the

relationship between the number of heatwave days per summer
season and the soil moisture or seasonal precipitation (for more

Fig. 2 Mean stability score per heatwave pattern. The stability score of bootstrap samples is compared to Monte-Carlo pseudo-experiments.
The median in orange, end of the box, indicates the first and third quartiles. The boundaries of the whiskers indicate the 1.5
interquartile range.

Fig. 3 Nine typical heatwave patterns over Europe derived from E-OBS. In the title from left to right: pattern abbreviation, number of events
belonging to the pattern (ev), mean maximum temperature in K. Pattern names same are the same as in Fig. 1, except NEE1: North-Eastern
Europe 1, NEE2: North-Eastern Europe 2.
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information, see ‘Methods’ section). A scatter plot of soil moisture
and precipitation versus the number of heatwave days for IP in
JFMA is shown in Supplementary Fig. 2. We use the range of 10-
90th percentile, which allows us to investigate if there is a link
between the variables for the upper and hence more extreme
quantiles. We expect that the relationship between soil moisture/
precipitation and the number of heatwave days differs for upper
quantiles. For each pattern, we plot the soil moisture anomalies for
the 25 years (2% of most extreme events) with the highest
number of heatwave days to obtain a visual validation for the
correlations. The soil moisture anomalies in the upper portion of
the soil column (0cm-10cm depth) are used instead of deeper soil
moisture levels due to data availability. Additionally, we repeat the
analysis using a model run where ERA-Interim is used as a
boundary condition instead of CanESM2 to compare and validate
the findings.
Figure 4a, b shows the quantile regression slopes of the number

of heatwave days NHW in relation to soil moisture mrsosJFMA and
precipitation anomaly prJFMA in the preceding winter/spring
season (JFMA). Statistically significant slopes with a 90%
confidence level for a two-sided t-test are identified with black
edge. We find gradually increasing negative slopes for an
increasing number of heatwave days for North European patterns
of BI and NEE and Southern-European patterns GSI, SEE, IP and
WE2. In the case of the SEE pattern, there is a stronger influence of
precipitation deficit on the number of heatwave days than when
compared to other patterns. By contrast, we find no significant
relationship between the soil moisture anomaly and precipitation
deficit in winter/spring and the number of heatwave days in the
Central European WE1 and CEE patterns, as well as in the Northern
European pattern SCA. Our results suggest that there is a
predictive power of soil moisture in the preceding winter/spring
(JFMA) for heatwave occurrence in summer for South and North
Europe. Moreover, our results suggest that there is predictive
power of seasonal precipitation anomalies in winter/spring (JFMA)
in SEE for heatwave occurrence in summer. In Supplementary Fig.
4, we show the results of the quantile regression analysis for the
ERA-Interim-driven run of CRCM5. The results confirm the negative
relationship between the number of heatwave days and mrsos
anomaly in winter only for NEE, BI, SEE and IP, although none of
the slopes is significant.
Figure 4c displays the spatial distribution of mrsos anomalies for

the patterns IP, WE2, SEE, GSI, NEE and BI for the 25 years with the
highest number of heatwave days. We choose the patterns that
show a significant relationship in the quantile analysis. Significant
anomalies are indicated with the black edge. We find that the
extreme heatwave years in IP and SEE patterns are connected not

only to local soil moisture and precipitation deficit in the pattern
area but also in other parts of South Europe. We find that extreme
heatwaves in the GSI pattern are connected to continental and
Northern Europe soil moisture anomalies. Following Fig. 4a, the
anomalies are insignificant for the Northern patterns (NEE, BI). The
obtained results confirm findings concerning the positive
influence of the dry winter season on hot summers16,19,46. We
cannot find a significant dependency between soil moisture
deficits in the South and heatwaves in the North of Europe in
contrast to what is suggested by previous studies16,24. Results for
the remaining patterns are displayed in Supplementary Fig. 5.
A deficit in soil moisture in the season during the heatwave

(MJJAS) is present for all identified patterns in Fig. 5. We see
significantly decreasing slopes in Fig. 5a of NHW versus mrsosMJJAS

for all patterns. We find the same, although mostly non-significant,
relationship when performing the analysis on the ERA-Interim
dataset (see Supplementary Fig. 4b). These results are in
accordance with a previous study that also found increasing
negative slopes for the quantile analysis of soil moisture in relation
to the percentage of heatwave days in Central and Eastern
Europe26. We extend these results by finding this relationship also
in Northern Europe. The results are similar in the case of seasonal
precipitation as the dependent variable. We see that for the BI
pattern, soil moisture has a bigger influence than for other
patterns; for the IP pattern, precipitation anomalies are a more
robust predictor compared to other patterns.
In Fig. 5c, the spatial patterns are displayed. A significant soil

moisture deficit in SCA, CEE, and NEE for the 25 years with the
highest number of heatwave days is also connected to a
significant soil moisture increase in Western and Central Europe.
A contrasting pattern is visible in the IP region: for the 25 years
with the highest number of heatwave days, negative soil moisture
anomalies are observed in South-Western Europe and positive in
North-Eastern Europe. The dipolar structure is a well-known
phenomenon: it has been shown in previous studies that positive
phases of the North Atlantic Oscillation are connected to negative
SPI averages in Southern Europe and positive averages in
Northern Europe47.
Extremely long periods of heatwaves pose substantial stress on

the soil moisture visible in the following season (OND), as seen in
Fig. 6. While for quantiles below 0.2, coefficients equal zero, the
slopes turn negative for higher values for patterns SCA, NEE, SEE,
CEE and IP. Out of those, significant soil moisture anomalies in the
following season are present only for patterns SCA, NEE and SEE.
This is confirmed by the analysis of the ERA-Interim-driven run
(Supplementary Fig. 4c) apart from the highest quantile. These
results serve as an indication of the memory of soil moisture in
Northern Europe, as well as in the South-Eastern parts and suggest
that there is a predictive power of the number of heatwave days
per summer on dry anomalies in soil moisture in subsequent fall/
winter (OND). The slopes of the quantile regression for precipita-
tion anomalies are shown in Fig. 6b. None of the slope coefficients
is negative; this suggests that hot summers do not lead to dry fall/
winter in Europe. In contrast, we see a positive correlation
between the upper quantiles of the number of hot days and
seasonal precipitation in BI and NEE. The observed quantile
regression coefficients are the lowest compared to the other
seasons. For SCA, NEE and SEE, the negative soil moisture
anomalies are also visible in the following winter season (see
Fig. 6c). Results for the remaining patterns are displayed in
Supplementary Fig. 5.

DISCUSSION
Using cluster analysis, we identified (1) nine distinct patterns of
European heatwaves, which we validated by comparing with E-OBS
and applying bootstrapping. The spatial patterns offer not only the
possibility to investigate regional heatwave characteristics, e.g., BI

Table 1. E-OBS patterns assigned to CRCM5-LE patterns by the
maximum value of cosine similarity.

CRCM5-LE pattern EOBS pattern Similarity

IP IP 0.86

BI BI 0.85

SCA SCA 0.92

CEE CEE 0.83

SEE SEE 0.74

GSI SEE 0.74

NEE NEE1 0.87

WE1 WE 0.82

WE2 WE 0.68

WE1+WE2 WE 0.93

GSI+ SEE GSI+ SEE 0.92

NEE NEE1+NEE2 0.95
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earliest heatwaves to latest in Southern parts of Europe, but also
offer to understand further the seasonal influence of large-scale soil
moisture anomalies and precipitation anomalies on the number of
heatwave days in the chosen patterns and vice versa. We show that
(2) soil moisture deficit in the preceding winter/spring (JFMA) can
serve as a predictor for heatwaves in Southern (GSI, SEE, IP, WE2)
and Northern (BI, NEE) Europe. Moreover, (3) all patterns show a
significant negative relationship between soil moisture in the
summer season (MJJAS) and the number of heatwave days. (4)

The analysis of soil moisture anomalies in the following season
(OND) shows a significant negative relationship for SCA, SEE and
NEE. This shows that long heatwave events lead to a substantial soil
moisture deficit preserved until the following season. For now, the
obtained findings apply only to present-day climate; it has to be
further investigated whether future climate change impacts these
relationships.
In this study we perform a clustering analysis of heatwaves

using a SMILE of a high-resolution RCM. Through the employment

Fig. 4 Quantile regression slopes for NHW in relation to moisture-related variables in winter before. NHW versusmrsosJFMA (a) and prJFMA (b).
Statistically significant slopes with a 90% confidence level with a two-sided t-test are identified with black edge. mrsosJFMA for the 25 years
with the highest number of heatwave days in chosen patterns with significant precipitation anomalies (c).
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Fig. 5 Quantile regression slopes for NHW in relation to moisture-related variables in summer. NHW versus mrsosMJAAS (a) and prMJJAS (b).
Statistically significant slopes with a 90% confidence level with a two-sided t-test are identified with the black edge. mrsosMJJAS for 25 years
with the highest number of heatwave days in (c).
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of the CRCM5-LE, we assess the natural variability of heatwaves
and derive stable patterns of heatwaves. Regional Large
Ensembles have proven useful in research on extreme
events15,32,33. Nevertheless, it is known that the models are prone
to biases regarding the modelling of land-atmosphere interactions
that contribute to the formation of heat waves48. We find similar
patterns when clustering using the E-OBS dataset or ERA-Interim
driven run of CRCM5.
The classification into nine distinct heatwave patterns in Europe

is a unique finding of this study. The study by Stefanon24 finds six
heatwave patterns, however, based on 78 heatwave events that
consist of 643 heatwave days in contrast to more than 50,000
heatwave days used in our case. When we compare those patterns
to the ones found by our analysis, we can assign them in the
following way: ‘Russian’ pattern compares to NEE; ‘Western
Europe’ pattern to WE1 and WE2; ‘Eastern Europe’ pattern to
CEE, SEE, GSI; ‘Iberian’ pattern to IP; ‘North Sea’ pattern to BI and
SCA; ‘Scandinavian’ pattern to none, however, its area is in huge
parts outside of our domain. Therefore, we find similar heatwave
patterns in both studies. Also, previous studies mostly used the
percentage of rain days as a soil moisture proxy for the analysis
instead of direct soil moisture, as in our case16,17.
The coupling between spring soil moisture availability in

Southern Europe (GSI, IP, WE2, SEE) and heatwave occurrence in
summer has been described in previous studies24,49. The southern
regions of Europe have a dry climate, where evaporation is soil
moisture limited50. The described link between reduced soil
moisture leading to fewer clouds and more solar radiation and,

therefore, more heatwaves is valid for that region. It appears to be
one of the main driving mechanisms for heatwave formation. The
link for NEE is less significant, however present. It has to be
investigated further how far other factors, such as snow cover,
influence the link. The missing coupling between spring soil
moisture and precipitation and the occurrence of a heatwave in
SCA, WE1 and CEE can be explained by the fact that the
vegetation system in those regions is rarely water-limited51.
Therefore, even if there is a comparably dry spring, the soil still has
enough moisture for evaporation and the formation of clouds.
We see a coupling between the heatwave occurrence in the

Eastern and Northern parts of the domain (SCA, NEE, and SEE) and
autumn drought occurrence. Those regions have a temperate
climate and relatively high mean soil moisture values. This allows
for a higher variability of soil moisture when compared to more
Southern regions. Therefore, it takes the soil until the next season
to recover after a prolonged heatwave. This relationship is missing
for the Southern regions (IP, GSI, WE2). Those regions experience
low mean precipitation in summer and, therefore, a lower
expected and possible variability of soil moisture.
These results can, in most cases, be confirmed when performing

the analysis on the ERA-Interim-driven run of CRCM5. The results
mainly differ for upper quantiles (0.9). It can be explained by the
fact that we analyse only 30 years; therefore, the upper quantile
includes only three values, leading to high slope value uncertainty.
For future research, we suggest performing the analyses on

deeper soil moisture levels, as those are known to show higher
persistence52. Further, we suggest analysing for interdependencies

Fig. 6 Quantile regression slopes for NHW in relation to moisture-related variables in fall after. NHW versus mrsosOND (a) and prOND (b).
Statistically significant slopes with a 90% confidence level with a two-sided t-test are identified with black edging. mrsosOND for the 25 years
with the highest number of heatwave days in chosen patterns with significant precipitation anomalies (c).
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between heatwaves and precipitation/soil moisture deficits across
different areas, as we see, e.g., in Fig. 6 for BI pattern, soil moisture
over Central and Eastern Europe shows significant anomalies for the
25 years with the highest number of heatwave days. Also, a further
heatwave-pattern-based investigation in terms of the effects of
other variables, such as latent and sensible heat fluxes, would be of
interest for future studies on the interrelation of heatwaves and
droughts.
We suggest using the obtained patterns for heatwave analysis

and predictability instead of pixelwise or even country-wise
approaches in future studies. The obtained patterns allow a
meaningful complexity reduction by finding spatially coherent
regions instead of arbitrary grouping, e.g., by country. For
agricultural research and the general public, the study’s outcomes
can enhance the predictability of heatwave events in Southern (GSI,
SEE, IP, WE2) and Northern (BI, NEE) Europe on a seasonal scale.
Moreover, applying the described framework offers great

potential for investigating other extreme events like droughts.

METHODS
Data sets
The central part of our analysis is based on the daily maximum
temperature and monthly soil moisture and precipitation data
from the single-model initial condition large ensemble (SMILE)
consisting of 50 members, the Canadian Regional Climate Model 5
Large Ensemble (CRCM5-LE). The data was produced within the
scope of the ClimEx Project (Ref. 39, www.climex-project.org).
Dynamical downscaling via CRCM5-LE is applied to the data
originating from the 50-member initial condition Canadian Earth
System Model 2 (CanESM2)53. The data is provided at a resolution
of 0.11° (12 km) and is produced for the years 1950–2099 for a
European and an Eastern North America domain. Historical
greenhouse gas concentrations are used for the years
1950–2005; starting from 2006, the RCP8.554 forcing scenario is
used. We use the data from all 50 members for the years
1981–2010, translating to 1500 model years, which are analysed
for heatwave events. A comparison of the CRCM5-LE to the E-OBS
dataset has been performed in a previous study39 and showed a
temperature bias between −2 and +2 °C, while warm deviations
mainly happen over highlands. For the validation of the obtained
patterns, we use daily gridded observational data set E-OBS55 for
the years 1981-2010, as well as one model run of the CRCM5,
which was driven by the global atmospheric reanalysis data set
ERA-Interim via boundary conditions39,56.

Heatwave definition
Literature gives evidence for a wide range of similar heatwave
definitions, which are adapted to the specific study goals24,57–59. In
this study, we define heatwaves for land areas in continental
Europe (EUR-11 domain) as prolonged periods of above-average
temperatures in an extended area during the period 1981–2010.
These heatwaves consist of at least three consecutive hot days,
where hot days are characterised by a positive anomaly of daily
maximum temperature (tasmax) to the local 95th JJA (1981–2010)
percentile, allowing for comparability across the domain. In order to
obtain robust signals, we use the 3-day-running mean to derive
these anomalies. Negative anomalies are set to zero to focus on hot
extremes24. Two heatwaves are separated by a minimum of three
days below threshold57. We remove heatwave days consisting of
patterns smaller than 9 × 9 grid cells. An additional filter is
introduced to eliminate spatially small events covering an area of
less than 1% of the land area (500 grid cells). Positive anomalies
only occur during the months May-October in our data sets. The
analysis is based on heatwave days fulfilling the above-mentioned
criteria and amounts in the case of CRCM5-LE to around 50,000
heatwave days used as input for the clustering analysis.

Clustering analysis
In literature, clustering has frequently been used to analyse and
classify weather patterns in the mid-latitudes60–62. This study uses
the obtained heatwave days as input to the agglomerative
hierarchical clustering algorithm24,29. Distance between two
vectors, r and q, is defined here as follows:

dðr; qÞ ¼ 1� csðr; qÞ (1)

csðr; qÞ ¼
PN

i¼1

PM
j¼1 ri;jqi;j

ðPN
i¼1

PM
j¼1 ri;jÞ

1=2ðPN
i¼1

PM
j¼1 pi;jÞ

1=2 (2)

cs(r, q) refers to the cosine similarity measure between two
vectors63. It is defined as 1 for parallel vectors and as 0 for
orthogonal. For the clustering algorithm, the average linkage is
used63.
The optimal number of clusters is determined by applying the

elbow method64: we compute the distortion score as the sum of
squared distances to the assigned centre for every possible
number of clusters and pick the number of clusters that
corresponds to the knee of the curve45,64.
Due to a large number of events, the obtained data set has, in

absolute numbers, a higher number of a-typical events, which
have a big distance to all other events of the data set. Filtering by
preliminary clustering to 32 clusters is introduced to remove these
events. Events belonging to so-called minority clusters with a
small number of events (<0.1% of the data) are removed from the
data set65. In total less than 1% of heatwave events are removed
that way. Repeated clustering is performed on the resulting data
set. We derive 12 clusters as the optimal number from the elbow
method. The obtained clusters are cross-validated by 100 times
dividing the data set into a verification period that amounts to 1/
100 of the data set and the remaining 99/100 used as input to
clustering. The nearest distance to the training clusters then
determines the labels for the verification period. Those are then
compared to the ones originating from the clustering on the
whole data set. Finally, a stability score is computed per cluster
that amounts to the number of correctly assigned validation
events to the total number of events per cluster. The results are
then compared to a Monte-Carlo pseudo-experiment, where the
labels are assigned in a purely random way 1000 times. Three out
of twelve clusters do not pass the described validation; nine are
significant on the 99%-level according to a two-sided t-test.

Quantile regression
In order to evaluate the impact of heatwave length on soil
moisture and seasonal precipitation deficit, we use quantile
regression as suggested by similar studies17,26. Quantile regression
is a method that goes beyond standard linear regression, as it can
be used when the linearity and independence of variables are not
given. It estimates the conditional median of the target variable66.
Here, we use a linear model for the conditional quantiles.
For the quantile regression, we use the following variables

derived from the CRCM5-LE data set:

1. Number of heatwave days per pattern NHW per summer
season of May, June, July, August, and September (MJJAS)

2. Mean soil moisture anomalies in the upper portion of the
soil column (top 10 cm) averaged for the following three
seasons in the pattern region: January, February, March,
April (JFMA) mrsosJFMA; May, June, July, August, September
(MJJAS) mrsosMJJAS and October, November, December
(OND) mrsosOND

3. Summed precipitation anomalies for the same seasons as in
(2): prJFMA, prMJJAS and prOND in the pattern region.

The pattern region for mrsos and pr is defined as the area of 100
land pixels around the maximum of the spatial pattern. Given the
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spatial resolution of 12 km, which amounts to approximately
14400 km2.

DATA AVAILABILITY
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https://www.ecad.eu. Derived data supporting the findings of this study are available
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