
ARTICLE OPEN

Staggered-peak production is a mixed blessing in the control of
particulate matter pollution
Ying Wang1,2, Ru-Jin Huang 1,3,4✉, Wei Xu 1,5, Haobin Zhong1, Jing Duan1, Chunshui Lin1, Yifang Gu1,4, Ting Wang1, Yongjie Li 6,
Jurgita Ovadnevaite 5, Darius Ceburnis 5 and Colin O’Dowd5

Staggered-peak production (SP)—a measure to halt industrial production in the heating season—has been implemented in North
China Plain to alleviate air pollution. We compared the variations of PM1 composition in Beijing during the SP period in the 2016
heating season (SPhs) with those in the normal production (NP) periods during the 2015 heating season (NPhs) and 2016 non-
heating season (NPnhs) to investigate the effectiveness of SP. The PM1 mass concentration decreased from 70.0 ± 54.4 μgm−3 in
NPhs to 53.0 ± 56.4 μgm−3 in SPhs, with prominent reductions in primary emissions. However, the fraction of nitrate during SPhs
(20.2%) was roughly twice that during NPhs (12.7%) despite a large decrease of NOx, suggesting an efficient transformation of NOx

to nitrate during the SP period. This is consistent with the increase of oxygenated organic aerosol (OOA), which almost doubled
from NPhs (22.5%) to SPhs (43.0%) in the total organic aerosol (OA) fraction, highlighting efficient secondary formation during SP.
The PM1 loading was similar between SPhs (53.0 ± 56.4 μgm−3) and NPnhs (50.7 ± 49.4 μgm−3), indicating a smaller difference in PM
pollution between heating and non-heating seasons after the implementation of the SP measure. In addition, a machine learning
technique was used to decouple the impact of meteorology on air pollutants. The deweathered results were comparable with the
observed results, indicating that meteorological conditions did not have a large impact on the comparison results. Our study
indicates that the SP policy is effective in reducing primary emissions but promotes the formation of secondary species.
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INTRODUCTION
Particulate matter (PM) pollution exerts profound impacts on
human health1–5, climate6–8, visibility9,10, and ecosystem11. Due to
rapid industrialization and urbanization over the last few decades,
China has suffered from persistent and pervasive haze pollution,
especially during winter12–15. As one of the largest megacities in
China, Beijing has undergone serious air pollution over the past
decades13,15,16. The annual PM2.5 loadings ranged from 89.5 to
73.0 μgm−3 during 2013–2016 in Beijing (Beijing Municipal
Ecology and environment Bureau, http://sthjj.beijing.gov.cn/
bjhrb/), exceeding the Chinese National Ambient Air Quality
Standard (CNAAQS, 35 µgm−3). In recent years, various stringent
pollution prevention and control measures covering main
pollution sectors have been implemented nationwide to alleviate
air pollution, for example, traffic restriction17, the coal-to-gas
shift18, and the Air Pollution Prevention Action Plan19. There are
many studies investigating the effectiveness of these air quality
interventions. For example, Gao et al. found a 21% decrease in
average PM2.5 concentration in Beijing during winters from 2011
to 2016, which was mainly attributed to stringent emission control
measures20. Gu et al. illustrated that the average concentrations of
PM1 in urban Beijing in 2014–2015 decreased by 16-43%
compared to those in 2008–2013 after the implementation of
emission control measures since 201321. The size distribution,
oxidation properties, and acidity of aerosols changed substantially
after the implementation of the clean action plan22–24. In addition,
short-term emission controls are also effective in improving air
quality. Large reductions of concentrations in the major

components of submicron aerosol have been reported during
the 2014 Asia-Pacific Economic Cooperation (APEC) summit25. The
mass concentration of PM (PM1) decreased by 57% due to
stringent control during the China Victory Day parade in 201526.
These results demonstrate that air pollution has been effectively
mitigated after stringent control. Specifically, meteorological
conditions also can affect the variation of pollutant concentration,
which makes it difficult to directly compare the pollutant emission
levels. Zhang et al. estimated that meteorological conditions
contributed to 9% of the national PM2.5 reduction from 2013 to
2017 and contributed to 16% of the Beijing-Tianjin-Hebei region
(BTH) PM2.5 reduction from 2013 to 201727. In contrast, during the
COVID-19 lockdown period, severe haze pollution was facilitated by
stagnant meteorology and high RH despite the substantial
reduction of primary emissions28–30. Thus, it is essential to decouple
the meteorological impacts from ambient air quality to evaluate the
effectiveness of the control measures in Beijing. Regression
models31,32, chemical transport models20,33–35, and machine learn-
ing models are common methods to decouple the potential effects
of weather-related variations36–40. Detailed comparisons of these
methods can be found elsewhere37,39,41. The machine learning-
based random forest (RF) algorithm showed high prediction
accuracy by reducing variance and error in high dimensional data
sets, and the learning process can be explained and interpreted
where the importance of input variables and their interactions are
visualized37,41. Grange et al. applied a meteorological normalization
technique based on the RF algorithm to control changes in
meteorology when conducting air quality data analysis36. Shi et al.
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used a machine learning-based RF algorithm to evaluate major
reductions in air pollutant emissions after the short-term emission
interventions39.
Despite effective mitigation of air pollution, Beijing still suffers

severe pollution in winter. The municipalities of Beijing issued a
convention on halting cement production, which was fully
implemented in North China during the heating season in 2015
to improve the air quality and to reduce the cement production
overcapacity (https://wap.miit.gov.cn/). However, the effectiveness
of this policy, named staggered-peak production (SP), in mitigat-
ing PM pollution is yet to be evaluated. Therefore, it is of great
significance to investigate the impact of SP measures on the
atmospheric environment. In this study, an aerosol chemical
speciation monitor (ACSM) and an aethalometer were deployed to
measure the composition of PM1. The aerosol chemical composi-
tion of PM1 in Beijing in 2015 and 2016, which covers the periods
before, during, and after implementing the SP policy, are
investigated, and the observation results are further compared
with the deweathered results by using machine learning
techniques. Moreover, the causes of secondary formation and
variations of PM1 composition under different pollution stages
after the SP are explored with detailed analysis.

RESULTS
General changes in PM1 pollution
The SP measure on the cement industry was implemented in
Beijing from January 15th, 2015, to March 15th, 2015, as well as
from November 15th, 2015, to March 15th, 2016, which over-
lapped for several months with our measurement conducted from
December 29th, 2014 to January 14th, 2015 and from January 1st,
2016 to April 30th, 2016. To investigate the effects of the SP
measure on PM1 characteristics, the entire campaign was split into
three periods, including the SP period (staggered-peak production
period) in the heating season, the NP period (normal production
period) in the heating season, and the NP period in the non-
heating season. Five OA factors, including hydrocarbon-like OA
(HOA), cooking OA (COA), coal combustion OA (CCOA), biomass
burning OA (BBOA), and oxygenated OA (OOA), were resolved in
NPhs and six OA factors including HOA, COA, CCOA, BBOA, local
secondary OA (LSOA) and regional secondary OA (RSOA) were
resolved in SPhs and NPnhs. OOA during SPhs and NPnhs is the sum
of LSOA and RSOA for a better comparison with NPhs. Details of
OA source apportionment are shown in the Method section.
Periodic pollution events occur sporadically, with the mass
concentration of PM1 ranging from 3.0 to 201.8 μgm−3 in NPhs,
2.4 to 305.7 μgm−3 in SPhs, and 2.9 to 274.1 μgm−3 in NPnhs,
respectively (as shown in Fig. 1). The impact of meteorology was
normalized by using a machine learning technique because the
variations of PM1 species and OA factors are affected by
meteorological conditions, for example, heavy pollution episodes
were related to southerly winds with low wind speeds (<2m s−1)
and high relative humidity (RH).

Observed and deweathered changes in primary emissions and
secondary formation
The average mass concentration of PM1 in SPhs (53.0 ± 56.4 μgm−3)
was much lower than that in NPhs (70.0 ± 54.4 μgm−3) (Fig. 2 and
Table 1), pointing that SP is potentially effective in reducing PM.
The primary emissions of PM1 components and OA factors,
including chloride, black carbon (BC), HOA, COA, and CCOA,
decreased by 36.1–66.9% from NPhs to SPhs. In particular, CCOA
decreased by 4.5 μgm−3, which was the most among OA factors.
Given that coal is an important energy source for both industrial
and residential heating, part of the reduction of CCOA was likely
due to the SP measure. As for secondary species, sulfate (from
6.6 ± 7.3 to 4.5 ± 5.7 μgm−3) and ammonium (from 6.9 ± 5.8 to

6.2 ± 7.0 μgm−3) also decreased slightly from NPhs to SPhs, with
decreasing SO2 from 21.6 ± 14.9 ppb in NPhs to 9.2 ± 8.2 ppb in
SPhs. However, it should be noted that despite a large decrease of
NOx from 77.3 ± 54.6 ppb to 44.0 ± 42.6 ppb, nitrate mass
concentration increased from 8.9 ± 7.4 μgm−3 in NPhs to
10.7 ± 13.9 μgm−3 in SPhs, with its mass fraction in PM1

consequently increasing from 12.7% in NPhs to 20.2% in SPhs. This
phenomenon may be due to stronger atmospheric oxidation
capacity and higher nitrogen oxidation ratio in SPhs, and will be
further discussed in the following section. OOA was the most
abundant OA factor in SPhs, on average accounting for 43.0% of
OA, which was much higher than that during NPhs (22.5%). These
variations suggest reduced primary emissions and enhanced
secondary aerosol contributions in SPhs after the implementation
of the SP measure. Similar findings were observed by Huang et al.30

and Wang et al.42, but variations of oxygenated organic aerosol and
influences of meteorological parameters were not considered in
those two studies.
Comparing observation results between SPhs and NPnhs, the

average mass concentration of PM1 in SPhs (53.0 ± 56.4 μgm−3)
was similar to that (50.7 ± 49.4 μgm−3) in NPnhs. This is different
from previous studies in that PM1 in the heating season was much
higher than that in the non-heating season43,44. While it is
interesting to note that the PM1 concentrations were comparable
between SPhs and NPnhs, gaseous parameters and aerosol
composition varied considerably. For example, SO2 decreased by
43.5% from 9.2 ± 8.2 ppb in SPhs to 5.2 ± 3.1 ppb in NPnhs. The
concentrations of NO2 were comparable (26.3 ± 18.0 ppb versus
27.4 ± 14.4 ppb) during the two periods. Specifically, CO
concentration nearly doubled (from 1.1 ± 1.1 ppm to 2.2 ± 0.8
ppm) from SPhs to NPnhs, mainly due to the resumption of
industrial production. O3 increased by 27.0% (from 14.1 ± 11.2 ppb
in SPhs to 17.9 ± 13.7 ppb in NPnhs) with the increase of solar
radiation and temperature (from 436776.5 ± 638447.0 J m−2

to 727050.6 ± 907261.9 J m−2 and from −0.2 ± 6.0 °C to
14.8 ± 5.6 °C)45–47. As for PM1 composition and OA factors, the
primary species, including chloride, BC, HOA, COA, CCOA, and
BBOA, decreased notably from SPhs to NPnhs. Components related
to coal combustion still showed dramatical decreases, e.g., the
mass concentrations of chloride and CCOA decreased by 50.5%
and 75.7% from SPhs to NPnhs, respectively, indicating that there
are still large emissions from coal combustion in SPhs, presumably
from domestic heating that persist in SPhs. Comparatively, the
relative contributions of secondary inorganic aerosol (SIA, nitrate,
sulfate, and ammonium) in NPnhs increased by 1.2–6.8% when
compared to SPhs. Meanwhile, the mass fractions of LSOA and
RSOA increased by 11.2% and 9.4% from SPhs to NPnhs,
respectively. These results indicated that the SP could effectively
alleviate the PM pollution in the heating season, but the effects of
seasonal variations and central heating were nonnegligible.
To minimize the impact of the meteorological conditions on the

above analysis, we apply the machine learning technique based
on a random forest algorithm37,39,41 to obtain the deweathered
concentrations of PM1 species, OA factors, and gaseous para-
meters (see Method for details). Smaller fluctuations were
observed in the time series of the deweathered PM1 species and
OA factors compared with observation results during the whole
study (as shown in Supplementary Fig. 1). The average deweath-
ered mass concentrations and fractional contributions of PM1

species and OA factors were comparable with the observations
result in all three periods, as shown in Figs. 2, 3 and Table 2. The
pollution load increased slightly (2.1 μgm−3, 0.1 μgm−3) after
decoupling the effects of meteorology in NPhs and SPhs,
respectively. While in NPnhs, primary emissions and secondary
formation reduced slightly after the weather normalization. After
the weather normalization, the mass concentrations of PM1 still
reduced largely from NPhs to SPhs, and it still showed the
characteristics of reduced primary emissions and enhanced
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secondary formation. The deweathered variations of PM1 species
and OA factors from SPhs to NPnhs were similar to those observed.
Even so, the reduction/increase ratios after decoupling the
meteorological effects from NPhs to SPhs and from SPhs and NPnhs
were somewhat different from those observed. For example,
reductions of the deweathered OA, sulfate, and chloride from NPhs
to SPhs (26.2%, 37.3%, 59.8%) were slightly larger than the
reductions of observations (24.1%, 32.0%, 49.4%). The increases of
deweathered nitrate and OOA from NPhs to SPhs were slightly
lower than those observed. From SPhs to NPnhs, the reductions of
deweathered OA, chloride, and BC from SPhs to NPnhs were more
pronounced than those observed, while the increase of SIA and
OOA were lower than the observed results. In summary, the
observed and deweathered results indicate reduced primary
emissions but increased secondary formation during SP. Detailed
causes of the enhanced secondary formation will be discussed in
the following section.

The cause of enhancement of secondary formation
To further investigate secondary formation in different periods, the
sulfur oxidation ratio (SOR= n[SO4

2−]/(n[SO4
2−]+ n[SO2]) and

nitrogen oxidation ratio (NOR= n[NO3
−]/(n[NO3

−]+ n[NO2])42,48,49

were calculated. Considering that secondary formation was more
pronounced under high RH conditions, data with RH > 50% was
chosen for better comparison16,50,51. As shown in Fig. 4, the
concentrations of precursors in SPhs were 15.1 ± 8.2 ppb for SO2

and 41.5 ± 16.4 ppb for NO2, much lower than those in NPhs
(29.1 ± 6.1 ppb for SO2 and 51.7 ± 8.4 ppb for NO2). On the contrary,
the concentration of O3 in SPhs (3.1 ± 4.6 ppb) was higher than that
in NPhs (2.2 ± 0.9 ppb), indicating stronger atmospheric oxidation
capacity in SPhs. The mass concentration of nitrate in SPhs
(20.9 ± 16.4 μgm−3) was 1.4 times that in NPhs (15.1 ± 5.0 μgm−3),
which was consistent with a higher NOR in SPhs (0.13 ± 0.07)
compared to that in NPhs (0.09 ± 0.02). In comparison, the mass
concentration of sulfate in SPhs (10.7 ± 8.1 μgm−3) was lower than

Fig. 1 Time series of PM1 species, OA factors, gaseous precursors, and meteorological parameters for the NPhs, SPhs and NPnhs. Time
series of a temperature (T) and relative humidity (RH), b surface net solar radiation, c wind speed (WS) and wind direction (WD), d SO2 and O3,
e NOx and CO, f OA factors (HOA, COA, CCOA, BBOA, and OOA), g PM1 species (organic, sulfate, nitrate, ammonium, chloride and black
carbon) for the NPhs, SPhs and NPnhs. NPhs represent the normal production period in the heating season from December 29th, 2014, to
January 14th, 2015, SPhs represents the staggering-peak production period in the heating season from January 1st, 2016, to March 15th, 2016,
and NPnhs represents the normal production period in the non-heating season from March 16th, 2016 to April 30th, 2016.
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that in NPhs (18.4 ± 8.0 μgm−3), which may relate to the lower SO2

concentration in SPhs and similar SOR between SPhs (0.14 ± 0.09)
and NPhs (0.13 ± 0.05). The concentrations of SO2 and NO2

decreased from 15.1 ± 8.2 ppb and 41.5 ± 16.4 ppb in SPhs to
6.2 ± 2.6 ppb and 38.8 ± 13.1 ppb in NPnhs, respectively, while O3

largely increased from 3.1 ± 4.6 ppb in SPhs to 7.0 ± 9.2 ppb in NPnhs

(as shown in Fig. 4). Consistently, the SOR and NOR in NPnhs (SOR:
0.20 ± 0.13; NOR: 0.152 ± 0.10) were also higher than those in SPhs
(SOR: 0.14 ± 0.09; NOR: 0.13 ± 0.07). This was consistent with the
increase of nitrate from SPhs (20.9 ± 16.4 μgm−3) to NPnhs
(22.7 ± 19.2 μgm−3) (As shown in Supplementary Table 1). Speci-
fically, the mass concentration of sulfate decreased from SPhs
(10.7 ± 8.1 μgm−3) to NPnhs (8.1 ± 7.5 μgm−3), probably due to the
reduction of SO2 from central heating emissions. These results
suggested that the SP, central heating and seasonal variations all
contributed to changes in secondary species.
As shown in Fig. 4 and Supplementary Table 1, SOR and NOR

showed obvious decreases after decoupling the influence of
meteorology, consistent with the prominent reductions of
secondary species from observations to the weather normalization
results. We noticed that observed SOR and NOR fell into wider
ranges than the deweathered during the whole study period,
indicating that the observed secondary formation was affected by
various factors. Even so, deweathered SOR and NOR increased
from NPhs to SPhs and increased from SPhs to NPnhs, which were
similar to the variational trends of observations, reaffirming
secondary processes were stronger during the staggering peak
production period in the heating season. The deweathered CO
increased largely from SPhs to NPnhs, indicating an increase in
emissions from industrial production.

Variations of PM1 composition under different pollution
stages after the SP
To further investigate the variations under different pollution
stages after the implementation of SP, we divided the data into
clean days (daily average PM1 < 35 µgm−3), average-pollution
days (35 µgm−3 < daily average PM1 < 75 µgm−3), and heavy-
pollution days (daily average PM1 > 75 µgm−3), respectively. As
shown in Fig. 5, in NPhs, the relative contributions of chloride were
the lowest on clean days (6.7%) when compared with the other
two pollution stages (8.3% on average pollution days; 8.2% on
heavy-pollution days). What’s more, the mass fractions of chloride
in NPhs were higher than those in SPhs and NPnhs in all pollution
stages. The fractional contributions of POA to OA increased largely
from 68.2% on clean days to 75.8% on average-pollution days and
further to 79.2% on heavy-pollution days. As for secondary
species, the fractional contribution of SIA in heavy-pollution days
was the highest (33.4%) when compared with those on average-

Fig. 2 Comparisons of PM1 species between deweathered and observed results. aMass concentrations and b fractions of deweathered and
observed PM1 species during the NPhs, SPhs, and NPnhs. The observed and deweathered change ratios of PM1 species between c NPhs and SPhs,
d SPhs and NPnhs (the bars below the horizontal line represent increased ratios, and the bars above the horizontal line represent decreased
ratios of PM species).

Table 1. Observed mass concentrations (averages+ standard
deviations) of aerosol species and OA factors, gaseous pollutants, and
meteorological parameters during three different periods.

Species NPhs SPhs NPnhs

Aerosol species (μgm−3)

PM1 70.0 ± 54.4 53.0 ± 56.4 50.7 ± 49.4

OA 34.8 ± 26.8 26.4 ± 27.1 20.8 ± 18.2

HOA 6.1 ± 5.6 2.4 ± 4.0 1.9 ± 2.6

COA 6.5 ± 5.6 2.7 ± 2.7 1.9 ± 1.9

CCOA 12.5 ± 11.3 8.0 ± 9.0 1.9 ± 2.8

BBOA 1.9 ± 1.8 2.0 ± 2.5 1.9 ± 1.9

OOA 7.8 ± 6.7 11.3 ± 12.5
(LSOA:10.0 ± 11.4;
RSOA:1.3 ± 1.7)

13.2 ± 11.9
(LSOA:10.2 ± 10.3;
RSOA: 3.0 ± 2.2)

SO4
2− 6.6 ± 7.3 4.5 ± 5.7 4.9 ± 6.5

NO3
− 8.9 ± 7.4 10.7 ± 13.9 13.7 ± 16.6

NH4
+ 6.9 ± 5.8 6.2 ± 7.0 7.7 ± 7.8

Cl− 5.7 ± 5.1 2.9 ± 3.7 1.4 ± 1.7

BC 7.1 ± 5.6 2.3 ± 2.6 2.2 ± 2.3

Gaseous pollutants

SO2 (ppb) 21.6 ± 14.9 9.2 ± 8.2 5.2 ± 3.1

CO (ppm) 1.9 ± 1.5 1.1 ± 1.1 2.2 ± 0.8

NO (ppb) 37.4 ± 37.5 17.7 ± 28.2 10.0 ± 17.4

NO2 (ppb) 39.9 ± 21.3 26.3 ± 18.0 27.4 ± 14.4

O3 (ppb) 9.8 ± 9.0 14.1 ± 11.2 17.9 ± 13.7

Meteorological parameters

RH (%) 31.7 ± 14.9 35.2 ± 19.8 38.1 ± 21.6

T (°C) 1.8 ± 3.5 -0.2 ± 6.0 14.8 ± 5.6

WS (m s−1) 1.7 ± 1.8 1.9 ± 1.3 1.8 ± 1.1
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pollution days (28.0%) and clean days (29.8%), while the fractional
contributions of OOA to OA decreased from 31.8% on clean days
to 24.2% on average-pollution days and further to 20.8% on
heavy-pollution days. These results indicated that primary
emissions and secondary inorganic formations (e.g., nitrate and
ammonium) contributed largely to heavy pollution events in NPhs.

In SPhs, relative contributions of primary emissions were compar-
able in different pollution stages, while fractional contributions of
secondary inorganic species increased from clean days (34.7%) to
average-pollution days (36.4%) and further to heavy-pollution
days (42.8%) and the increase ratios of SIA from clean days to
average-pollution days and further to heavy-pollution days in SPhs
were larger than those in NPhs. LSOA presented a similar
increasing trend with secondary inorganic species from clean
days to heavy-pollution days. Specifically, the relative contribu-
tions of RSOA to OA decreased largely from clean days (7.4%) to
average-pollution days (5.2%) and further to heavy-pollution days
(3.7%). These results suggested that both primary emissions and
secondary formation (e.g., nitrate, ammonium, and LSOA) were
important in the haze formation in SPhs and the secondary
formation in SPhs was stronger than that in NPhs. Different from
NPhs and SPhs, the mass fractions of chloride decreased from clean
days (3.6%) to heavy-pollution days (2.4%) in NPnhs. The relative
contributions of POA in NPnhs also decreased from 40.3% on clean
days to 38.4% on heavy-pollution days. However, fractional
contributions of SIA increased largely from 39.1% on clean days
to 51.9% on average-pollution days and further to 54.8% on
heavy-pollution days in NPnhs. The relative contributions of LSOA
to OA were also increased from clean days (38.5%) to heavy-
pollution days (50.3%) in NPnhs. Although RSOA presented a
similar decreasing trend with that in SPhs, the relative contribu-
tions of RSOA increased prominently from SPhs and NPnhs in all
pollution stages. These results illustrated that when compared
with NPhs and SPhs, secondary formation, including local oxidation
and regional transportation, was more prominent in aggravating
atmospheric pollution in NPnhs.

DISCUSSION
In this study, we compared the chemical characteristics of PM1 in
SPhs with those in NPhs and NPnhs to evaluate the effectiveness of
staggered-peak production measures. PM1 mass concentration in
SPhs decreased by about 24.3% compared to NPhs with reduced
primary emissions and enhanced secondary formation, indicating
that the SP measure led to a substantial reduction of PM pollution
in the heating season. The PM1 loading was similar between SPhs
(53.0 ± 56.4 μgm−3) and NPnhs (50.7 ± 49.4 μgm−3), indicating
reduced seasonal variations in PM pollution between heating and

Fig. 3 Comparisons of OA factors between deweathered and observed results. a Mass concentrations and b fractions of deweathered and
observed OA factors during the NPhs, SPhs and NPnhs. The observed and deweathered change ratios of OA factors between c NPhs and SPhs,
d SPhs and NPnhs (The bars below the horizontal line represent increased ratios and the bars above the horizontal line represent decreased
ratios of OA factors).

Table 2. Deweathered mass concentrations (averages+ standard
deviations) of aerosol species and OA factors, gaseous pollutants, and
meteorological parameters during three different periods.

Species NPhs SPhs NPnhs

Aerosol species (μgm−3)

PM1 72.1 ± 17.4 53.1 ± 13.5 48.7 ± 11.4

OA 36.0 ± 9.5 26.6 ± 6.9 20.4 ± 4.8

HOA 6.2 ± 2.0 2.4 ± 1.3 1.9 ± 0.7

COA 6.5 ± 2.3 2.7 ± 1.2 1.9 ± 0.8

CCOA 12.8 ± 4.3 8.1 ± 2.7 1.9 ± 1.7

BBOA 2.2 ± 0.7 2.0 ± 0.6 1.9 ± 0.3

OOA 8.3 ± 2.8 11.4 ± 3.0
(LSOA:10.0 ± 2.4;
RSOA:1.4 ± 0.8)

12.8 ± 3.1
(LSOA:9.9 ± 2.9;
RSOA: 2.9 ± 0.4)

SO4
2− 7.2 ± 1.7 4.5 ± 1.0 4.9 ± 2.2

NO3
− 9.3 ± 2.0 10.7 ± 4.1 13.0 ± 3.6

NH4
+ 6.9 ± 1.5 6.1 ± 1.5 7.1 ± 1.6

Cl− 5.6 ± 1.6 2.8 ± 0.8 1.2 ± 0.6

BC 7.1 ± 1.8 2.4 ± 1.0 2.1 ± 0.5

Gaseous pollutants

SO2 (ppb) 21.1 ± 4.8 9.1 ± 1.9 5.3 ± 0.9

CO (ppm) 2.0 ± 0.5 1.1 ± 0.4 2.1 ± 0.6

NO (ppb) 39.2 ± 11.3 17.9 ± 12.7 10.9 ± 8.1

NO2 (ppb) 39.2 ± 6.6 26.4 ± 6.2 26.8 ± 4.4

O3 (ppb) 10.4 ± 3.9 14.2 ± 6.0 17.9 ± 9.6

Meteorological parameters

RH (%) 31.7 ± 14.9 35.2 ± 19.8 38.1 ± 21.6

T (°C) 1.8 ± 3.5 −0.2 ± 6.0 14.8 ± 5.6

WS (m s−1) 1.7 ± 1.8 1.9 ± 1.3 1.8 ± 1.1
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non-heating seasons after the implementation of SP. Specifically,
the RF algorithm was used to decouple the effects of
meteorological conditions. After decoupling the effects of
meteorology, smaller fluctuations were observed in the time
series of PM1 species and OA factors. Although the increase/
decrease ratios varied substantially of PM1 composition and OA
factors after weather normalization, the variation trends of
primary emissions and secondary formations were consistent
with the observed results, indicating that SP indeed alleviates PM
pollution. Studies on different pollution levels show that
secondary transformation is more important in the formation of
haze events after the SP. These results call for further control of
PM precursors and more investigations on secondary formation

mechanisms under different conditions in highly polluted regions
in urban China.

METHODS
Sampling site
The sampling site is located in the northwest region of Beijing
between the 4th and 5th ring roads, surrounded by various
research institutes and residential areas (40.00N, 116.38E).
Measurements were conducted on the rooftop of a five-story
building of China’s National Center for Nanoscience and
Technology (NCNST), about 20 m above the ground level.
The campaign was conducted from January 1st to April 30th

Fig. 4 Observed and deweathered variations under high RH conditions (RH > 50%). Comparisons of observed and deweathered a SO2,
b NO2, c O3, d CO, e SOR (sulfur oxidation ratio) and f NOR (nitrogen oxidation ratio) among NPhs, SPhs, and NPnhs. (Error bars represent the
standard deviations of each species).

Fig. 5 Variations of PM1 species and OA factors under different pollution stages. a Relative contributions and b average mass
concentrations of PM1 species and OA factors on clean days (C), average-pollution days (AP), and heavy-pollution days (HP) during the NPhs,
SPhs, and NPnhs (As shown in the doughnut plot in the upper right corner, the innermost circle of this plot represents the clean days, the
middle circle represents the average-pollution days, and the outermost circle represents the heavy-pollution days).
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in 2016. Data in 2015 was used for comparison cited by
Huang et al.52.

Instrumentation
The composition of non-refractory submicron aerosol (NR-PM1

including organics, sulfate, nitrate, ammonium, and chloride, was
measured by a quadrupole aerosol chemical speciation monitor
(Q-ACSM, Aerodyne Research Inc., Billerica, Massachusetts) with
unit mass resolution (UMR) and a time resolution of 30 minutes.
A detailed operating principle of this instrument can be found
elsewhere53. In brief, particles passing a URG cyclone (Model:
URG-2000-30ED) with a cutting size of 2.5 μm were drawn
through a 3/8 in. stainless steel tube at a flow rate of ~3 L min−1

and then entered the vacuum chamber of the instrument
through an aerodynamic lens. Through the lens, aerosol particles
with diameters of 40 nm–1 μm focused into a beam of particles
and later vaporized at 600 °C and ionized with electron impact
ionization. The ionized fragments then entered the mass
spectrometer for detection and analysis. O3 and NOx were
measured by standard gas analyzers (Thermo Scientific, Model
42i, and 48i, respectively). The concentrations of CO and SO2

were also obtained by gas analyzers (ECOTECH, Model EC9803B,
and EC9850B, respectively). The gas monitors were sampled in a
time resolution of 5 min. Meanwhile, an aethalometer (model AE-
33) was deployed to obtain the concentration of BC with a time
resolution of 1 min. Note that here BC is from PM2.5 but is used to
represent BC in PM1 as BC mass is mostly confined to the
10–1000 nm diameter range42,54,55. The meteorological data,
including temperature (T), RH, wind speed (WS), and wind
direction (WD), were obtained by an automatic weather station
(MAWS201, Vaisala, Vantaa, Finland) and a wind sensor (Vaisala
Model QMW101-M2).

ACSM data analysis
Concentrations of the NR-PM1 species were analyzed using the
standard ACSM software version 1.5.2.0 (Aerodyne Research Inc.,
Billerica, Massachusetts, USA). Following Ng et al.56, calibrations
were conducted to ensure that the instrument was in good
condition during the whole observation period. Specifically, an
atomizer (Model 9302, TSI Inc., Shoreview, MN, USA), a differential
mobility analyzer (DMA, TSI model 3080), and a condensation
particle counter (CPC, TSI model 3772) were used for the
calibration of ionization efficiency (IE) and the relative ionization
efficiencies (RIEs). RIEs of organics, nitrate, chloride, ammonium,
and sulfate were 1.4, 1.1, 1,3, 6.4, and 1.2, respectively. A
composition-dependent collection efficiency (CDCE) was applied
following Middlebrook et al.57, which is presented as max (0.45,
0.0833+ 0.9167×ANMF), ANMF is the mass fraction of ammonium
nitrate in NR-PM1.

OA source apportionment
Source apportionment was performed on the OA data using PMF
with a multilinear engine (ME-2)58. Details of source apportion-
ment of OA were provided in the Supplementary Information
(Supplementary Note 1 and as shown in Supplementary Figs. 2-4).
Briefly, we examined solutions from 2 to 8 factors using the
unconstrained PMF model. According to the analysis of mass
spectra, diurnal cycles, time series of each factor, and comparisons
with factors from previous studies, we first interpreted five factors,
which were hydrocarbon-like OA (HOA), cooking OA (COA), coal
combustion OA (CCOA), oxygenated OA1 (OOA1) and oxygenated
OA2 (OOA2). However, in the free PMF solution, COA and HOA
were mixed as the COA profile had the alkyl fragments signatures,
which were characteristics of HOA. Meanwhile, we found obvious
signals for m/z 60 (mainly C2H4O2

+) and m/z 73 (mainly C3H5O2
+),

which were considered BBOA tracers in HOA and CCOA factors.

Besides, the fraction of the ion peak at m/z 60 (f60) makes up
approximately 0.5% of organic matter mass, slightly larger than
the environmental background value of 0.3%59, indicating the
contribution of BBOA.
To separate the factors from mixtures, ME-2 was used to provide

a complete exploration of the rotational ambiguity by introducing
a priori information. The final result was the average of
33 solutions based on minimization of m/z 60 in HOA,
optimization of COA diurnal patterns, and the consistency of
factors with the previous studies15,16,60,61. OOA1 and OOA2 were
further interpreted as local secondary OA (LSOA) and regional
secondary OA (RSOA), which were described in detail in the
Supplementary Information (As shown in Supplementary Fig. 5). In
this study, six OA factors, including HOA COA, CCOA, BBOA, LSOA,
and RSOA were resolved after PMF analysis with ME-2. Note that
OOA during SPhs and NPnhs is the sum of LSOA and RSOA for
comparison with NPhs.

Back trajectory analysis
The 3-day (72 h) back trajectories were calculated per hour at
100m height using the Hybrid Single-Particle Lagrangian Inte-
grated Trajectory (HYSPLIT, NOAA) 4.9 model62,63. The trajectories
were grouped into five clusters according to Euclidean distance
for weather normalization.

Weather normalization technique
Meteorological conditions affect the variations of pollutant
concentrations, which makes it difficult to directly compare
pollutant emission levels. In this study, we applied a machine
learning-based RF algorithm model combined with source
apportionment results to decouple the effects of meteorological
conditions on primary emissions and secondary formation.
Detailed information on this technique can be found else-
where37,41. Here, an RF model was built for each PM1 component
and gas precursor in each year using time variables (i.e., Unix time,
Julian day, month, week of the year, day of the week, hour of the
day), meteorological data from observations (i.e., RH, WS, WD,
temperature), meteorological data from ERA5 reanalysis data set
(i.e., boundary layer height, total cloud cover, surface net solar
radiation, total precipitation, and surface pressure) and air mass
clusters grouped by the HYSPLIT back trajectories based on the
Euclidean distance. The parameters setup for RF models was
followed Vu et al.37. The number of trees in the random forest was
300 (n_tree = 300), the minimal node size was 3 (min_node_size
= 3), and the number of variables split at each node was 3. Model
performance for each pollutant during the whole study period
was evaluated via Pearson’s R-value, root mean square error
(RMSE), FAC2 (fraction of predictions with a factor of two), MB
(mean bias), MGE (mean gross error), NMB (normalized mean bias),
NMGE (normalized mean gross error), COE (coefficient of
efficiency), and IOA (index of agreement) (as shown in Supple-
mentary Fig. 5). For the weather normalization, only weather
variables were resampled without replacement and randomly
generated from the data set of different dates within a 4-week
period (i.e., 2 weeks before and 2 weeks after the selected date).
The selection process was repeated 1000 times to gain 1000
predicted concentrations of each species. The final weather
normalized concentration of each species at a particular time
was the average of that 1000 predicted results.

DATA AVAILABILITY
Raw data used in this study are available from the Zenodo (https://doi.org/10.5281/
zenodo.7417822). Meteorological data, including boundary layer height, total cloud
cover, surface net solar radiation, total precipitation, and surface pressure, are
available from the ERA5 reanalysis data set (https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview).
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